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Abstract
The objective of this paper is to propose a feasible computational framework based on quantum logic. The usual quantum 
logic-based computational processes easily get stuck. The difficulty with the computation is ascribed to the difference 
in the inference rules for quantum and classical negations. It is shown that the new inference rule for negation which is 
akin to the classical one is partially applicable even to the quantum case. The resulting framework makes it possible to 
go beyond what the usual quantum logic-based computation could do.
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1  Background

The objective of this paper is to propose a feasible com-
putational framework based on quantum logic. The frame-
work is formulated as a logic programming style, where 
the computation is expressed in Gentzen’s sequent cal-
culus. In this section, we will briefly review these basic 
notions. For the general background of quantum compu-
tation, the reader may consult the thorough survey [8].

1.1  Quantum and classical logics

By the term quantum logic, we refer to a formal system 
modeled by the class of ortholattices1 [5, 7]. Several stud-
ies have been conducted so far to investigate mathemati-
cal theories of computation based on quantum logic 
[12–16]. Considering the structure of ortholattice allows 
us to exploit the power of quantum logic, which has been 
investigated for over 80 years.

The most salient feature that differentiates quan-
tum logic from classical one is its lack of distributiv-
ity of conjunction ( ∧ ) over disjunction ( ∨ ). From the 

proof-theoretical point of view, this leads to a negative 
consequence that quantum logic does not admit any sat-
isfactory implication operator ( → ) [9]. Due to these defects, 
computational processes based on quantum logic easily 
get stuck.

The discontinuation between quantum and classical 
logics provokes a serious problem when we adopt the 
idea that the former governs the microscopic world and 
the latter governs the macroscopic world. Quantum logic 
differs qualitatively from classical logic in the sense that it 
violates, for example, the distributivity rule that holds in 
classical logic. Unlike physics where classical mechanics 
emerges as the continuous limit of quantum mechanics, 
logic has not yet been able to unify quantum and classi-
cal formulations that seem quite disparate on the surface.

Our strategy is to ascribe the difference between 
quantum and classical logics to that of the inference rules 
for negation. The negation rule of quantum logic is of a 
restricted form compared to that of classical logic. This 
simply means that quantum logic by itself fails to prove 
many classically valid theorems. A key point to note here 
is, however, that the classical negation rule still works in 
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limited situations where the occurring propositions physi-
cally commute. Using this fact, we can formalize a feasi-
ble inference system even in quantum logic. We imple-
ment this computation technique in a logic programming 
framework.

1.2  Logic programming

Logic programming is a programming paradigm in which 
a logical inference process is seen as an execution of a 
program. A program is given as a set of rules of the form 
a → b where a and b are logical formulas. Positive facts 
(e.g. → b ; a rule with no premises) and negative facts (e.g. 
a → ; a rule with no conclusion) are also regarded as special 
kinds of rules.

Now we give a brief explanation of how the standard 
logic program operates. A program is driven by a negative 
fact, which is also referred to as a goal, say c → , where c 
is a logical formula. Then by modus ponens, a new goal 
a� → (resp. ¬b� → ) is obtained under the condition that a 
rule a → b belongs to the program and a matching b� ≡ c� 
(resp. ¬a� ≡ c� ) of formulas is found for some substitution 
� of variables. That is, an application of modus ponens can 
be considered as a goal rewriting process.

Note that a� → b� is logically equivalent to ¬b� → ¬a� . 
The matching operation of formulas is called unification, 
and the goal rewriting process that makes use of unifica-
tion and modus ponens is called backchaining. This pro-
cedure is iterated until the goal is eventually reduced to 
one with no premises ( →;the empty goal, which means a 
contradiction). The celebrated Prolog treats only formulas 
of the restricted form called Horn clauses, which contain at 
most one positive literal. For formulas of the unrestricted 
form, which will be employed in this paper, consult the 
work of Bowen [3].

