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Abstract
Un-doped and Ni-doped lanthanum ferrite nanoparticles were synthesized by solid-state method. Ni concentration-
dependent structural, dielectric and optical properties of synthesized nanoparticles were investigated. X-ray diffraction 
patterns confirmed predominant single-phase orthorhombic crystal structure with space group Pbnm in all samples. 
Average crystallite size was found to vary from 19 to 21 nm with Ni concentration. The field emission scanning electron 
microscopy revealed nanocrystalline structure with homogenous distribution of particles. UV–Vis–NIR diffuse spectra 
captured at room temperature indicate that La1−xNixFeO3 is an indirect band gap material. The band gap varies from 1.70 
to 1.85 eV with changing Ni concentration. Frequency-dependent dielectric constant, dielectric loss and ac conductiv-
ity were studied at room temperature. The dielectric constant was found to increase with increasing Ni content at high 
frequency. The loss factor resulted from domain wall resonance exhibited an identical dispersion behavior of dielectric 
constant. At high frequencies, the dielectric losses of orthoferrites were found to be low. This is attributed to the restricted 
motion of domain wall pointing its plausible practical applications in magnetically tunable filters and oscillators.
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1  Introduction

Ferrites are a class of ceramic materials consisting of mix-
tures of various metal oxides. It finds many potential appli-
cations in the modern world [1–4]. Nowadays, a significant 
attention has been given to lanthanum ferrites (LaFeO3) 
due to its exchange bias, opto-magnetic and multifer-
roic properties. These ferrites are candidates for memory 
devices, low power-consuming spintronic devices, oxy-
gen permeation membranes, opto-magnetic sensors and 
electrode material in solid oxide fuel cells (SOFCs) [5, 6]. 
Manikandan et al. [7–10] also reported pure and doped 
ferrite nanomaterials for different applications such as 
photocatalyst for the degradation of dyes, catalytic oxida-
tion of alcohols, antibacterial activity and sensor materials.

The rare-earth-based orthoferrites, RFeO3 (R denotes 
rare-earth element), are orthorhombically distorted per-
ovskites with four formula units per unit cell. In this struc-
ture, Fe3+ occupies the orthorhombic site and R3+ situates 
on the twofold axis [11–13, 13–19].

The orthorhombic structure of LaFeO3 belongs to Pbnm 
space group displaying p-type semiconductor. It is an 
attractive electroceramics due to mixed ionic/electronic 
conductivity and chemical stability at high temperature 
[20]. It exhibits antiferromagnetic phenomena with Neel 
temperature (TN) at 750 K [21]. Neutron diffraction studies 
on model LaFeO3 proved that each Fe3+ ion is confined to 
six(6) Fe3+ ions with spins pair antiparallel [22]. Recently, fer-
romagnetism has also been reported for LFO nanoparticles. 
The effects of length scale, shape and anisotropy prevailed 
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at surface which shows the magnetization increased with 
decreasing particle size [23–25].

Significant research efforts are being made to search 
for new class of oxide materials with smaller band gaps 
to enhance visible light absorption. The doping at La and/
or Fe site of LaFeO3 conducted by researchers is shown to 
display significant effects on many properties of LaFeO3. 
Some investigations have been reported for LFO bulk 
ceramics [26–36]. Improved dielectric and optical prop-
erties of doped LFO are important for its practical appli-
cations. In this context, for the first time we thoroughly 
investigated the effect of Ni doping on the structural, 
dielectric and optical properties of LaFeO3 nanoparticles. 
La1−xNixFeO3 (x: 0.0, 0.10 and 0.20) nanoparticles were syn-
thesized with the variation in Ni doping level by solid-state 
reaction technique.

2 � Experimental techniques

La1−xNixFeO3 (x = 0.0, 0.10 and 0.20) nanoparticles were 
synthesized by a solid-state reaction technique. The 
analytical-grade base materials, namely La2O3, NiO and 
γ-Fe2O3, were taken in stoichiometric proportion. Then, 
it was milled using in zirconia balls for 24 h to obtain 
homogeneous mixture. Next, calcination was carried out 
at 700 °C for 2 h followed by remilling in alcoholic media 
for 10 h. Next, the suspensions were dried at 120 °C. Then, 
obtained powders were pressed into disk-shaped samples 
of 15 mm in diameter under a compressive force of 40 kN. 
The pressed pellets were sintered at 750 °C for 2 h embed-
ded in corresponding powders to avoid volatilization. The 
phase structure of the sintered powders was determined 
by X-ray diffractometry (XRD; PANalytical Empyrean). The 
microstructure of the polished samples was investigated 
by scanning electron microscopy (JSM-7600F, JEOL). For 
dielectric measurement, the sintered samples were prop-
erly flattened to obtain parallel and smooth surfaces. 
Then, a silver paste (SPI Flash-Dry Silver Paint) was applied 
on both polished surfaces and dried at 250 °C for 4 h to 
provide connection of electrodes. Dielectric property 
measurement was conducted by a precision impedance 
analyzer (6500B, Wayne Kerr Electronics, UK) at ambient 
condition at frequency ranging from 10 Hz to 100 MHz. 
Optical properties were measured by UV–VIS–NIR spec-
trometry (Lambda-1050, PerkinElmer, USA).

