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Abstract
Depth-sensing indentation is a useful and powerful tool for the mechanical characterization of materials at the micro 
and nano scale. This technique allows the determination of the Young modulus from the analysis of the load-penetration 
depth curve according to specific theoretical models. One of the most used models is that one proposed by Oliver and 
Pharr. However, when a material with anisotropic mechanical properties is tested, Oliver and Pharr’s theory is no longer 
suitable to describe the contact mechanics between the indenter tip and the tested material. This paper provides an 
overview of the theoretical models developed for the evaluation of the elastic constants of anisotropic materials through 
depth-sensing indentation. Specifically, the cases of generally anisotropic and orthotropic materials are described in 
order to cover the entire range of anisotropy. Examples on how these models can be applied for the mechanical charac-
terization of generally anisotropic topological insulators and transversely isotropic pyrolytic carbon are also reported. 
This topical overview represents a useful tutorial for the evaluation of the elastic constants of anisotropic materials by 
depth-sensing indentation by shading light on the contact mechanics at the micro and nano scale.

Keywords  Depth-sensing indentation · Indentation modulus · Elastic mechanical properties · Anisotropic materials · 
Density functional theory · Topological insulators · Pyrolytic carbon

1  Introduction

Indentation experiments have been extensively used since 
1822 to measure the hardness of materials [1]. The intro-
duction of depth-sensing indentation allowed to measure 
also the elastic properties of solids (i.e., Young’s modulus) 
through the real-time monitoring of the applied indenta-
tion load and the penetration depth of the indenter tip [2]. 
Very small volumes of materials, in the sub-micron range, 
can be tested with depth-sensing indentation, which 
is one of the most powerful experimental tools for the 
mechanical characterization of thin films, coatings, nano-
composites, and heterogeneous structures. In a typical 
depth-sensing indentation tests, an indenter tip is driven 
into the tested material until a target load or penetration 
depth is reached. This process is usually performed at 
constant loading or constant displacement rate. After a 

short hold period at maximum indentation load, the tip is 
gradually retracted from the material surface. Tabor [3] and 
Stilwell and Tabor [4] observed that the elastic modulus of 
the tested material is related to the displacement recov-
ered during the unloading process and can be calculated 
from the theory of elasticity. Doerner and Nix [5] modelled 
the unloading process as a contact problem of a rigid 
punch on an elastically half space. Using these assump-
tions, Pharr et al. [6] demonstrated that the indentation 
modulus M of a tested material is related to the slope of 
the unloading curve S (i.e., the contact stiffness) through 
the following relationships:

(1)S =
dP

dh
=

2√
�
M
√
A
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where P is the indentation load, h the penetration depth 
(i.e., the rigid-body displacement of the indenter relative 
to the half-space), and A the projected contact area. The 
indentation modulus M, also called reduced Young mod-
ulus Er, depends on the elastic properties of the tested 
material, according to the following equation [6]:

where E and ν are the Young modulus and the Poisson 
ratio of the tested material while Ei and νi are the Young 
modulus and the Poisson ratio of the indenter material 
(usually Ei = 1141 GPa and νi = 0.07 for a diamond tip). After 
S is experimentally measured from the unloading curve, 
the Young modulus E of a tested material, can then be 
calculated using Eqs. (1, 2), if the value of the projected 
contact area A is known. The projected contact area can 
be obtained from the indenter penetration depth through 
simple geometrical relationships, such as Eqs. (3, 4), which 
refer to indenter tips with a spherical and conical geom-
etry, respectively:

R is the radius of the spherical indenter, α the cone half-
angle, and hc is the effective penetration depth. However, 
during an indentation test, only the maximum penetration 
depth hmax can be experimentally measured by means of 
displacement sensors and such value differs from the real 
penetration depth hc, due to the deflection of the surface 
of tested sample (a downward deflection is known as 
“sink-in” while un upward deformation is known as pile-
up phenomenon) Oliver and Pharr [7] proposed the fol-
lowing equation for the calculation of the real penetration 
depth, hc:

where ε is the intercept factor, equal to ¾.
The measurement of the elastic stiffness through 

Eqs. (1–5) refers to isotropic materials, characterized by 
the same mechanical properties in all directions. When 
anisotropic materials (i.e., materials with different proper-
ties along different directions) are tested by depth-sensing 
indentation, Eq. (2) is no longer suitable to describe the 
relationship between the indentation modulus M and the 
elastic constants of such materials. Different theoretical 
models have been developed to obtain the equivalent 
of Eq. (2) for anisotropic materials. After a brief introduc-
tion on the stress/strain relationship of anisotropic mate-
rials, two of the most used models, referred to generally 

(2)1

M
=

1

Er
=

1 − �2

E
+

1 − �2
i

Ei

(3)A = 2�Rhc

(4)A = �h2
c
tan2(�).