1.3  Sequent calculus

In the subsequent sections, we develop a method to carry 
out quantum-logical calculation by employing unification 
and backchaining mechanisms as logical inference rules. 
The particular form of representation we use is Gentzen-
style sequent calculus. A sequent 𝛤 ⊢ 𝛥 is an expression 
that denotes a deducibility relation between sets �  and � 
of formulas: assuming (all formulas in) �  holds we can con-
clude that (some formulas in) � holds. Then a formal proof 

a� → b� c� →

a� →

(b� ≡ c�)

a� → b� c� →

¬b� →

(¬a� ≡ c�)

is formulated as a sequent-rewriting procedure. Studies 
on the sequent-style formulation of logic programming 
are found in the literature [4, 6, 10]. A sequent calculus 
for quantum logic has been introduced by Nishimura [11].

Compared to classical sequent calculus, the most dis-
tinctive feature of Nishimura’s quantum version consists in 
the inference rules for negation. The distinction is essen-
tially ascribed to the presence or absence of distributivity 
of conjunction over disjunction. When interpreted physi-
cally, the distributivity of operations corresponds to the 
commutativity of observables. Section 4 gives details of 
this.

2  Representation of physical propositions

This section defines the symbols and terminology that we 
use to describe propositions in quantum logic, illustrating 
their intuitive meanings.

We use the following symbols.

 i. Atomic formulas

p, q, r,… , or p1, p2, p3,… , q1, q2, q3,….

 ii. Logical connectives

∧ (conjunction)
∨ (disjunction)
¬ (negation)
∀ (universal quantification)
∃ (existential quantification)

Atomic formulas refer to indistinguishable units of asser-
tions, which can be combined to form more complex 
formulas with the help of logical connectives. The let-
ters a, b, c,… , or a1, a2, a3,… are used as metavariables 
for formulas. An atomic formula p that contains variables 
x1, x2,… , xn is also called a propositional function and may 
be denoted by p(x1, x2,… , xn) . For a first-order domain D 
and terms t1, t2,… tn in D , the value p(t1, t2,… , tn) of p at 
t1, t2,… tn is a proposition. Intuitively, for instance, if we set

p(x) : ‘the spin of the spin-half particle P along the Z-
axis is x.’
D : {‘up’, ‘down’}

then we have

p(‘up’) : ‘the spin of the spin-half particle P along the Z
-axis is up.’
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In the same situation, we also have

∃x ∈ D.p(x) : ‘the spin of the spin-half particle P along 
the Z-axis is either up or down.’ (quantum superposi-
tion)

The use of first-order variables and quantifiers to represent 
quantum superposition was inspired by the work of Bat-
tilotti2 [1, 2].

For an atomic formula p , p itself is said to be a positive 
literal, while ¬p a negative literal. A clause is a disjunction 
of positive or negative literals in which all variables are 
universally quantified. Due to the commutativity and asso-
ciativity of the disjunction, we may assume without loss 
of generality that a clause is of the form where negative 
literals precede positive ones:

(including the cases where l = 0 ). In classical logic, it is 
equivalent to the formula of the implication form

Unfortunately, however, quantum logic does not admit 
the usual implication operation ( → ) [9]. For this reason, 
we avoid using the implication operation ( → ) in represent-
ing clauses. The negated form of a clause is called a goal3 
which is written as

By applying De Morgan’s law, which will be described 
below, we may rewrite this as

Finally, a finite set of clauses is called a logic program.

3  Inference rules for quantum sequents

Let �  and � be finite (possibly empty) sets of formulas 
and a1, a2,… an formulas. In sequents, expressions such 
as � , a1, an,… , an or a1, a2,… , an,�  are used as shorthand 
for � ∪ {a1, a2,… , an} . The following inference rules for 
quantum sequents are originally due to Nishimura [11].

 i. Structure

∀x1∀x2 …∀xl .(¬p1 ∨ ¬p2 ∨⋯ ∨ ¬pm ∨ q1 ∨ q2 ∨⋯ ∨ qn)

∀x1∀x2 …∀xl .((p1 ∧⋯ ∧ pm) → (q1 ∨⋯ ∨ qn)).

