
Vol.:(0123456789)

SN Applied Sciences (2019) 1:1255 | https://doi.org/10.1007/s42452-019-1193-x

Research Article

Feasible computation based on quantum logic

Kenji Tokuo1

© Springer Nature Switzerland AG 2019

Abstract
The objective of this paper is to propose a feasible computational framework based on quantum logic. The usual quantum
logic-based computational processes easily get stuck. The difficulty with the computation is ascribed to the difference
in the inference rules for quantum and classical negations. It is shown that the new inference rule for negation which is
akin to the classical one is partially applicable even to the quantum case. The resulting framework makes it possible to
go beyond what the usual quantum logic-based computation could do.

Keywords Quantum computation · Quantum logic · Classical logic · Logic program

1 Background

The objective of this paper is to propose a feasible com-
putational framework based on quantum logic. The frame-
work is formulated as a logic programming style, where
the computation is expressed in Gentzen’s sequent cal-
culus. In this section, we will briefly review these basic
notions. For the general background of quantum compu-
tation, the reader may consult the thorough survey [8].

1.1 Quantum and classical logics

By the term quantum logic, we refer to a formal system
modeled by the class of ortholattices1 [5, 7]. Several stud-
ies have been conducted so far to investigate mathemati-
cal theories of computation based on quantum logic
[12–16]. Considering the structure of ortholattice allows
us to exploit the power of quantum logic, which has been
investigated for over 80 years.

The most salient feature that differentiates quan-
tum logic from classical one is its lack of distributiv-
ity of conjunction (∧) over disjunction (∨). From the

proof-theoretical point of view, this leads to a negative
consequence that quantum logic does not admit any sat-
isfactory implication operator (→) [9]. Due to these defects,
computational processes based on quantum logic easily
get stuck.

The discontinuation between quantum and classical
logics provokes a serious problem when we adopt the
idea that the former governs the microscopic world and
the latter governs the macroscopic world. Quantum logic
differs qualitatively from classical logic in the sense that it
violates, for example, the distributivity rule that holds in
classical logic. Unlike physics where classical mechanics
emerges as the continuous limit of quantum mechanics,
logic has not yet been able to unify quantum and classi-
cal formulations that seem quite disparate on the surface.

Our strategy is to ascribe the difference between
quantum and classical logics to that of the inference rules
for negation. The negation rule of quantum logic is of a
restricted form compared to that of classical logic. This
simply means that quantum logic by itself fails to prove
many classically valid theorems. A key point to note here
is, however, that the classical negation rule still works in

Received: 16 May 2019 / Accepted: 28 August 2019 / Published online: 21 September 2019

 * Kenji Tokuo, tokuo@oita-ct.ac.jp | 1Department of Information Engineering, National Institute of Technology, Oita College, 1666 Maki,
Oita 870-0152, Japan.

1 The closed subspaces of some Hilbert space, or quantum state
space, form an ortholattice.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-1193-x&domain=pdf
http://orcid.org/0000-0001-8878-9824

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1255 | https://doi.org/10.1007/s42452-019-1193-x

limited situations where the occurring propositions physi-
cally commute. Using this fact, we can formalize a feasi-
ble inference system even in quantum logic. We imple-
ment this computation technique in a logic programming
framework.

1.2 Logic programming

Logic programming is a programming paradigm in which
a logical inference process is seen as an execution of a
program. A program is given as a set of rules of the form
a → b where a and b are logical formulas. Positive facts
(e.g. → b ; a rule with no premises) and negative facts (e.g.
a → ; a rule with no conclusion) are also regarded as special
kinds of rules.

Now we give a brief explanation of how the standard
logic program operates. A program is driven by a negative
fact, which is also referred to as a goal, say c → , where c
is a logical formula. Then by modus ponens, a new goal
a� → (resp. ¬b� →) is obtained under the condition that a
rule a → b belongs to the program and a matching b� ≡ c�
(resp. ¬a� ≡ c�) of formulas is found for some substitution
� of variables. That is, an application of modus ponens can
be considered as a goal rewriting process.