(5)hc = hmax − �
Pmax

S

anisotropic and orthotropic materials respectively, will be 
described in this paper. An implementation of these mod-
els for the mechanical characterization of generally ani-
sotropic topological insulators and transversely isotropic 
pyrolytic carbon will be finally described.

2 � Hooke’s law for anisotropic materials

The stress/strain relationship (i.e., the Hooke’s law) of 
generally anisotropic materials with linear elastic behav-
ior can be written as follows:

where σij are the stress components, εij the strain compo-
nents, and Cijkl the elastic moduli. Considering the follow-
ing symmetry properties [8, 9]:

the generalized Hooke’s law can be written in matrix form 
as:

The generic stiffness constant Cmn in the matrix of 
Eq. (10), is equal to the elastic modulus Cijkl, where m = i if 
i = j or m = 9 – i − j if i ≠ j, and n = k if k = l or n = 9 – k − l if k ≠ l. 
Due to symmetry properties of Eq. (9), Cmn = Cnm and the 
matrix in Eq. (10) is symmetric. The stiffness constants Cmn 
can be expressed as function of the material elastic con-
stants, i.e., Young modulus Emn, Poisson ratio νmn, and shear 
modulus Gmn. A generally anisotropic material is character-
ized by 21 independent elastic constants. An anisotropic 
material is defined orthotropic when shows properties 
that differ along three mutually-orthogonal twofold axes 
of rotational symmetry. For orthotropic materials, only 9 
elastic constants in the matrix of Eq. (10) are independ-
ent. Isotropic materials have only 2 independent elastic 
constants, i.e., the Young modulus E and the Poisson ratio ν 
[the shear modulus G can be calculated as G = E/2(1 + ν)]. It 
is then clear how Eq. (2) is suitable only for isotropic mate-
rials, since relates the indentation modulus M only to one 
value of Young modulus and Poisson ratio.

(6)�ij = Cijkl�kl

(7)�ij = �ji

(8)�kl = �lk

(9)Cijkl = Cjikl , Cijkl = Cijlk , Cijkl = Cklij
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3 � Indentation modulus for generally 
anisotropic materials

The relationship between the contact stiffness S and the 
indentation modulus M of Eq. (1), derived from the fun-
damental Hertz contact solution [10], is valid for gener-
ally anisotropic materials and it does not depend on the 
indenter geometry. However, the relationship between the 
indentation modulus and the material elastic constants 
expressed in Eq. (2) applies only to elastically isotropic 
materials (M in this case reduces to the plane-strain elastic 
modulus). Due to the large number of independent elas-
tic constants of generally anisotropic materials (i.e., 21), 
the relationship between the indentation modulus and 
the elastic constants becomes far more complicated than 
that one reported in Eq. (2). A few mathematical formula-
tions have been proposed to model the Hertzian contact 
between the indenter tip and anisotropic materials and 
estimate the relationship between the indentation mod-
ulus and the material elastic constants. The theoretical 
model developed by Vlassak et al. [11] can be considered 
the most general and refined solution, valid for materials 
with any degree of anisotropy and indenters of arbitrary 
shape. The model is described below and represents a 
powerful tool for the mechanical characterization of ani-
sotropic materials by depth-sensing indentation.

In the theoretical formulation by Vlassak et al., a general 
anisotropic elastic material is modeled as a general ani-
sotropic elastic half-space, as shown in Fig. 1. A Cartesian 
coordinate system (y1, y2, y3) has its origin in the bound-
ary of the half-space, which is arbitrarily oriented with 
respect to the coordinate axes y1, y2, y3. The orientation of 
the boundary of the half-space is given by the direction 
cosines of the outer normal to the boundary, (α1, α2, α3), 
in red in Fig. 1. Let’s define t as a unit vector lying in the 
half-space boundary, and m and n as orthogonal unit vec-
tors lying in the plane perpendicular to t (light blue plane 
in Fig. 1) so that (m, n, t) represent a triad of right-hand 

vectors (yellow in Fig. 1). The orientation of the m and n 
vectors is given by the angle φ between m and the normal 
to the half-space surface.