¬∀x1∀x2 …∀xl .(¬p1 ∨ ¬p2 ∨⋯ ∨ ¬pm ∨ q1 ∨ q2 ∨⋯ ∨ qn).

∃x1∃x2 …∃xl .(p1 ∧ p2 ∧⋯ ∧ pm ∧ ¬q1 ∧ ¬q2 ∧⋯ ∧ ¬qn).

𝛤 ′ ⊢ 𝛥′

𝛤 ⊢ 𝛥

 where 𝛤 ′ ⊆ 𝛤  and 𝛥′ ⊆ 𝛥 . Uses of the structural rule 
are sometimes not explicitly mentioned.

 ii. Cut

 iii. ∧ -left

 iv. ∧ -right

 v. ¬ -left

 vi. ¬ -right

 where ¬� is the set of all negated formulas of �.
 vii. ¬¬ -left

 viii. ¬¬ -right

 The rules vii and viii are used to eliminate double-
negations that appear in the proof. The application 
of these rules may not be explicitly written.

 ix. ∀ -left

 where a[ x ] is a formula that may contain x, and a[ ? ] 
is the same formula as a[ x ] except that x is substi-
tuted with any term ? in D.

Remark 1 The formulas listed on the left side of the ⊢ sign 
constitute the set of all premises, and those on the right 
side constitute the set of possible conclusions. That is, 
𝛤 ⊢ 𝛥 represents the proof-theoretic assertion that

if all formulas in �  hold (in quantum logic), then 
some formulas in � hold (in quantum logic). (*)

𝛤 ⊢ 𝛥, a 𝛤 , a ⊢ 𝛥

𝛤 ⊢ 𝛥

𝛤 , a, b ⊢ 𝛥

𝛤 , a ∧ b ⊢ 𝛥

𝛤 ⊢ 𝛥, a 𝛤 ⊢ 𝛥, b

𝛤 ⊢ 𝛥, a ∧ b

𝛤 ⊢ 𝛥, a

𝛤 ,¬a ⊢ 𝛥

a ⊢ 𝛥

¬𝛥 ⊢ ¬a

𝛤 , a ⊢ 𝛥

𝛤 ,¬¬a ⊢ 𝛥

𝛤 ⊢ 𝛥, a

𝛤 ⊢ 𝛥,¬¬a

𝛤 , a[ ? ] ⊢ 𝛥

𝛤 ,∀x ∈ D.a[ x ] ⊢ 𝛥

2 Battilotti employs ∀-type propositions to represent quantum 
superposition instead of our ∃-type ones because the underlying 
logic is different.
3 We adopt here a generalized goal that may contain both positive 
and negative literals.
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The point to notice here is that the assertion (*) itself is 
made in the metalanguage, which is, of course, governed 
by classical logic. This means that the terms all and some in 
(*) should be interpreted classically. Hence (*) differs from 
the following assertion:

if the conjunction of all formulas in �  hold (in quan-
tum logic), then the disjunction of all formulas in � 
hold (in quantum logic). (**)

For comparison, consider the case of classical sequent cal-
culus where 𝛤 ⊢ 𝛥 represents the proof-theoretic asser-
tion that

if all formulas in �  hold (in classical logic), then some 
formulas in � hold (in classical logic). (*CL)

In this case, both the object and the metalogic are classical 
logic. Hence (*CL) coincides with the following assertion:

if the conjunction of all formulas in �  hold (in clas-
sical logic), then the disjunction of all formulas in � 
hold (in classical logic). (**CL)

What is the implication of these observations? In classical 
sequent calculus, a comma between formulas on the left 
side of the ⊢ sign is interchangeable with a conjunction 
sign ( ∧ ), and one on the right side a disjunction sign ( ∨ ). 
While the former is still true in the quantum case4, the lat-
ter is not: a comma between formulas on the right side of 
the ⊢ sign is not interchangeable with a disjunction sign. 
With this fact in mind, we introduce the operation ∨ not 
via the inference rules of sequents, but via the following 
De Morgan’s law:

Uses of De Morgan’s law are not explicitly mentioned here-
after. Likewise, we introduce the quantifier ∃ via

Then the following inference rule may be derived:

a ∨ b ≡ ¬(¬a ∧ ¬b).