3 � Results and discussion

3.1 � X‑ray diffraction

X-ray diffraction (XRD) patterns were captured at Bragg 
angle (2θ) ranging from 20° to 80°. Figure 1 shows room 

temperature XRD patterns of La1−xNixFeO3 (x = 0.0, 0.10 
and 0.20) samples. The peak intensity was shown to modu-
late with Ni content compared to pure LaFeO3. However, all 
samples were shown to confirm single-phase orthorhom-
bic crystal structure with Pbnm space group.

Evidently, a small trace of secondary phase γ-Fe2O3 
was found to present in XRD patterns of both pure and 
Ni-doped samples. However, the apparently unavoidable 
formation of secondary phases during the synthesis of 
LaFeO3-based materials has been reported in several arti-
cles [37, 38].

Obtained patterns were also further analyzed by the 
Rietveld refinement using Xpert HighScore plus with ICDD 
database. The crystallite size and strain are presented in 
Table 1. Average crystallite size was found to vary from 19 
to 21 nm with the variation in Ni dopant level.

The ionic radius (0.69  A) of Ni2+ is much less than 
the ionic radius (1.03 A) of La3+ [39]. Thus, a significant 
strain is generated in parent LFO, which is found to be 
increased with Ni2+ content concomitant with the Riet-
veld refinement strain data as shown in Table 1. Crys-
tallite size was found to decrease with increasing Ni2+ 
doping concentration. Similar result was reported for Ni-
doped BiFeO3 [40]. In contrast, with increasing Ni2+ dop-
ing concentration crystallite size was shown to increase 
in ZnFe2O4 [10, 41–44]. In this context, we postulate that 
the initial crystal structure of parent material might play 
an important role. However, it is established through 
density functional theory (DFT) calculations that Mn2+, 
Co2+, Ni2+ and Cu2+ are both the A- and B-site dopants 
[45]. Ca2+, Sr2+, Ba2+ and Fe2+ are found to be A-site and 

Fig. 1   X-ray diffraction (XRD) patterns of La1−xNixFeO3 (x  =  0, 0.1, 
0.2) samples
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Mg2+ is considered to be B-site dopants. We doped Ni2+ 
to substitute A-site La3+ ion, but the increase in cell 
parameters and the volume of unit cell obtained from 
Rietveld analysis contradicts with our initial prediction. 
Thus, we postulate that that Ni2+ substitutes B-site Fe3+ 
ion of radius 0.55 A which demonstrates a good agree-
ment with observed cell expansion and may rule out the 
possibility of the A-site substitution by Ni2+ dopant.

3.2 � Scanning electron microscopy

Shown in Fig. 2 are the scanning electron micrographs of 
the polished samples of La1−xNixFeO3 (x = 0, 0.1, 0.2) nano-
particles which were calcined at 700 °C for 2 h. Evidently, 
all micrographs exhibit irregular particle shapes with a 
wide range of particle size distribution. The mean particle 
size of La1−xNixFeO3 (x = 0, 0.1, 0.2) ceramics decreases with 
increasing Ni content. That means Ni doping was found to 
suppress grain growth. Inhibition of grain growth was also 

Table 1   Crystal parameters, 
crystallite size and lattice strain 
of LFO and Ni-doped LFO

D, crystallite size, � , lattice strain; GOF, goodness of fitting

Samples 
(La1−xNixFeO3)

Crystal parameters ( Å) Volume ( Å3) D (nm) � (%) GOF

x = 0.0 a = 5.58803, b = 7.84259, c = 5.54317 242.9274 20.7 0.607 1.90
x =  0.1 a = 5.6177, b = 7.85131, c = 5.54495 244.5712 19.6 0.641 2.30
x = 0.2 a = 5.61863, b = 7.85281, c = 5.55731 245.2309 18.9 0.663 2.63

(a) (b)

(c)

Fig. 2   FESEM micrographs of La1−xNixFeO3: a x = 0.0, b x = 0.10 and c x = 0.20
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reported for Ni-doped BiFeO3 [40]. The decreasing grain 
size of Ni-doped LFO can be resulted from the suppres-
sion of O2 vacancy concentration (the slower the O2 ion 
movement, the smaller the grain growth rate) and due 
to the difference in ionic radius of La3+ and Ni3+ [46–48]. 
In addition, oxygen vacancies are presumably generated 
due to Ni doping in LFO resulting structural distortion with 
concurrent reduction in crystallinity hence reducing the 
grain size.