Using the Stroh formalism, the Barnett and Lothe matrix 
B(t) is defined as follows [12]:

where for any generic vector a and b, each generic matrix 
(ab) in the integral is defined by:

and Cijkl are the elastic stiffnesses of the generally aniso-
tropic material in the Cartesian coordinate system (y1, y2, 
y3). In Eq. (12) repeated indices imply a summation over 
the repeated index from 1 to 3.

An indentation test is now modeled by considering a con-
centrated unit force applied in the origin of the coordinate 
system (y1, y2, y3), perpendicular to the boundary of the 
half-space surface (along the direction (− α1, − α2, − α3) 
defined by the unit vector of the inner normal). Vlassak 
et al. [11] demonstrated that the normal displacement w(y) 
of a generic point Q of the half-space surface, in the direc-
tion of the applied load, is given by:

where y  i s  the posi t ion vec tor  of  Q ,  and 

r = |y| =
√

y2
1
+ y2

2
+ y2

3
 , while � is the angle between the 

position vector y (green in Fig. 1) and some fixed datum in 
the half-space surface. If we take this datum to be x1-axis 
(purple in Fig. 1), we can consider the position of Q in polar 
coordinates in the half-space surface, so that x1 = r cos ( � ), 
and x2 = r sin ( � ). h ( �) can be calculated from Eq. (13) by 
solving the integral of Eq. (11) to obtain B−1

km
 . For generally 

anisotropic materials a closed-form solution of Eq. (11) 
does not exist and the integral has to be solved by numeri-
cal integration. One of the most used approaches to solve 
Eq. (13) is to develop h ( � ) as a Fourier series in terms of the 
angle 2� [13], as follows:

where the Fourier coefficients are:

Considering the mathematical formulation of Eq. (13) 
for the indentation penetration depth, and the relationship 
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Fig. 1   Schematic representation of the half-space
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in Eq. (1), Vlassak et al. [11] obtained the estimation of the 
indentation modulus for generally anisotropic materials 
considering two different approximations: elliptical and 
circular contact area, respectively. When the contact area 
between the indenter and the half-space is assumed to be 
elliptical, the equivalent indentation modulus of the half-
space (i.e., the generally anisotropic material) is given by:

where e =
√

1 −
(
b2 − a2

)
 is the eccentricity of the ellipse 

(with a semimajor and b semiminor axes), and �(e,�) is 
given by the following equation:

It is worth noting that the elastic constants of the ani-
sotropic materials are contained in the h term, calculated 
by Eqs. (11–13).

When the contact area is assumed to be circular, the 
equivalent indentation modulus is given by:

where h0 is the first-order term of the Fourier series rep-
resentation of the function h (�), which does not depend 
on the angle �.

When an axisymmetric indenter is used, and the con-
tact area is circular (i.e., perfect axisymmetric contact 
case), Meqv in Eq.  (18) represents the exact equivalent 
of M in Eq. (2) for generally anisotropic materials. In this 
case the indentation modulus does not depend on the 
indentation angle � . In the general case of non-axisym-
metric contact problem, only approximate solutions can 
be provided by the model of Vlassak et al. In particular, 
two different types of approximations can be considered. 
First, the contact area can be assumed to be circular, and 
Eq. (18) can be used to estimate the equivalent indenta-
tion modulus; second, the contact area can be assumed 
to be elliptical and Eq. (16) can be used to estimate the 
equivalent indentation modulus for generally anisotropic 

(16)Meqv =
1

�(e,�)
(
1 − e2

)1∕4

(17)�(e,�) = ∫
�

0

h(� + �)√
1 − e2cos�

d�.

(18)Meqv =
1

�h0

materials. For indenters with elongated geometry, the sec-
ond approximation is usually more accurate. Vlassak et al. 
[11] experimentally validated their model by testing differ-
ent anisotropic materials and a good agreement between 
theoretical and experimental predictions was found for 
both axisymmetric and non-axisymmetric indenters.

4 � Indentation modulus for orthotropic 
materials

For generally anisotropic materials a closed-form solution 
for the estimation of the indentation modulus from the 
elastic constants of the material does not exist. As dis-
cussed in the previous section, numerical integration is 
needed to calculate the function h (�) from Eqs. (11–13) 
and estimate Meqv from Eq. (16) or Eq. (18). The mathemati-
cal formulation is instead less complex for orthotropic 
materials, for which an explicit solution for h (�) can be 
obtained. Dalafargue and Ulm [14] considered the generic 
formulation of Vlassak et al. [11] and derived a theoretical 
model for the calculation of the indentation modulus of 
general elastically orthotropic and transversely isotropic 
materials, considering conical indenters. This section 
describes this model by providing the equations useful 
for its implementation.

