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Abstract
Present work gives an account of different types of non covalent interactions encountered in the supramolecular architec-
tures of new salts and cocrystal formed between derivatives of 1,3,5-triazine and thiophene carboxylic acid. The novel salts 
formed between derivatives of thiophene carboxylic acid and 1,3,5-triazine are 2, 4-diamino-6-methyl-1,3,5-triazin-1-ium 
5-carboxythiophene-2-carboxylate monohydrate, C4H8N5

+·C6H3O4S1
−·H2O (I) and 2,4-diamino-6-methyl-1,3,5-triazin-

1-ium 3-bromothiophene-2-carboxylate monohydrate, C4H8N5
+·C5H2O2S1Br1

−·H2O (II). The new cocrystal is a 1:1 cocrystal 
formed between 2,4-diamine-6-phenyl-1,3,5-triazine and 2,5-dichlorothiophene-3-carboxylic acid, C9H9N5·C5H2O2S1Cl2 
(III). The newly synthesized salts (I and II) and cocrystal (III) have been characterized by single-crystal X-ray diffraction. 
Supramolecular heterosynthons, homosynthons observed via N–H···O, N–H···N and O–H···N hydrogen bonds are also 
discussed. Anion···π interaction between carboxylate oxygen and aromatic rings of thiophene and triazine are observed 
in salt (I). π···π interaction is present between thiophene and triazine rings in salt (II). R2

2(8) ring motif is formed in cocrystal 
(III) via N–H···O and O–H···N hydrogen bonds. Further stabilisation of cocrystal (III) via Cl···O, Cl···Cl interactions as well as 
π···π interactions (triazine···triazine rings and triazine···phenyl rings) are also investigated.
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1  Introduction

Supramolecular chemistry deals with studies on non-
covalent interactions and molecular assemblies. This 
knowledge acts as a basic tool for design of new multi-
component crystalline materials or supramolecular 
materials. These supramolecular materials show various 
applications in catalysis [1, 2], magnetism [3, 4], photo-
luminescence [5, 6], drug delivery and design [7, 8], gas 
storage [9, 10]. Among the various non-covalent inter-
actions, hydrogen bonding interactions like O–H···O, 
N–H···O, N–H···N and C–H···O have received considerable 
attention as they play important role in molecular rec-
ognition [11]. Anion···π interactions, cation···π interac-
tions and π···π interactions are the commonly occurring 

non-covalent interactions leading to generate unique 
supramolecular network from simple building blocks 
[12]. In addition to these interactions, halogen substi-
tuted carboxylic acid derivatives perform a significant 
role in altering the supramolecular architectures via vari-
ous halogen (X) involving interactions like X···X, X···O, 
X···π interactions etc. [13]. Halogen bonding is a strong 
tool for constructing supramolecular networks due to its 
strength and directionality. Halogen bonds have recently 
been widely applied in supramolecular chemistry as an 
alternative to hydrogen bonds to control solid-state 
structures. There are studies which have investigated 
the competition between hydrogen bond and halogen 
bond in cocrystals [14]. Here we selected halogen substi-
tuted thiophene carboxylic acids to investigate halogen 
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involving interactions due to the halogen substitution. 
Impact of halogen bonds in crystal engineering has been 
widely studied in halogenated aromatic compounds 
[14].

Aminotriazines are selected for the study as they 
have proven their great potential in crystal engineering 
as they contain large number of coordination/hydrogen 
bonding sites, for their π-interaction abilities [12]. Inves-
tigation on various supramolecular motifs and molecular 
self assemblies among aminotriazine derivatives were 
always interest of research. A series of 1, 3, 5-triazine 
based compounds are found to have activity against 
protozoan parasites which causes a number of diseases 
to human [15]. Studies are going on to investigate the 
structure–activity relationship by altering the substitu-
ents of 1, 3, 5-triazine derivatives [15]. Antimicrobial 
activities were evaluated for 1,3,5-triazine derivatives 
against various bacteria [16]. Studies of 1,3,5-triazine 
derivatives showed that length of alkyl substitution and 
presence of nitrogen atom in triazine has significant 
effects on anticancer activity [17]. Apart from biological 
activities, triazine derivatives have eminent capacity as 
light stabilizers for polymers [18].

