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Abstract
Water diffusing into silica glass surfaces reacts with the SiO2 structure under hydroxyl generation. This reaction must cause 
a volume expansion that is already reported in literature. As a consequence of volume swelling and restriction of free 
expansion by the bulk material, swelling stresses are caused. Since the diffusivity is a function of stress, the consequence 
is a diffusivity that depends on the local water concentration. Then the solution of the diffusion equation is complicated 
and makes numerical computations necessary. Disadvantage of numerical computations is the fact that the used extend 
of the depth range must be finite and, consequently, the semi-infinite body can only be approximated. In the following 
considerations we will discuss analytical diffusion solutions for constant diffusivity as well as under swelling conditions. 
Based on this, exact and semi-analytical solutions for diffusion problems in the half-space are given. Further, the effect of 
swelling affected diffusivity on resulting concentration profiles is shown. We used an analytical solution of the diffusion 
problem that is known from literature by Gardner and Singh, where the concentration-dependent diffusivity had to be 
approximated by an exponential function. In case of swelling stresses in silica the diffusivity is given by an exponential 
function, so that the obtained solution is exact. Due to the compressive swelling stresses, steeper diffusion profiles appear 
compared to the stress-free state. In the discussion section it will be shown that the water-affected diffusivity correctly 
predicts the astonishing time-dependency of effective diffusivities observed in literature on silica.
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1  Introduction

The partial diffusion differential equation for the uniaxial 
case is

Here C is the water concentration, t the time, z the 
depth coordinate, and D the diffusivity that may depend 
on the water concentration.

For water vapour as the environment, the surface con-
dition is

where C0 is the concentration of molecular water reached 
at z = 0 for t → ∞.

Following the suggestion by Doremus ([1], Section 4.7), 
the phenomenological parameter h in (2) may be inter-
preted as a reaction parameter for a slow surface reaction 
that limits the entrance of molecular water species.

On the other hand, a simpler phenomenological 
description is possible by assuming that a barrier exists to 
the transport of water across the surface of the glass. The 
barrier gives rise to a mass transfer coefficient for diffusion, 
which slows the passage of water into the glass [1]. Each 
of the assumptions yields the same set of mathematical 
equations.

The Eqs. (1) and (2) can be solved numerically as was 
done in [2]. Disadvantage of numerical computations 
is the fact that the used extend of the z-range must be 
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finite and, consequently, the semi-infinite body can only 
be approximated. In the following considerations we will 
give exact and approximate solutions of the diffusion dif-
ferential Eq. (1) for the half-space.

The problems mentioned here can be solved by “clas-
sical” approaches. For much more complicated problems, 
more specific methods are needed. For example, diffusion 
is treated in disordered materials by Giona and Roman in 
[3]. In this reference a solution is analytically obtained 
for diffusion on fractals proposed for materials showing 
anomalous transport behavior.

The reason for the concentration-dependent diffusivity 
used here is the hydroxyl generation at the silica surface 
exposed to humid environments. Water penetrated into 
silica reacts with the silica network according to [4] 

with the concentration of the hydroxyl S = [≡SiOH] and 
that of the molecular water C = [H2O].

A swelling effect in water-containing silica at high tem-
peratures was early reported by Brückner [5, 6], Shackel-
ford [7] and Shelby [8]. These authors showed that the den-
sity decreases by the silica/water-reaction. This decrease is 
equivalent to a volume expansion εv ≈ 0.97 S [2], i.e. εv ∝ C.

2 � Analytical solution of the diffusion 
equation for constant diffusivity

First, let us consider the case of constant diffusivity, D = D0. 
As shown by Carslaw and Jaeger ([9], Section 2.7), the con-
centration profile, C(z) resulting from the boundary condi-
tion for a semi-infinite body is given by

At the surface, z = 0:

with the normalized dimensionless time τ and normalized 
depth coordinate ζ, defined by

For the ratio C(ζ,τ)/C(0,τ)

two limit cases are of special interest. At very short times, 
τ → 0, we obtain by a series expansion with respect to τ
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At very long times τ → ∞, only the first term on the 
right-hand side of Eq. (3) remains finite. Consequently, 
we obtain the well-known solution for constant surface 
concentration:

These limit cases are plotted in Fig.  1a. The 
depths at which these limit distributions decrease to 
C(ζ,τ)/C(0,τ) = 1/2 are

The areas under the curves define the water uptake in 
normalized time and depth units

For etching tests it is of advantage to know the amount 
of water ΔmC, when a layer of thickness δ has been 
removed from the surface. In this case it holds

The results from (11) are shown in Fig. 1b. For the thick-
ness removal d in normal thickness unit we have to replace 
δ by d/√(D0t).