4.1 � Transversely isotropic materials

Transversely isotropic materials are a sub-group of ortho-
tropic materials. An orthotropic material is defined trans-
versely isotropic when its mechanical properties are sym-
metric about an axis that is normal to a plane of isotropy 
(in the latter the material properties are the same in all 
directions). Transversely isotropic materials are character-
ized by five independent elastic constants. Specifically, 
these independent constants are C11, C33, C44, C13, C12 if 
the reference system of Fig. 2a is considered, where x3 is 
the axis of symmetry.

Let’s assume to indent a transversely isotropic mate-
rial with a conical indenter along the axis of symmetry, as 
shown if Fig. 2a.

Fig. 2   Indentation of a trans-
versely isotropic material by 
conical indenter tip. a Along 
the axis of symmetry, b orthog-
onal to the axis of symmetry
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In this configuration the half-space surface is parallel to 
the plane of isotropy (x1, x2). Since the indenter is axisym-
metric and the indentation is performed along the axis of 
symmetry, this test corresponds to a perfect axisymmet-
ric contact case, where the contact area is circular. Equa-
tion (18) can then be used to calculate the indentation 
modulus M3 along this indentation direction:

where H is the constant of the Green’s function of Eq. (13), 
which can be directly calculated from the elastic constants 
of transversely isotropic materials, as follows, without 
recurring to numerical integration [14]:

If the indentation is performed perpendicularly to the 
axis of symmetry, as shown in Fig. 2b, the perfect axisym-
metric contact case no longer applies because, although 
the conical indenter is axisymmetric, the contact area 
cannot be considered circular in the (x2, x3) plane (i.e., 
the material deforms differently along x2- and x3-axes). In 
this case the approximation of the elliptical contact area 
proposed by Vlassak et al. [11] can be considered, and 
the indentation modulus can be calculated by means of 
Eq. (16). The function h (�) is calculated from Eqs. (11–15). 
However, due to symmetry properties of the transversely 
isotropic material, no numerical integration is needed, and 
an explicit equation for h (�) is obtained using a first order 
approximation of the Fourier series:

where

By using Eqs. (21–24) into Eqs. (16, 17) (for additional 
computational details, we kindly invite the reader to refer 
to [14]), the indentation modulus M1 in the direction per-
pendicular to the axis of symmetry, is calculated as follows:
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1
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1

�
√
H2H3

=
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where M13 is the indentation modulus considering an iso-
tropic solid (with same properties along directions x1, x2, 
x3), and M12 the indentation modulus in direction x1 by 
setting the same mechanical properties for directions x2 
and x3:

4.2 � Generally orthotropic materials

A generally orthotropic material is characterized by 9 inde-
pendent elastic constants: C11, C22, C33, C44, C55, C66, C12, C13, 
C23. If we consider a Cartesian coordinate system (x1, x2, 
x3), with 3 planes of symmetry (x1, x2), (x1, x3), (x2, x3), the 
indentation moduli along x1, x2, and x3 can be obtained by 
following the same procedure of Sect. 4.1 [14]:

where
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√
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5 � Indentation modulus of generally 
anisotropic topological insulators

In this section we describe how depth-sensing indentation 
and the theoretical model by Vlassak et al. [11] (described 
in Sect. 3) were used to validate computational results 
from density functional theory (DFT) on the evaluation of 
the elastic constants of the topological insulator Bi2Te3. 
Further details about the results discussed herein can be 
found in the work from Lamuta et al. [15].

3D topological insulators are considered a novel topo-
logical phase of matter, and are gaining growing interest 
from the worldwide scientific community [16–18], due 
to their promising applications in optoelectronics [19], 
plasmonics [20], spintronics [21], quantum computing 
[22], and thermoelectric devices [17, 23, 24]. Bi2Te3 and 
Bi2Se3 represent the most studied topological insulators, 
due to their large energy gap (~ 0.2–0.3 eV) that allows 
applications at room temperature [15, 25–29]. In this sec-
tion we focus on Bi2Te3, a layered and anisotropic mate-
rial, whose atomic structure is illustrated in Fig. 3. Bi2Te3 
is characterized by quintuple layers (QLs). Adjacent QLs 
are separated by weak Van der Waals bonds and are 
internally characterized by strong covalent bonds [27]. 
Due to this specific crystal structure, Bi2Te3 belongs to 
the D5

3d (R-3 m) space group and is characterized by 6 
independent elastic constants, namely C11, C12, C13, C14, 
C33, C44.