2 � Experimental

2.1 � Synthesis and crystallization

Compounds (I)–(III) were prepared by mixing hot meth-
anol–water (1:1 v/v) solutions (total volume 0.03 L) of 
2,4-diamino-6-methyl-1,3,5-triazine with thiophene 
dicarboxylic acid [for I], 2,4-diamino-6-methyl-1,3,5-tri-
azine with 3-bromothiophene-2-carboxylate [for II] and 
2,4-diamine-6-phenyl-1,3,5-triazine with 2,5-dichloro-
thiophene-3-carboxylic acid [for III]. The solutions were 
warmed to 343 K over a water bath for 30 minutes and 
then cooled slowly to 298 K after filtration. Colourless 
crystals were collected from the respective mother liquor 
solutions after 7 days. Chemical Structures of novel salts 
and cocrystal are presented in Scheme 1.

2.2 � Measurements (single crystal x‑ray diffraction)

Intensity data sets were collected at 293 K for on a Super-
Nova dual with an Atlas diffractometer. Data reduction 
was done by CrysAlis PRO [19]. The structures were solved 

Scheme 1   Chemical structures 
of I-III 
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SUPERFLIP [20] and subsequent Fourier analyses, refined 
anisotropically by full-matrix least-squares method using 
SHELXL2014 [21] within the WINGX suite of software, 
based on F2 with all reflections. The molecular structures 
were drawn using the PLATON [22] and Mercury [23]. The 
crystals remained stable throughout the data collection.

Crystal data and structure refinement details are sum-
marized in Table 1. All the hydrogen atoms were initially 
located in difference Fourier maps and were subsequently 
treated as riding atoms in geometrically idealized posi-
tions, with C–H = 0.93 (aromatic) or 0.96 Å (methyl), 
N–H = 0.86 Å and O–H = 0.82 Å (hydroxyl), whereas hydro-
gen atom coordinates in water molecules were refined by 
constraining the O–H bond length (I, II). All H atoms were 
refined with Uiso(H) = kUeq(C,N,O), where k = 1.5 for hydroxy, 
water and methyl H atoms and 1.2 for all other H atoms.

3 � Results and discussions

3.1 � Structural commentary

The salt (I) crystallizes in triclinic system with space group 
P-1. The asymmetric unit of salt (I) consists of one 2, 
4-diamino-6-methyl-1,3,5-triazin-1-ium (DAMT) cation, 

one 5-carboxythiophene-2-carboxylate (CTC) anion and 
a water molecule (Fig. 1). The triazinium cation is proto-
nated at the N1 position. It is confirmed by increase in 
internal bond angle. Internal angle at unprotonated N3 
(C2–N3–C4) is 115.7 (2)° and at N5 (C4–N5–C6) is 115.4 
(7)°, while internal angle at protonated N1 (C6–N1–C2) 
is 119.2 (2)°. There is not much discrepancy between the 
external bond angles at the carbon (C8) of carboxylate ion 
(C9–C8–O2 = 120.77 (17)° and C9–C8–O1 = 113.87(15)°). 

Table 1   Experimental details Crystal data (I) (II) (III)

Empirical formula C10 H13 N5 O5 S C9 H12 Br N5 O3 S C14 H11 Cl2 N5 O2 S
Formula weight 315.31 690.46(12) 384.24
Temperature (K) 293 293 293
λ (Å) 0.71073 1.54184 1.54184
Crystal system P-1 P-1 P-1
Space group Triclinic Triclinic Triclinic
a (Å) 8.3921(6) 8.0095(8) 7.1038(12)
b (Å) 9.6250(8) 9.2549(9) 7.9449(11)
c (Å) 10.2803(9) 9.9864(10) 15.4870(14)
α (°) 62.339(9) 78.831(8) 86.934(9)
β (°) 74.447(7) 75.860(8) 81.930(11)
γ (°) 66.819(8) 76.434(8) 65.759(15)
V (Å3) 672.37(11) 690.46(12) 789.1(2)
Z 2 2 2
ρ calcd (g/cm3) 1.558 1.684 1.617
μ (mm−1) 0.272 5.609 5.117
F (000) 328.0 352.0 392.0
Crystal size (mm) 0.05 × 0.20 × 0.40 0.10 × 0.25 × 0.30 0.30 × 0.30 × 0.10
No of reflections collected 3084 2624 2991
Goodness-of-fit on F2 1.036 1.035 1.000
Final R1 index [I > 2σ(I)] 0.0469 0.0509 0.0361
wR2 (all data) 0.1334 0.1580 0.1037
Largest difference in peak and 