3 � Solutions under swelling conditions

3.1 � Stress enhanced diffusion

The diffusivity as a function of stress is commonly 
expressed by the hydrostatic stress component, σh. The 
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diffusivity for the case of stress-enhanced diffusion is given 
by the following equation [10] 

where D0 denotes the value of the diffusivity in the 
absence of a stress. T is the absolute temperature in K; ∆Vw 
is the activation volume for stress-enhanced diffusion and 
R is the universal gas constant.

The hydrostatic stress term caused by swelling stresses is

where E is Young’s modulus, ν Poisson’s ratio, and k is the 
equilibrium constant of the silica/water reaction given for 
temperatures < 500 °C by k = S/C (C = molecular water con-
centration, S = hydroxyl concentration).

According to Eq. (13) the swelling stress depends linearly 
on the water concentration, σh ∝ C. The saturation value of 
σh,sw for C = C0 is in the following considerations denoted 
as σh,0. In order to allow short expressions, the exponential 
term in Eq. (12) may be abbreviated by

3.2 � Solution based on a perturbation set‑up 
by Singh

By use of the Boltzmann substitution
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an ordinary differential equation results from Eq. (1)

Gardner [11] and later Singh [12] showed that this equa-
tion can be solved if the diffusion coefficient fulfills an expo-
nential relation

with constant coefficients α and β. This result is used in 
bottom mechanics [13] where the diffusivity depends on 
the water concentration, too.

The solution based on a perturbation ansatz reads

For the swelling problem the condition (17) is fulfilled 
since

Combining Eqs. (18) and (19) yields

and from this the water concentration results as a function 
of depth z and time t
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Fig. 1   a Concentration profiles 
for limit cases derived from the 
analytical solution of diffusion, 
Eqs. (7, 8) with constant dif-
fusivity, D = D0. b Water uptake 
according to Eq. (11). The 
negative sign at ΔmC stands 
for the decrease of the water 
content

(a) (b)
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For z → ∞ it must hold C → 0, D → D0. This condition gives 
with erf[∞] = 1

Replacing c2 in Eq. (22) results in the solution

or  with  the  complementar y  er ror  func t ion 
erfc(x) = 1 − erf(x):

3.2.1 � Increasing surface concentration (mass‑transfer 
condition)

A solution for the surface conditions by Eq.  (2) cannot 
result from Singh’s procedure. This can even be seen from 
the application of the Boltzmann substitution. In terms 
of the normalized time and depth coordinate by (5), the 
substitution λ in Eq. (15) is only dependent on the depth 
coordinate ζ and not the time τ. Consequently the applica-
bility to time-dependent diffusion effects given by Eq. (2) 
is strongly restricted. Nevertheless, this solution is appro-
priate for treating the limit case τ → ∞, i.e. for the condition 
of fixed surface concentrations.
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3.2.2 � Constant surface concentration

For very long diffusion times, the surface water con-
centration, C(0), tends asymptotically to the saturation 
value C0. In order to compute the limit case for t → ∞. 
Specimen soaked in water vapour for very long times are 
assumed to show constant surface water concentration 
C(z = 0) = C0. In this case we obtain from (25)

the constant c1 as

The result for the concentration is then

Water profiles computed via Eq.  (28) are shown in 
Fig. 2a for different parameters αC0. Figure 2b shows 
a comparison of the analytical solution Eq. (28) as the 
black curve and the numerical results according to [2] 
as the red curve, both for αC0 = − 3. The small differences 
may be the consequence of the finite depth interval of 
5 × δ1/2 (i.e. the concentration boundary condition at this 
location prescribed by C(ζ = 5 × δ1/2) = 0) that had to be 
used in the numerical program NDSolve by Mathematica 
[14].