Lamuta et al. [15] calculated the elastic properties of 
Bi2Te3 by means of DFT simulations. A rhombohedral 
unit cell was used to simulate the topological insulator 
(shown in Fig. 3). The 6 independent elastic constants of 
Bi2Te3 were calculated using DFT, as implemented in the 
QUANTUM-ESPRESSO package [30], using a norm conserv-
ing scalar relativistic pseudopotentials with only the outer-
most s and p states in valence band. Two different approxi-
mations were used for the exchange–correlation energy 
functional, namely the local density approximation (LDA) 
[31], and the generalized gradient Perdew–Burke–Ernz-
erhof (PBE) approximation [32]. A semiempirical Van der 
Waals correction was added to the PBE approximation, 
as described in [33]. The electronic wave functions were 
expanded in plane waves up to a 90 Ry energy cut-off. 
A non-elemental hexagonal cell (shown in Fig. 3) and an 
integration of the Brillouin zone over a 8 × 8 × 2 Monk-
horst–Pack mesh [34] were used to optimize the bulk 
geometry. A force threshold value of 5 × 10−5 a.u. was used 
for the relaxation of the atomic positions.

Deformations from 0.2 to 2% were applied in order to 
calculate the elastic coefficients Cmn from the stress/strain 
profile, according to the procedure described in [35, 36]. 
In Table 1, the six independent coefficients of the stiffness 
matrix of Bi2Te3, obtained with both the LDA approxima-
tion and the PBE approximation with the semiempirical 
Van der Waals correction (PBE + VDW), are reported.

To validate DFT results of Table 1 and understand which 
one between LDA and PBE + VDW approximations is the 
most suitable for Bi2Te3, Lamuta et al. used depth-sensing 

Fig. 3   Crystal structure of 
Bi2Te3. On the right, rhombo-
hedral unit cell and hexagonal 
conventional cell (bismuth 
atoms are represented in red, 
tellurium atoms in blue)
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indentation combined with the theoretical model from 
Vlassak et al. [11].

Since Bi2Te3 belongs to the D5
3d (R-3 m) space group 

and it cannot be considered an orthotropic material, the 
model proposed by Vlassak et al. for generally anisotropic 
materials, described in Sect. 3, was used to calculate the 
theoretical indentation modulus MT, using the 6 inde-
pendent elastic constants calculated by DFT. Since Bi2Te3 
does not present any isotropy plane, the condition of per-
fect axisymmetric contact is never guaranteed, and only 
approximate solutions can be found for the indentation 
modulus, according to the Vlassak et al. model [11].

Lamuta et al. [15], considered the approximation of a 
circular contact area, and used Eq. (18) to calculate the 
indentation modulus along 2 different directions, paral-
lel and perpendicular to the material lamellae (i.e., each 
lamella corresponds to a quintuple layer (QL), and lies in 
the Bi2Te3 basal plane), respectively. Equations (11–15) 
were used to calculate h0 [the first-order term of the Fou-
rier series representation of the function h ( �)] through 
numerical integration. Results are reported in Table 2.

To experimentally validate DFT results of Table 1, depth-
sensing indentation tests were performed to compare the 
experimental indentation modulus ME to the theoretical 
modulus MT (calculated using the DFT elastic constants 
of Table 1 and the theoretical model by Vlassak et al.). A 
spherical indenter tip (R = 20 µm, α = 90°) was used and 
indentations were performed in the directions perpendic-
ular and parallel to Bi2Te3 lamellae. It is worth noting that 
the choice of an axisymmetric spherical indenter justifies 
the adopted approximation of a circular contact area (the 
elliptical contact area approximation is more suitable for 
indenters with elongated geometry).