However, during calcining the compositions at 700 °C 
high surface energy leads to neck formation by diffusion 
in solid state and nanoparticles agglomerate by the pro-
cess of evaporation–condensation. In addition, both the 
particle size and crystal size of Ni-doped LFO nanoparticles 

reduce with increasing Ni content demonstrating the 
retardation of grain growth.

3.3 � Dielectric properties

The room temperature measurement of dielectric behav-
ior is presented in Fig. 3. Figure 3a shows how the dielectric 
constant varies with frequency (102–107 Hz). The increase 
in dielectric constant at low frequency is remarkable. The 
frequency regions may be subdivided into three regimes: 
(I) the first region (up to 103 Hz) in which the dielectric 
constant sharply decreases with frequency, (II) the region 
in which the dielectric constant decreases comparatively 

(a) (b)

(c)

Fig. 3   Frequency dependency of La1−xNixFeO3 (x = 0.1, 0.2) recorded at RT in the wide frequency range from 100 Hz to 120 MHz: a real part 
of the dielectric constant ( �′ ), b imaginary part of the dielectric constant ( �′′ ) and c tangent losses (tan δ)
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slowly with frequency and (III) the frequency region in 
which the dielectric constant remains almost constant.

Similar type of dielectric behavior has also been 
observed in our investigated other dielectric materials [49, 
50] and may be exemplified by polarization mechanism. 
At low frequencies, the dielectric constant is attributed to 
all types of polarization mechanisms and the contribution 
from various types of polarizations start to decrease with 
the increase in frequency. The dipolar including interfa-
cial polarizations play role to dielectric constant at low fre-
quencies. Basically, Fe3+/Fe2+ ions bring about dipolarity in 
ferrites. The electron exchange between these ions results 
the dipolar polarization, and the dipole alignment takes 
place by AC field. After a certain frequency of AC field, the 
dipolar polarization does not contribute to the dielectric 
constant. This is because the electron exchange between 
Fe2+ and Fe3+ cannot follow alternating field. The dielectric 
constant is attributed only to the electronic polarization at 
very high-frequency region [51]. The electronic polariza-
tion is independent on frequency, resulting in a constant 
value of dielectric constant at high frequency. The effect 
of trace secondary phase may also be noted. The dielectric 
dispersion of γ-Fe2O3 was absent after annealing above 
550 °C [52]. Thus, the observed dielectric behavior of LFO 
was not expected to alter remarkably.

The lagging in the polarization with respect to the 
AC field can be represented by the dielectric loss (tanδ). 
Figure 3b shows the frequency dependence of tanδ for 
La1−xNixFeO3 system where no loss peak is observed. The 
nonexistence of any peak in tanδ defines the system as 
charge carrier-dominated system where the dominant 
contribution to polarization stems from electronic or 

ionic charges [53]. The similar type of behavior was also 
observed for EuFeO3 [51].

3.4 � AC conductivity

With the purpose of further studying the transport mech-
anism, the AC conductivity at different Ni contents is 
investigated. Figure 4 presents the frequency-dependent 
conductivity for different doping concentrations at room 
temperature. A plateau regime was observed at lower 
frequency while a dispersion region was found at higher 
frequency.

The Maxwell–Wagner two layers formalism can be 
applied to the observed phenomenon [54]. The plateau 
region characterizes the dc conductivity. The frequency-
independent conductivity may be attributed to the ran-
dom diffusion by activated hopping of ionic charge car-
riers. Therefore, the conductivity can be described by 
Jonscher’s universal power law [55]

where the first part ( �dc ) of right-hand side is defined as 
the dc conductivity and the left part of the above equa-
tion is the frequency-dependent conductivity [56]. The fre-
quency exponent ’s’ has the value in the range of 0 < s < 1 
while the of s is 1 suggesting an ideal Debye-type behav-
ior. The value of s can be calculated from the log�ac ver-
sus log� , and the calculated values are 0.55, 0.71, 0.65 for 
x = 0.0, 0.10 and 0.20, respectively.

A hopping mechanism for the direct current electrical 
conductivity is associated with a small value of activation 
energy. The small polaron can migrate by thermal activa-
tion from Fe2+ to Fe3+ sites contributing to the change in 

(1)�ac(�) = �dc + D�
s

(a) (b)

Fig. 4   a Frequency dependence of AC conductivity for La1−xNixFeO3 (x = 0, 0.1, 0.2) ceramic and b log�
ac

 vs log�
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mobility. This phenomenon requires the reduction in a 
small fraction of Fe3+ to Fe2+ with a simultaneous creation 
of coordinated oxygen vacancy to satisfy the neutrality of 
a γ-Fe2O3 crystallite [57]. Thus, the effect of trace secondary 
phase would not significantly deteriorate the dc conduc-
tivity (ac conductivity at low frequencies) of parent LFO.