The depth ζ1/2 at which the distributions of Fig. 2a 
decreases to C(ζ)/C0 = 1/2 is
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Fig. 2   a Effect of swelling on 
the water profiles, b compari-
son of Eq. (28) with numerical 
solution from [2], given by the 
black and red curve, respec-
tively
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Numerical values are compiled in the second column 
of Table 1.

Finally, we determined water uptake by integrating 
the swelling profiles of Fig. 2a numerically with the result

with results given in the third column of Table 1 for τ → ∞. 
The value for αC0 = 0 is 2/√π ≅ 1.128 as given by Eq. (10).

The decrease of the water by surface removal d is 
shown in Fig. 3 in terms of the normalized quantity δ
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The depths at wich half of the water content is 
removed, δ1/2, is given in the fourth column of Table 1 
for a few values of αC0.

4 � Discussion

Results of computations are shown in Fig. 4a, b. The bold 
curve in Fig. 4a a is the limit case for saturation condi-
tions for τ → ∞, given by Eq.  (25) and the thin curves 
represent the numerical solution of Eqs. (1) and (2). The 
widths of the profiles allow an effective diffusivity to be 
determined according to Davis and Tomozawa [15] 

In [15] the effective diffusivity, Deff, is determined from 
the width at C/C0 = 1/2 interpreting it as the diffusion 
lengths 

√
Deff t  . This effective diffusivity Deff is usually 

determined in investigations on water diffusion in silica 
[15–18].

Measurements of effective diffusivities by Oehler and 
Tomozawa [16] at 250 °C and 39 bar water vapour pres-
sure are introduced by circles, see Fig. 4c. The curve is 
introduced as a guideline for the eyes. A clear decrease 
with time is evident. This effect was discussed in [2] in 
terms of swelling stresses.

5 � Summary

Water present at silica surfaces reacts with the silica net-
work under generation of hydroxyl that causes a volume 
expansion of the thin water-affected zone. Since free 
expansion is restricted by the bulk material, compres-
sive swelling stresses result which yield in a reduced 
diffusivity. Stress affected diffusion was considered and 
resulting saturation profiles were derived by the analyti-
cal procedure of Gardner [11] and Singh [12]. The cal-
culations show that the compressive swelling stresses 
result in steeper profiles caused by a decreased diffusiv-
ity compared to stress-free state. In order to show the 
occurrence of reduced diffusivity, we compared the pre-
dicted water profiles with measurements by Öhler and 
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Table 1   Data of water profiles and water uptake obtained for satu-
ration conditions, τ → ∞

αC0 ζ1/2 = z1/2/√D0τ mC(τ)/C(0) δ1/2 = d1/2/√D0τ

0 0.9538 2/√π 0.6994
− 1 0.6963 0.9115 0.6036
− 2 0.4861 0.7319 0.5323
− 3 0.3262 0.5904 0.4846
− 4 0.2121 0.4823 0.4558

Fig. 3   Change of water uptake with normalized surface removal 
depth δ as a function of swelling parameter αC0 normalized on the 
uptake for αC0 = 0
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Tomozawa [16]. The predictions made by computations 
show the same tendency as experimental results from lit-
erature which couldn’t be interpreted sufficiently so far.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Doremus RH (2002) Diffusion of reactive molecules in solids and 
melts. Wiley, New York

	 2.	 Wiederhorn SM, Rizzi G, Wagner S et al (2017) Diffusion of water 
in silica: influence of moderate stresses. J Am Ceram Soc. https​
://doi.org/10.1111/jace.15195​

	 3.	 Giona M, Roman HE (1992) A theory of transport phenom-
ena in disordered systems. Chem Eng J 49:1–10. https​://doi.
org/10.1016/0300-9467(92)85018​-5

	 4.	 Doremus RH (1995) Diffusion of water in silica glass. J Mater Res 
10:2379–2389. https​://doi.org/10.1557/JMR.1995.2379

	 5.	 Brückner R (1970) The structure-modifying influence of the 
hydroxyl content of vitreous silica. Glas Ber 43:8–12

	 6.	 Brückner R (1971) Metastable equilibrium density of hydroxyl-
free synthetic vitreous silica. J Non Cryst Solids 5:281–285. https​
://doi.org/10.1016/0022-3093(71)90068​-8