Indentation tests were performed using the technique 
of the continuous stiffness measurements (CSM) [37], 
consisting in the application of a small oscillation to the 

force signal during the indentation process. Thanks to this 
technique, the profile of the indentation modulus can be 
calculated dynamically for increasing values of penetra-
tion depth for each small loading/unloading cycle during 
one single indentation. Indentations parallel to the Bi2Te3 
lamellae were performed using a maximum load of 5 mN, 
loading and unloading rate of 5 mN/min and 20 mN/min 
respectively, dwell time at maximum load of 10 s. The 
amplitude and the frequency of the sinusoidal force oscil-
lation were set to 0.5 mN and 20 Hz, respectively. Indenta-
tions perpendicular to the Bi2Te3 lamellae were performed 
using the following parameters: maximum load 10 mN, 
loading and unloading rate of 10 mN/min and 40 mN/
min respectively, dwell time at maximum load of 10 s. The 
amplitude and the frequency of the sinusoidal force oscil-
lation were set to 1 mN and 20 Hz, respectively.

The experimental indentation modulus ME was 
obtained according to the Oliver and Pharr theory for 
isotropic materials [6, 7] using Eqs. (1–3, 5). According to 
the Vlassak et al. model [11], Meqv of an anisotropic mate-
rial coincides with M of the equivalent isotropic material. 
This coincidence is exact for perfect axisymmetric contact 
and it is approximated (circular or elliptical contact area 
approximations can be used) when the contact is not per-
fectly axisymmetric. In our example, MT represents Meqv 
under the circular contact area approximation, and will 
coincide with ME (i.e., M of the equivalent isotropic mate-
rial, calculated from Oliver and Pharr’s theory), if the elas-
tic constants of Table 1 are estimated correctly from DFT. 
Depth-sensing indentation, combined with Vlassak et al.’s 
model [11], represents then a powerful tool to validate DFT 
results related to the mechanical characterization of ani-
sotropic materials at small scale.

Figure 4 shows the trend of the experimental indenta-
tion modulus ME as a function of the penetration depth for 
both the indentation directions, perpendicular (top panel) 
and parallel (bottom panel) to the Bi2Te3 lamellae.

For both the directions parallel and perpendicular to 
the Bi2Te3 lamellae, the experimental indentation modu-
lus ME stabilizes when the penetration depth reaches a 
value of 120 nm. The stabilization is obtained only when 
the condition of full plasticity contact is satisfied, as dis-
cussed in [28].

As shown in the top panel of Fig. 4, along the direc-
tion perpendicular to the Bi2Te3 lamellae, the theoretical 
indentation modulus MT calculated using the PBE + VDW 

Table 1   Independent elastic coefficients Cmn of Bi2Te3 calculated by DFT simulations using LDA and PBE + VDW approximations [15]

C11 C12 C13 C14 C33 C44

LDA 81.5 22.2 31.2 19.4 56.4 42.7
PBE − VDW 78.3 13.8 23.2 20.7 35.7 35.5

Table 2   Theoretical indentation moduli MT calculated using the 
elastic constants of Table 1 and Eqs. (11–15, 18) in the direction par-
allel and perpendicular to the material lamellae [15]

Mt perpendicular to the 
lamellae (GPa)

Mt parallel to 
the lamellae 
(GPa)

LDA 60.21 69.45
PBE − VDW 42.46 62.40



Vol:.(1234567890)

Review Paper	 SN Applied Sciences (2019) 1:1263 | https://doi.org/10.1007/s42452-019-1301-y

approximation is in perfect agreement with the stabi-
lized experimental modulus ME, while the theoretical 
modulus predicted using the LDA approximation is con-
siderably higher than the experimental value. This result 
demonstrates that the PBE + VDW approximation prop-
erly describes the exchange–correlation energy func-
tional of Bi2Te3 by leading to a correct estimation of the 
elastic mechanical properties of the material. The higher 
indentation modulus obtained with the LDA approxima-
tion can be ascribed to an over-binding problem. The 
LDA approximation usually overestimates the binding 
energy and leads to shorter bond lengths with respect 
to the experimental values. This discrepancy becomes 
more relevant if the LDA approximation is used to model 
materials containing weak Van der Waals bonds, such as 
multilayered Bi2Te3 [15].

As shown in the bottom panel of Fig. 4, none of the 
approximations used in the DFT analysis is able to predict 
the stabilized experimental indentation modulus ME along 

the direction parallel to the Bi2Te3 lamellae. Such differ-
ence can be ascribed to the nanobuckling experienced 
by the lamellae during the indentation tests. As observed 
for other layered materials such as pyrolytic carbon [38, 
39], thin layers, bonded by weak Van der Waals bonds, 
can easily experience instability when compressed along 
a direction parallel to their surface. This instability, known 
as nanobuckling, causes a rigid vertical displacement dur-
ing the indentation process, which is not considered in the 
theoretical models that describe the interaction between 
the indenter tip and the analyzed material, including the 
model by Vlassak et al. used to calculate MT in the example 
described herein.