3.5 � Band gap tuning

With small band gap energy, LFO is a plausible attractive 
visible light irradiator. The photovoltaic (pv) absorption 
capacity of LFO is correlated with its electronic structure 
and thereby major contributor to their band gaps [58]. In 
this context, the diffused reflectance spectra captured by 
UV–Vis–NIR spectrophotometry (PE-1050) were used to 
obtain band gap energy, Eg of synthesized all nanomate-
rials. Eg was calculated by applying Kubelka/Munk func-
tion defined as: F(R) = (1 − R)2∕2R , where R is the diffused 
reflectance. Shown in Fig. 5 are [F(R)h�]2 versus h� graphs.

Eg is obtained from the plots by drawing tangent lines 
at upper linear part of the curves. The point of intersec-
tion of a tangent at [F(R)h�]2 = 0 is Eg [59]. Basically, Eg 
is the differentiate energy between (O:2p) valence band 
and (Fe:3d) conduction band of LFO. Table 2 summarizes 
obtained band gaps of pure LFO and Ni-doped LFO.

The observed reduction in Eg may stem from many con-
tributors. The Fe–O octahedral restructuring of molecular 
orbital can reduce Eg [60]. The length scale of nanopar-
ticles also affects the value of Eg [61], i.e., Eg scales with 
the size of particles. Theoretical calculation claimed that 
generation of new energy level between Fe:3d and O:2p 
by doping can reduce the effective Eg of LFO [62]. In addi-
tion, the Ni content in LFO might change the Fe–O bond 

length and Fe–O–Fe bond angle resulting in impact on Eg 
by modulating one-electron band width (w) [63]. Ecb of 
Ni2+ is − 4.39 eV, and Ecb of Fe2+ is − 4.33 eV; thus, ENi

cb
< EFe

cb
 

[64] that may also reduce Eg. The experimental formula 
correlating w with bond length and bond angle reads

where dFe−O is Fe–O bond length and

Eg is linked to w by Eg = Π-w . Here, Π is the energy related 
to charge transfer [65]. Thus, the increase in bond angle, 
Fe–O–Fe, and the reduction in bond length, dFe−O , by Ni 
doping resulted in the increase in the value of w and thus 
the reduction in Eg. However, the band gap of γ-Fe2O3 is 
reported to be 2.0–2.2 eV [66, 67]; thus, it would interfere 
negatively with the purpose of lowering the band gap of 
LFO by doping.

4 � Conclusions

Pure LFO and La1−xNixFeO3 (Ni-doped LFO) nanoparticles 
were successfully synthesized by conventional solid-state 
method. The parent crystal structure of LFO was found 
to retain in doped LFO. The size of crystallite was shown 
to decrease with increasing Ni doping level. The concur-
rently induced lattice strain increased with the reduction 
in crystallite size. However, the presence of clusters cannot 
be ruled out within the scope of XRD and FESEM experi-
mental techniques. A significant agglomeration effect was 
thus presumably present in all synthesized nanostructured 
samples as confirmed by the disagreement between the 
crystallite size estimated from XRD patterns and the par-
ticle size calculated from FESEM images. Ni doping in LFO 
enhances its optical properties. The optical band gap 
was shown to decrease to 1.70 eV with 20 (at.)% Ni dop-
ing. Higher values of dielectric constant were obtained 
at low frequencies due to the conduction mechanism of 
heterogeneous nature. The observed dispersion at low 

(2)w =
cos�

d
3.5
Fe−O

(3)� =
1

2
(� − (Fe − O − Fe))

Fig. 5   [h�F(R)]2 versus h� (photon energy, eV) plots to calculate 
band gap energy for Ni-doped LFO

Table 2   Band gap, mean particle size and lattice strain of LFO and 
Ni-doped LFO

Samples (La1−xNixFeO3) Band gap (eV) Mean par-
ticle size 
(nm)

x = 0.0 1.85 34
x = 0.1 1.75 31
x = 0.2 1.70 28
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frequencies may resulted from electronic polarization by 
the underlying hopping mechanism of polaron. The AC 
conductivity ( �AC ) was found to increase with increasing 
Ni concentration. When the frequency of the applied field 
increases, the conduction process might be affected by 3d 
hopping electrons between Fe2+/Fe3+ ions and Ni2+/Ni3+ 
ions. The improved properties of synthesized Ni-doped 
LFO provide a scientific implication for its plausible appli-
cations in magnetically tunable filters and oscillators.
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