	 7.	 Shackelford JF, Masaryk JS, Fulrath RM (1970) Water content, 
fictive temperature, and density relations for fused silica. J Am 
Ceram Soc 53:417. https​://doi.org/10.1111/j.1151-2916.1970.
tb121​45.x

	 8.	 Shelby JE (2004) Density of vitreous silica. J Non Cryst Solids 
349:331–336. https​://doi.org/10.1016/j.jnonc​rysol​.2004.08.206

	 9.	 Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd 
edn. Oxford at the Clarendon Press, London

	10.	 Shewmon PG (1963) Diffusion in solids. McGraw-Hill, New York
	11.	 Gardner WR (1958) Some steady-state solutions of the 

unsaturated moisture flow equation with application to 

Fig. 4   a Diffusion profiles as a 
function of time without and 
with consideration of swelling 
stress effect on diffusivity (thin 
curves computed numerically, 
bold curves: analytical solu-
tions), b effective diffusivity 
Deff vs. normalized time τ, c 
effective diffusivities measured 
by Oehler and Tomozawa [16] 
at 250 °C and 39 bar water 
vapour pressure

(a) (b)

(c)

https://doi.org/10.1111/jace.15195
https://doi.org/10.1111/jace.15195
https://doi.org/10.1016/0300-9467(92)85018-5
https://doi.org/10.1016/0300-9467(92)85018-5
https://doi.org/10.1557/JMR.1995.2379
https://doi.org/10.1016/0022-3093(71)90068-8
https://doi.org/10.1016/0022-3093(71)90068-8
https://doi.org/10.1111/j.1151-2916.1970.tb12145.x
https://doi.org/10.1111/j.1151-2916.1970.tb12145.x
https://doi.org/10.1016/j.jnoncrysol.2004.08.206


Vol.:(0123456789)

SN Applied Sciences (2019) 1:1300 | https://doi.org/10.1007/s42452-019-1343-1	 Research Article

evaporation from a water table. Soil Sci 85:228–232. https​://
doi.org/10.1097/00010​694-19580​4000-00006​

	12.	 Singh R (1967) Solution of a diffusion equation. J Hydraul Div 
Proc Am Soc Civ Eng 93(5):5422–5450

	13.	 Boochs PW, Battermann G, Mull R (1972) Abhängigkeit des Diffu-
sionskoeffizienten für Wasser vom Sättigungsgrad des Bodens. 
Zeitschrift für Pflanzenernährung und Bodenkd 132:243–253. 
https​://doi.org/10.1002/jpln.19721​32030​9

	14.	 Wolfram Research I (2016) Mathematica
	15.	 Davis KM, Tomozawa M (1995) Water diffusion into silica glass: 

structural changes in silica glass and their effect on water solu-
bility and diffusivity. J Non Cryst Solids 185:203–220. https​://doi.
org/10.1016/0022-3093(95)00015​-1

	16.	 Oehler A, Tomozawa M (2004) Water diffusion into silica glass 
at a low temperature under high water vapor pressure. J Non 
Cryst Solids 347:211–219. https​://doi.org/10.1016/j.jnonc​rysol​
.2004.07.013

	17.	 Zouine A, Dersch O, Walter G, Rauch F (2007) Diffusivity and solu-
bility of water in silica glass in the temperature range 23–200 °C. 
Phys Chem Glass Eur J Glass Sci Technol Part B 48:85–91

	18.	 Helmich M, Rauch F (1993) On the mechanism of diffusion of 
water in silica glass. Glasstech Ber 66:195–200

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1097/00010694-195804000-00006
https://doi.org/10.1097/00010694-195804000-00006
https://doi.org/10.1002/jpln.19721320309
https://doi.org/10.1016/0022-3093(95)00015-1
https://doi.org/10.1016/0022-3093(95)00015-1
https://doi.org/10.1016/j.jnoncrysol.2004.07.013
https://doi.org/10.1016/j.jnoncrysol.2004.07.013

	Diffusion equation under swelling stresses
	Abstract
	1 Introduction
	2 Analytical solution of the diffusion equation for constant diffusivity
	3 Solutions under swelling conditions
	3.1 Stress enhanced diffusion
	3.2 Solution based on a perturbation set-up by Singh
	3.2.1 Increasing surface concentration (mass-transfer condition)
	3.2.2 Constant surface concentration


	4 Discussion
	5 Summary
	References