Besides the implementation described above related 
to topological insulators, the theoretical model by Vlas-
sak et al. has been used for the evaluation of the elastic 
constants of several anisotropic materials such as wood 
[40, 41], KSr2Nb5O15 ceramics [42], β-Si3N4 ceramic crystals 

Fig. 4   Experimental indenta-
tion modulus ME profile with 
increasing values of penetra-
tion depth for a CSM nanoin-
dentation performed along the 
direction perpendicular (top 
panel) and parallel (bottom 
panel) to the basal plane (i.e., 
Bi2Te3 lamellae). The dashed 
lines represent the theoreti-
cal indentation modulus MT 
calculated according to Eq. (18) 
using the Cmn constants calcu-
lated by DFT with the LDA and 
PBE + VDW approximations [15]
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[43], Ni–Mn–Ga ferromagnetic shape memory alloys [44], 
and beetle exocuticle [45].

6 � Indentation modulus of transversely 
isotropic pyrolytic carbon

In the previous section an example on how the theoreti-
cal model proposed by Vlassak et al. [11] is used to char-
acterize generally anisotropic materials, such as Bi2Te3 
topological insulator, is proposed. This section focuses on 
the implementation of the Delafargue and Ulm model [14] 
for the elastic characterization of a transversely isotropic 
material, i.e., pyrolytic carbon.

Bulk pyrolytic carbon (PyroC) exhibits strong micro-
structural anisotropy, which is strongly related to the pre-
cursor gas and manufacturing conditions [46–50]. Specifi-
cally, bulk PyroC is a layered material, where each layer lies 
in the plane of isotropy, as shown in Fig. 2. For this reason, 
PyroC can be considered a transversely isotropic material.

Gross et al. [38] used the theoretical model proposed 
by Delafargue and Ulm [14] to estimate the indentation 
modulus along the direction perpendicular and parallel 
to the plane of isotropy of PyroC and compared theo-
retical predictions with experimental measurements. 
The reference system illustrated in Fig.  2 was used. 
Equations (19, 20) were used to calculate the theoreti-
cal indentation modulus M3 along the axis of symme-
try, while Eqs. (25–27) were implemented to calculate 
the indentation modulus M1 in the direction orthogo-
nal to the axis of symmetry (i.e., parallel to the plane 
of symmetry). The elastic constants C11, C33, C44, C13, C12 
were experimentally obtained by means of ultrasonic 
phase spectroscopy [48] and strain gage methods [49]. 
Depth-sensing indentations were performed along the 

direction perpendicular and parallel to the plane of isot-
ropy to obtain experimental values of the indentation 
moduli M3 and M1, respectively.

Indentations were performed using three different 
indenter tips: a cube corner indenter with a 200  nm 
radius of curvature, a Berkovich indenter with a 200 nm 
radius of curvature, and a cono-spherical indenter with 
a 3 µm radius of curvature. Figure  5 shows the load-
penetration depth curves obtained along the direction 
perpendicular (left) and parallel (right) to the plane of 
isotropy.

It is worth noting that the deformation of PyroC dur-
ing indentation is entirely elastic, since no residual pen-
etration depth is measured at the end of the unloading 
process. Due to this elastic response, the Oliver and Pharr 
theory cannot be used to evaluate the experimental 
value of the indentation modulus. In other words, due to 
the absence of an actual imprint (due to the absence of 
plastic deformation), Eqs. (1–5) cannot be used because 
the area of the imprint A is equal to zero. For this reason, 
Gross et al. used the Sneddon solution [51, 52] to evalu-
ate the experimental value of the indentation modu-
lus. This solution models the relationship between the 
indentation load P and the penetration depth h for a 
conical and a spherical indenter as follows:

where α is the cone half-angle and R is the radius of the 
spherical indenter.

(37)P(h) =
E

1 − �2

2 tan(�)

�
h2 (conical indenter)

(38)P(h) =
4E

3
�
1 − �2

�
√
R h3∕2 (spherical indenter)

Fig. 5   Load-penetration depth curves for indentations normal to the plane of isotropy (left) and parallel to the plane of isotropy (right) of 
pyrolytic carbon. Different curves refer to different indenter tips [38]
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Figure 6 shows the comparison between experimental 
and theoretical results.