hole (e Å−3)
0.442, − 0.286 0.998, − 0.654 0.293, − 0.349

Fig. 1   ORTEP view of (I) with the atom-numbering scheme. Dis-
placement ellipsoids are drawn at 50% probability level. Dashed 
lines represent hydrogen bonds
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C8–O1 and C8–O2 distances are similar [1.272(3) Å and 
1.238(2) Å, respectively]. The two external bond angles at 
the carbon C13 of the carboxyl group are 124.0 (2)° and 
112.5 (2)°. The high discrepancy between these two angles 
is typical of a unionized carboxyl group, and the C=O dis-
tance is 1.216 (3) Å and C–OH distance of 1.314 (3) Å [14]. 
These parameters indicate that carboxylic group of one 
arm (with C8) of thiophene is in deprotonated form and 
the other arm (with C13) is in neutral form.

Salt (II) crystallizes in the triclinic system with space 
group P-1. The asymmetric unit of salt (II) consists of a 
2, 4-diamino-6-methyl-1,3,5-triazin-1-ium cation, 3-bro-
mothiophene-2-carboxylate anion and a water molecule 
(Fig. 2). Internal angle at unprotonated N3 (C2–N3–C4) is 
115.7 (2)° and at N5 (C4–N5–C6) is 115.8 (2)°, while internal 
angle at protonated N1 (C6–N1–C2) is 119.2 (2)°. There is 
not much discrepancy between the external bond angles 
at the carbon of carboxylate ion (C9–C8–O2 = 119.4 (4)° 
and C9–C8–O1 = 115.5 (3)°). C8–O1 and C8–O2 distances 
are similar [1.266 (5) Å and 1.240 (5) Å, respectively].

Cocrystal (III) crystallizes in the triclinic system with 
space group P-1. The asymmetric unit of the cocrystal (III) 
consists of one molecule of 2,4-diamine-6-phenyl-1,3,5-
triazine (DAPT) and 2,5-dichlorothiophene-3-carboxylic 
acid (DCTPC) (Fig. 3). Internal angle at unprotonated N3 
(C2–N3–C4) is 115.54 (15)°, at N5 (C4–N5–C6) is 114.80 
(15)°, and at N1 (C6–N1–C2) is 114.50 (16)°. The two exter-
nal bond angles at the carbon of the carboxyl group are 
121.3 (2)° and 114.5 (1)°. The high discrepancy between 
these two angles is typical for unionized carboxyl group, 
and the C=O distance is 1.213 (3) Å and C–OH distance of 
1.299 (3) Å. The bond parameters of the thiophene rings 
(I–III) agree with those in structures reported earlier [24].

3.2 � Supramolecular features of (I), (II) and (III)

Among the three crystals, two are salts (I and II) and one is 
cocrystal (III) of thiophene carboxylic acid derivatives and 
substituted 1,3,5-triazine.

In salt (I), a robust R2
2(8) ring motif (supramolecular het-

erosynthon) is formed via N–H···O hydrogen bond inter-
actions between DAMT ions (atoms N1 and N2) and CTC 
ions (atoms O1 and O2) [25]. Oxygen atom (O2) acts as 
bifurcated acceptor via N2–H2A···O2 and O1W–H2W···O2 
hydrogen bonding. The symmetry related molecules of 
DAMT interact through a pair of N–H···N hydrogen bonds 
to form a discrete bimolecular homosynthon. Oxygen 
(O4) atom is involved in N4–H4B···O4iv and N2–H2B···O4ii 
hydrogen bonding [symmetry code (iv) x − 1, y + 1, z + 1, (ii) 
− x + 2, − y, − z + 1]. N–H···O and N–H···N hydrogen bonds 
between two DAMT and CTC ions leads to a ring motif 
with R3

2(8) graph-set. Hydrogen bond parameters of (I) are 
listed in Table 2. Similarly, O–H···O, O–H···N and N–H···O 
hydrogen bonds between DAMT, water and CTC lead to 
a ring motif with R3

3(10) graph-set. In this salt, supramo-
lecular ribbon containing R3

2(8), R2
2(8) and R3

3(10) ring motifs 
generating a quadruple DADA (D = hydrogen-bond donor 

Fig. 2   ORTEP view of (II) with the atom-numbering scheme. Dis-
placement ellipsoids are drawn at 50% probability level. Dashed 
lines represent hydrogen bonds

Fig. 3   ORTEP view of (III) with 
the atom-numbering scheme. 
Displacement ellipsoids are 
drawn at 50% probability level. 
Dashed lines represent hydro-
gen bonds
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and A = hydrogen bond acceptor) array of hydrogen bonds 
is observed. This supramolecular ribbon is connected by 
water molecule via O1W-H1W···O2 hydrogen bonding to 
form large ring motif, R6

7(33), which leads to the formation 
of supramolecular sheet (Fig. 4). The commonly occurring 
carboxyl···carboxylate and carboxyl···carboxyl interactions 
are not present in the crystal structure [26]. This may be 
due to the hydrogen bonds involving water and the pres-
ence of R2

2(8) heterosynthon and R2
2(8) homosynthon (base 

pair).