∃x ∈ D.a[x] ≡ ¬∀x ∈ D.¬a[x].

𝛤 ⊢ a[ ? ]

𝛤 ⊢ ∃x ∈ D.a[ x ]
(∃-RIGHT)

When each side of the ⊢ sign contains only a single for-
mula, the deducibility relation ⊢ can be seen as a partial 
order relation ≤ . With this ordering, the set of all formulas 
forms an ortholattice. Sometimes the following additional 
axiom is adopted for this lattice to be orthomodular [5]:

Remark 2 One apparent difference between classical and 
quantum sequent calculus consists in ¬ -right rule (vi). The 
classical ¬ -right rule is stated as follows:

Assuming ¬ -right (CL), we obtain ¬ -right of the quantum 
version as follows: 

However, the converse is not provable. Hence, it may be 
said that ¬ -right is weaker than ¬ -right (CL). This distinc-
tion stems from the noncommutativity of observables. We 
examine this point in more details in the next section.

4  Relations between distributivity, 
commutativity, and ¬‑rule

The distinction between quantum and classical logics has 
commonly been ascribed to the presence or absence of 
the distributivity of ∧ over ∨ , or, that of the commutativ-
ity of observables in the corresponding physical theory. 
In the previous section, we observed that the crux of the 
distinction between both logics lies in the ¬ -right rule of 
the corresponding sequent calculus. In this section, we 
examine the relations between these three properties: 
distributivity, commutativity, and ¬ -right rule.

4.1  Distributivity

Let a, b and c be formulas. The following sequent repre-
sents the distributivity of a over b and c , and is written as 
D(a, b, c) for brevity:

Note that even in quantum sequent calculus, the 
reverse direction of the distributivity always holds. 
In fact, the following diagram depicts the proof of 
(a ∧ b) ∨ (a ∧ c) ⊢ a ∧ (b ∨ c) . 

a ∧ (¬a ∨ (a ∧ b)) ⊢ b.

𝛤 , a ⊢ 𝛥

𝛤 ⊢ ¬a,𝛥
(¬-RIGHT(CL))

a ∧ (b ∨ c) ⊢ (a ∧ b) ∨ (a ∧ c).

4 The following rule that can be viewed as the converse of ∧ -left 
holds even in quantum sequent calculus.

In fact, 

𝛤 , a ∧ b ⊢ 𝛥

𝛤 , a, b ⊢ 𝛥
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4.2  Commutativity

The sequent a ⊢ (a ∧ b) ∨ (a ∧ ¬b) represents the com-
mutativity of a and b , and is written as C(a, b) for brevity. 
In fact, the following proposition holds.

Proposition 1 The sequents C(a, b) and C(b, a) are both 
valid in a Hilbert space model in which the subspaces a and 
b commute.

Proof Note that two subspaces commute if and only if 
their projection operators commute. By abuse of notation, 
we use the same symbols a, b and c for their correspond-
ing subspaces of some Hilbert space ℍ , with the super-
script ⊥ denoting the orthocomplement in ℍ . We have 
ab⊥ = a(I − b) = a − ab where I  is the identity operator. 
Then we have a = ab + ab⊥ . Thus a ≤ ab + ab⊥ which 
means that the sequent a ⊢ (a ∧ b) ∨ (a ∧ ¬b) is valid 
in this model. By the same token, it can be shown that 
b ⊢ (b ∧ a) ∨ (b ∧ ¬a) is valid.   ◻

Conversely, the following proposition also holds.

Proposition 2 In a Hilbert space model in which the 
sequents C(a, b) and C(b, a) are both valid, the subspaces a 
and b commute.