As observed for topological insulators [15], the dif-
ference between theoretical and experimental results is 
larger in the direction parallel to the isotropy plane, due 
to nanobuckling [52, 53]. A better agreement is observed 
in the direction perpendicular to the plane of isotropy. 
However, a small discrepancy is still observed in this 
direction, as shown in the left of Fig. 6.

This discrepancy is due to the elastic deformation of 
PyroC. The theoretical model of Delafargue and Ulm con-
siders an elasto-plastic deformation which involves the 
generation of a residual imprint on the materials surface. 
As previously discussed, PyroC experiences a fully elastic 
deformation during indentation, and this behavior is not 
modeled by Delafargue and Ulm.

Gross et al. [38] described also the influence of differ-
ent indenter geometries on the nanobuckling genera-
tion, through finite element method (FEM) simulations. 
As shown in Fig. 7, when the indentation is performed 
along the plane of symmetry, the axial stress (in the 
direction of indentation) and the transverse tensile stress 
(perpendicular to the isotropy plane) exhibit higher val-
ues when a cube corner indenter is used. The combi-
nation between high axial stress and high transverse 
tensile stress fosters the nanobuckling phenomenon, 
by causing a decrement of the experimental value of 
the indentation modulus. This phenomenon explains 
why the lowest experimental indentation modulus is 
recorded in the direction parallel to the plane of isotropy 
when a cube corner indenter is considered (see right of 
Fig. 6).

The theoretical model of Delafargue and Ulm represents 
a powerful tool for the evaluation of the elastic constants 

and indentation modulus of transversely isotropic materi-
als at the nano and micro scale. Since it provides an explicit 
and exact solution, it can be easily implemented without 
requiring numerical integration or data fitting procedures. 
Besides the characterization of PyroC described in this 
section, this model has been used to characterize a wide 
variety of materials, including cortical bone [54], shale [55, 
56], clay aggregates and minerals [57, 58], polycrystalline 
ZrB2 ceramic [59], porous silica [60], sputtered ceramic thin 
films [61], AlN [62], and sol–gels [63].

7 � Conclusion

This overview introduces the problem of the depth-sens-
ing indentation of materials with anisotropic mechani-
cal properties. Two different theoretical models for the 
evaluation of the indentation modulus of generally ani-
sotropic (Vlassak et al.’s model) and orthotropic mate-
rials (Delafargue and Ulm’s model), respectively, were 
described, and the equations useful for their implemen-
tation were provided. An example on how Vlassak et al.’s 
model can be used to experimentally validate density 
function theory (DFT) results on the elastic mechani-
cal characterization of generally anisotropic materials 
at small scales is described. The example focuses on 
the characterization of the topological insulator Bi2Te3, 
emerging anisotropic semiconductor with promising 
applications in optoelectronics. Depth-sensing inden-
tation tests, combined with the theoretical model from 
Vlassak et al., showed that the generalized gradient Per-
dew–Burke–Ernzerhof approximation with the semiem-
pirical Van der Waals correction (PBE + VDW) is suitable 
to describe the exchange–correlation energy functional 

Fig. 6   Indentation modulus normal to the plane of isotropy (left plot) and parallel to the plane of isotropy (right plot). Theoretical values 
predicted from the Delafargue and Ulm model [14] are illustrated by the dashed line labeled DU [38]
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of Bi2Te3 and leads to the correct estimation of the mate-
rial elastic mechanical properties by DFT simulations. An 
example on the implementation of the Delafargue and 
Ulm’s model for the characterization of transversely iso-
tropic pyrolytic carbon is also provided. A discrepancy 
between experimental and theoretical results in the 
direction parallel to the plane of isotropy is observed 
and ascribed to a nanobuckling phenomenon. This phe-
nomenon is more evident when a cube corner indenter 
is used, as demonstrated by FEM simulations. Although 
the Delafargue and Ulm’s model does not take into 

consideration the fully elastic deformation of pyrolytic 
carbon during indentation, good agreement between 
experimental and theoretical results is observed in direc-
tion perpendicular to the isotropy plane.

The contents proposed in this paper represent a useful 
tool toward the choice of a suitable model for the evalu-
ation of the elastic properties of anisotropic materials 
at micro- and nano-scale by depth-sensing indentation 
technique.

Fig. 7   Stress field for three different tip geometries obtained by 
means of FEM simulations. The simulation refers to an indentation 
performed in the plane of isotropy. The first, second, and third rows 

show the axial stress (in the direction of indentation), the trans-
verse compressive stress, and the transverse tensile stress, respec-
tively [38]
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