Anion···π interaction occurs whenever an anion is per-
pendicular to the aromatic ring at a distance less than 
4.5 Å, in this structure carboxylate oxygen (O1) interacts 
with nearly perpendicular aromatic ring of thiophene 
and that of triazine at distances of 3.180 (2) Å and 3.483 
(2) Å , respectively with ˂  C8–O1···cg1 = 91.1(1)° and 
˂ C8–O1···cg2 = 86.3(1)° (Fig. 5) [27].

In salt (II), a primary R2
2(8) ring motif is formed via 

N1–H1···O1i and N2–H2···O2i [symmetry code (i); 1 − x, 
1 − y, 2 − z] hydrogen bonding interactions between 
the DAMT and BTPC ions (Fig. 5). DAMT ions self assem-
ble via N–H···N hydrogen bonding with R2

2(8) ring motif 
generating a quadruple DADA hydrogen bonding array. 
This forms a supramolecular chain. This supramolecular 
chain interacts with water and BTPC via O–H···O, N–H···O 
and C–H···O hydrogen bonds with R3

2(8) and R4
3(10) ring 

motifs forming a supramolecular ribbon (Fig. 6). Hydro-
gen bond parameters of (II) are listed in Table 3. DAMT 
ions form N–H···N intermolecular hydrogen bonds form-
ing R2

2(8) ring motif has been reported [28].
π···π (Cg1···Cg2v and Cg2···Cg1vi) interactions with 

interplanar distance of 3.843 (2) Å and slip angle 23.2° 
[symmetry code; vi = 1 + x, y, z, v = − 1 + x, y, z] between 
the triazine ring and thiophene ring are present (Fig. 7).

Table 2   Hydrogen-bond geometry (Å, °) for (I)

Symmetry codes: (i) x, y, z − 1; (ii) −x + 2, −y, −z + 1; (iii) −x + 1, −y + 1, 
−z + 2; (iv) x − 1, y + 1, z + 1; (v) x + 1, y − 1, z

D–H···A D–H H···A D···A D–H···A

O3–H3···O1Wi 0.82 1.77 2.551(2) 159.1
N1–H1···O1 0.86 1.70 2.556(2) 173.7
N2–H2B···O4ii 0.86 2.24 3.092(2) 170.7
N2–H2A···O2 0.86 2.05 2.907(2) 171.4
N4–H4A···N3iii 0.86 2.12 2.959(2) 166.7
N4–H4B···O4iv 0.86 2.19 2.8894(19) 138.9
O1W–H1W···N5v 0.820(10) 1.988(11) 2.802(2) 172(3)
O1W–H2W···O2 0.815(10) 2.096(16) 2.868(2) 158(3)

Fig. 4   Supramolecular architecture developed via N–H···O and O–H···O hydrogen bonds in (I)
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In cocrystal (III), one molecule of 2,4-diamine-6-phe-
nyl-1,3,5-triazine (DAPT) and one molecule of 2,5-dichloro-
thiophene-3-carboxylic acid interact via N4–H4A···O2 and 
O1–H1···N3 hydrogen bonds to form the robust R2

2(8) ring 
motif (supramolecular heterosynthon) (Fig. 8). Hydrogen 
bond parameters of (III) are listed in Table 4. Two types 
of base pairing are present among DAPT molecules via 
N2–H2A···N1i and N4–H4B···N5ii hydrogen bonds [sym-
metry code: (i) − x + 1, − y, − z + 1; (ii) − x + 2, − y + 1, − z + 1], 
forming R2

2(8) ring motifs, leading to a supramolecular 
chain. Similar type of base pairing via N–H···N hydrogen 
bonds leading to R2

2(8) ring motifs are observed among 

Fig. 5   Anion···π interactions present in (I)

Fig. 6   Supramolecular architecture developed via N–H···O, O–H···O and C–H···O hydrogen bonds in (II)

Table 3   Hydrogen-bond geometry (Å, °) for (II)