P r o o f  S u p p o s e  t h a t  a ⊢ (a ∧ b) ∨ (a ∧ ¬b)  a n d 
b ⊢ (b ∧ a) ∨ (b ∧ ¬a) are both valid. This means 
that the inequalities a ≤ ab + ab⊥ and b ≤ ba + ba⊥ 
both hold in this model. Since the reverse inequali-
ties ab + ab⊥ ≤ a and ba + ba⊥ ≤ b both hold in any 
(complemented) lattice, it follows that the equalities 
a = ab + ab⊥ and b = ba + ba⊥ both hold (*). For nota-
tional simplicity, let a� = ab⊥, b� = ba⊥ , and c = ab . 

Then we have a�c = 0, b�c = 0 and a�b� = 0 which mean 
that a′, b′ and c are mutually orthogonal. Since it fol-
lows from (*) that a = c + a� and b = c + b� , we have 
ab = (a� + c)(b� + c) = a�b� + a�c + cb� + cc = c  a n d 
ba = (b� + c)(a� + c) = b�a� + b�c + ca� + cc = c  f r o m 
which we conclude that ab = ba .   ◻

In quantum theory, if a and b commute, then of course 
b and a commute. Furthermore, the theory requires that a 
and ¬b , ¬a and b , and ¬a and ¬b also commute. Therefore, 
it is reasonable to require that in a Hilbert space model 
in which a and b commute, the following four axioms be 
introduced all together:

C(a, b) ≡ C(a,¬b) ≡ a ⊢ (a ∧ b) ∨ (a ∧ ¬b)

C(¬a, b) ≡ C(¬a,¬b) ≡ ¬a ⊢ (¬a ∧ b) ∨ (¬a ∧ ¬b)

C(b, a) ≡ C(b,¬a) ≡ b ⊢ (b ∧ a) ∨ (b ∧ ¬a)

C(¬b, a) ≡ C(¬b,¬a) ≡ ¬b ⊢ (¬b ∧ a) ∨ (¬b ∧ ¬a)

The model theoretic argument also yields the following: 
if C(a, c) and C(b, c) are both valid, then C(a ∧ b, c) is also 
valid. We write C(� , c) to mean C(ai , c) for i = 1, 2,… , n , 
and C(∧� , c) to mean C(a1 ∧ a2 ∧⋯ ∧ an, c) , where 
� = {a1, a2,… , an}.

4.3  Relations between the rules

With respect to the relation between distributivity and 
commutativity in quantum logic, we note the following.

Proposition 3 In quantum sequent calculus, D(a, b,¬b) 
holds if and only if C(a, b) holds.

Proof Suppose that D(a, b,¬b) holds. We must show that 
C(a, b) holds. 
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For the converse, suppose that C(a, b) holds. We must show 
that D(a, b,¬b) holds. 

Now let us investigate the relation between commu-
tativity (distributivity) and the ¬ -right rule. The following 
¬ -right(CL)’ rule is a weakened version of ¬ -right(CL) rule. 
In other words, ¬ -right(CL)’ is a derivable rule of quantum 
sequent calculus plus ¬ -right(CL) (i.e. classical sequent cal-
culus), but the converse is not true. This means that quan-
tum sequent calculus plus ¬ -right(CL)’ is strictly weaker 
than classical sequent calculus.

The “local” ¬ -right(CL)’ rule that holds for certain a and b 
(and for an arbitrary c ) is referred to as Nr(a, b) for brev-
ity. As will be seen below, admitting Nr(a, b) for some, 
not all, a and b instead of ¬ -right(CL) suffices to perform 
actual computations. In quantum logic, if commutativity 
(or equivalently, distributivity) holds for certain formulas, 
then ¬ -right(CL)’ rule also holds for them. That is,

Proposition 4 If C(a, b) holds, then Nr(a, b) holds in quan-
tum logic.

Proof Suppose that C(a, b) holds. We must show that 
Nr(a, b) holds. 

a, b ⊢ c

a ⊢ ¬b ∨ c
(¬-RIGHT(CL)�)

The next proposition is a sort of converse to the pre-
vious one. Let a and b be formulas and �  a finite set of 
formulas. The following inference rule should be called 
Nl(a, b) for brevity.