Symmetry codes: (i) −x + 1, −y + 1, −z + 2; (ii) −x + 1, −y + 1, −z + 1; (iii) 
−x, −y + 2, −z + 1; (iv) x, y, z − 1

D–H···A D–H H···A D···A D–H···A

N1–H1···O1i 0.86 1.83 2.689(4) 175.1
N2–H2B···N3ii 0.86 2.24 3.084(4) 166.8
N2–H2A···O2i 0.86 1.99 2.842(4) 171.3
N4–H4A···O1W 0.86 2.01 2.794(4) 151.0
N4–H4B···N5iii 0.86 2.15 3.004(4) 175.5
O1W–H1W···O1ii 0.821(10) 2.02(2) 2.823(5) 167(7)
O1W–H2W···O2iv 0.818(10) 1.988(15) 2.800(5) 172(7)

Fig. 7   π···π interactions present in (II)
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DAPT molecules [29]. Carboxyl interaction leads to the 
formation of R2

2(8) motif in which DCTPC molecules are 
appended to the ribbon of DAPT molecules (Fig. 8).

Halogen bonds have several applications in design 
strategies like an element for structural insulation. 
Recently halogen interactions are receiving wide atten-
tion and they are used in crystal engineering. Cocrystal (III) 
contains Cl···O interaction (halogen bond) and Cl···Cl inter-
actions. Cl1···O1 interaction at a distance of 3.1528 (18) Å 
with C13–Cl1···O1 angle of 167.96 (8)° (Fig. 9), shorter than 
the sum of the van der Waals radii 3.27 Å [11, 26]. The Type 
I halogen···halogen (Cl2···Cl2 interaction at a distance of 
3.4949 (11) Å) interaction [30] has also been observed 
(Fig. 9). Further π···π interactions between triazine···triazine 
(Cg1···Cg1 = 3.6542 (11) Å, symmetry code; 2 − x, − y, 1 − z) 
and triazine···phenyl rings (Cg1···Cg2 = 3.7455 (12) Å, sym-
metry code; 1 − x, 1 − y, 1 − z) (Fig. 10) are also observed. 

Stabilization of supramolecular network by π···π interac-
tions between triazine···phenyl rings among DAPT mol-
ecules with centroid to centroid distance of 3.8396(16) Å 
is already reported [29].

Among the various non-covalent interactions present, 
in all the three cases we observe base pairs formed via 
N–H···N hydrogen bonds among symmetry related mol-
ecules/ions. Literature also shows N–H···N base pairs were 
present predominantly among self assemblies of amino-
triazine derivatives [29].

4 � Conclusions

Single crystals of two salts, 2,4-diamino-6-methyl-1,3,5-
triazin-1-ium 5-carboxythiophene-2-carboxylate mono-
hydrate (I), 2,4-diamino-6-methyl-1,3,5-triazin-1-ium 
3-bromothiophene-2-carboxylate monohydrate (II) and 
a 1:1 cocrystal, 2,4-diamine-6-phenyl-1,3,5-triazine and 
2,5-dichlorothiophene-3-carboxylic acid (III) have been 
synthesised and characterised by single-crystal X-ray dif-
fraction. O–H···O, N–H···O and N–H···N hydrogen bonding 
interactions are dominant in salt (I). Anion···π interac-
tions stabilises (I) further. O–H···O, N–H···O, N–H···N and 
C–H···O hydrogen bonding interactions are dominant in 
salt (II). Salt (II) is further stabilised by π···π interactions. 
O–H···N, N–H···O and N–H···N hydrogen bonding interac-
tions are dominant in cocrystal (III). Cocrystal (III) is fur-
ther stabilised by Cl···O, Cl···Cl as well as π···π interactions. 

Fig. 8   Supramolecular archi-
tecture developed via N–H···O 
and N–H···N hydrogen bonds 
in (III)

Table 4   Hydrogen-bond geometry (Å, °) for (III)

Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) −x + 2, − y + 1, − z + 1; (iii) 
x − 1, y, z

D–H···A D–H H···A D···A D–H···A

O1–H1···N3 0.82 1.84 2.6585(19) 173.3
N2–H2A···N1i 0.86 2.37 3.185(2) 157.3
N4–H4B···N5ii 0.86 2.45 3.242(2) 154.0
N4–H4A···O2 0.86 2.01 2.858(2) 169.2
C15–H15···Cl1iii 0.93 2.77 3.647(2) 158.5
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The non-covalent interactions exhibited by (I), (II) and 
(III) generate a variety of recurring supramolecular archi-
tectures in three-dimensional space.
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