Proof Suppose that C(a, b) holds. Then we also have 
C(¬b,¬a) . Hence Nr(¬b,¬a) holds by Proposition 4. We 
must show that Nl(a, b) holds. 

   ◻

Our scheme is as follows. Given a model of quantum 
logic, we add to Nishimura’s quantum sequent calculus all 
the sequents C( ⋅ , ⋅ ) representing each commutative pair 
of physical quantities in that model. In this system, we are 
allowed to use the corresponding inference rules Nr( ⋅ , ⋅ ) 
and Nl( ⋅ , ⋅ ) by which we can prove many substantial theo-
rems even in quantum logic.

𝛤 ⊢ a ∨ b

𝛤 ,¬a ⊢ b

   ◻
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5  Quantum logic programming

As stated in Sect. 1, a logic program is driven by two fun-
damental processes: a pattern matching process called 
unification and a goal rewriting process called backchain-
ing. In this section, we present quantum versions of those 
processes to show how the quantum logical computation 
can be realized.

5.1  Unification and backchaining

In our quantum sequent calculus, the following inference 
rules are derived from the definition.
i. Backchaining (I) (The positive literal case) The following 

derived rule holds under the condition that C(� , r) 
holds. 

where �  is a logic program, ∀x1 ∈ D1 …∀x
l
∈ D

l
.

(¬p1 ∨⋯ ∨ ¬p
m
∨ q1 ∨⋯ ∨ q

n
) is a clause in �  and r is 

an atomic formula that is unifiable with qk.

Proof  

𝛤 ⊢ p1 ∧⋯ ∧ pm ∧ ¬q1 ∧⋯ ∧ ¬qn (except for qk )

𝛤 ⊢ r
(BC (I))

where ? is a variable to be substituted.   ◻

To utilize Backchaining (I), find the substitution � satisfy-
ing the equation qk( ? )� ≡ r� and then apply this substitu-
tion to the whole proof diagram obtained up to that stage 
(this is the so-called unification). Here, a substitution � is a 
function that assigns to each first-order variable x a term 
x�.

 ii. Backchaining (II) (The negative literal case) The fol-
lowing derived rule holds under the condition that 
C(� , r) holds. 

where �  is a logic program, ∀x1 ∈ D1 …∀x
l
∈ D

l
.

(¬p1 ∨⋯ ∨ ¬p
m
∨ q1 ∨⋯ ∨ q

n
) is a clause in �  and r 

is an atomic formula that is unifiable with pk.

𝛤 ⊢ p1 ∧⋯ ∧ pm ∧ ¬q1 ∧⋯ ∧ ¬qn (except pk)

𝛤 ⊢ ¬r
(BC (II))

Proof    
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where ? is a variable to be substituted.   ◻

To utilize Backchaining (II), find the substitution � sat-
isfying the equation pk( ? )� ≡ r� and then apply this sub-
stitution to the whole proof diagram obtained up to that 
stage.

 iii. Backchaining (III) (The positive literal case) 

 where �  is a logic program, ∀x1 ∈ D1 …∀xl ∈ Dl .q(x) 
is a clause in �  and r is an atomic formula that is 
unifiable with q.

Proof 

where ? is a variable to be substituted.   ◻

To utilize Backchaining (III), find the substitution � sat-
isfying the equation q( ? )� ≡ r� and then apply this sub-
stitution to the whole proof diagram obtained up to that 
stage.
iv Backchaining (IV) (The negative literal case) 

 where �  is a logic program, ∀x1 ∈ D1 …∀xl ∈ Dl .¬p(x) 
is a clause in �  and r is an atomic formula that is unifi-
able with p.

Proof 

where ? is a variable to be substituted.   ◻

To utilize Backchaining (IV), find the substitution � sat-
isfying the equation p( ? )� ≡ r� and then apply this sub-
stitution to the whole proof diagram obtained up to that 
stage.

As described above, we must admit that a sort of partial 
commutativity is still required to allow the quantum logic 
version of backchainings (I) and (II) to proceed.

5.2  Proof procedure

Let �  be a logic program and G a goal. To prove the 
sequent 𝛤 ⊢ G , apply ∃ -right if G is of the form ∃x ∈ D.a , 
∧ -right if G is of the form a ∧ b and a backchaining if G is 
an atomic formula. The choice of which backchaining to 

𝛤 ⊢ r
(BC (III))

𝛤 ⊢ ¬r
(BC (IV))

r⊢p( ? )

¬p( ? )⊢¬r

∀x1∈D1…∀xl∈Dl .¬p(x)⊢¬r

𝛤⊢¬r

use depends on the choice of a clause in �  . In the case 
where no backchaining is applicable, the proof fails at that 
point. In the case where more than one clause is applica-
ble, one of the clauses is chosen indeterministically, and 
if this attempt fails, the proof backtracks to the last choice 
point to try another option.

6  An example: unification as measurement

In the previous sections, we have observed that the frame-
work of quantum logic programming is based on the idea 
that a proof in quantum logic can be seen as a kind of 
computation. In this final section, we illustrate how this 
computation is interpreted in terms of quantum physics.

In quantum logic programming, an experimental con-
text is given as a set of clauses, say, �  , and a query is given 
as a goal, say, ∃x ∈ D.c(x) , which means that the proposi-
tion c holds for some measurement outcome x . The fact 
that the sequent 𝛤 ⊢ ∃x ∈ D.c(x) is provable means that 
there exists some measurement outcome x that makes c(x) 
hold in the context �  . The specific measurement value of 
x is obtained via unification and backchaining.

As an example, consider an experiment measuring the 
spins of two particles, say A and B , along the Z-axis. The set 
D of possible outcomes of this experiment is {‘up’, ‘down’} . 
Now suppose that A and B are entangled, that is, if one has 
spin up then the other has spin down and vice versa:

if A has spin ‘up’ then B has spin ‘down.’
if A has spin ‘down’ then B has spin ‘up.’

Prior to the measurement, the quantum correlation of the 
pair is expressed by the set of the following clauses5:

∀x ∈ D.(¬p(x) ∨ ¬q(x))

∀x ∈ D.(p(x) ∨ q(x))

Here, p(x) denotes the assertion that ‘ A has spin 
x  ’ where either x = ‘up’ or x = ‘down.’ Similarly, 
q(x) denotes the assertion that ‘ B has spin x  .’ Let 
� ≡ {∀x ∈ D.(¬p(x) ∨ ¬q(x)) ,  ∀x ∈ D.(p(x) ∨ q(x))(con-
straints on the correlation), ∀x ∈ D.p(x) (a quantity to be 
observed)} be a logic program and G ≡ ∃x.(p(x) ∧ ¬q(x)) 
a goal. 

5 As mentioned in Sect.  2, we avoid using the implication opera-
tion ( → ) in representing clauses.
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The above diagram shows that 𝛤 ⊢ ∃x.(p(x) ∧ ¬q(x)) is 
proved when either ‘up’ or ‘down’ is uniformly substituted 
for ?. This corresponds to the fact that the spins of the par-
ticles A and B are measured to be different (one up, and the 
other down) in the experimental context �  . The computa-
tion can proceed with the help of the partial commutativ-
ity assumption in BC(II), which is automatically satisfied if 
we require that the observables involved be simultane-
ously measurable.

Under the same condition �  , however, if the goal G is 
permuted to ∃x.(p(x) ∧ q(x)) , then any attempt to prove 
the sequent 𝛤 ⊢ G fails. For example, the following proof 
is incomplete: 

 whether ‘up’ or ‘down’ is uniformly substituted for ?.

7  Conclusion

We formulated a feasible computational framework 
based on quantum logic. In this framework, the difference 
between quantum and classical logics was reduced to that 
between the inference rules for quantum and classical 
negations. We showed that given partial commutativity, 
a new rule for negation akin to the classical one is avail-
able even in the quantum case. As a result, the framework 
made it possible to go beyond what the usual quantum 
logic-based computation could do.
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