Note that a� → b� is logically equivalent to ¬b� → ¬a� .
The matching operation of formulas is called unification,
and the goal rewriting process that makes use of unifica-
tion and modus ponens is called backchaining. This pro-
cedure is iterated until the goal is eventually reduced to
one with no premises (→;the empty goal, which means a
contradiction). The celebrated Prolog treats only formulas
of the restricted form called Horn clauses, which contain at
most one positive literal. For formulas of the unrestricted
form, which will be employed in this paper, consult the
work of Bowen [3].

1.3 Sequent calculus

In the subsequent sections, we develop a method to carry
out quantum-logical calculation by employing unification
and backchaining mechanisms as logical inference rules.
The particular form of representation we use is Gentzen-
style sequent calculus. A sequent 𝛤 ⊢ 𝛥 is an expression
that denotes a deducibility relation between sets � and �
of formulas: assuming (all formulas in) � holds we can con-
clude that (some formulas in) � holds. Then a formal proof

a� → b� c� →

a� →

(b� ≡ c�)

a� → b� c� →

¬b� →

(¬a� ≡ c�)

is formulated as a sequent-rewriting procedure. Studies
on the sequent-style formulation of logic programming
are found in the literature [4, 6, 10]. A sequent calculus
for quantum logic has been introduced by Nishimura [11].

Compared to classical sequent calculus, the most dis-
tinctive feature of Nishimura’s quantum version consists in
the inference rules for negation. The distinction is essen-
tially ascribed to the presence or absence of distributivity
of conjunction over disjunction. When interpreted physi-
cally, the distributivity of operations corresponds to the
commutativity of observables. Section 4 gives details of
this.

2 Representation of physical propositions

This section defines the symbols and terminology that we
use to describe propositions in quantum logic, illustrating
their intuitive meanings.

We use the following symbols.

 i. Atomic formulas

p, q, r,… , or p1, p2, p3,… , q1, q2, q3,….

 ii. Logical connectives

∧ (conjunction)
∨ (disjunction)
¬ (negation)
∀ (universal quantification)
∃ (existential quantification)

Atomic formulas refer to indistinguishable units of asser-
tions, which can be combined to form more complex
formulas with the help of logical connectives. The let-
ters a, b, c,… , or a1, a2, a3,… are used as metavariables
for formulas. An atomic formula p that contains variables
x1, x2,… , xn is also called a propositional function and may
be denoted by p(x1, x2,… , xn) . For a first-order domain D
and terms t1, t2,… tn in D , the value p(t1, t2,… , tn) of p at
t1, t2,… tn is a proposition. Intuitively, for instance, if we set

p(x) : ‘the spin of the spin-half particle P along the Z-
axis is x.’
D : {‘up’, ‘down’}

then we have

p(‘up’) : ‘the spin of the spin-half particle P along the Z
-axis is up.’

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1255 | https://doi.org/10.1007/s42452-019-1193-x Research Article

In the same situation, we also have

∃x ∈ D.p(x) : ‘the spin of the spin-half particle P along
the Z-axis is either up or down.’ (quantum superposi-
tion)

The use of first-order variables and quantifiers to represent
quantum superposition was inspired by the work of Bat-
tilotti2 [1, 2].

For an atomic formula p , p itself is said to be a positive
literal, while ¬p a negative literal. A clause is a disjunction
of positive or negative literals in which all variables are
universally quantified. Due to the commutativity and asso-
ciativity of the disjunction, we may assume without loss
of generality that a clause is of the form where negative
literals precede positive ones:

(including the cases where l = 0). In classical logic, it is
equivalent to the formula of the implication form

Unfortunately, however, quantum logic does not admit
the usual implication operation (→) [9]. For this reason,
we avoid using the implication operation (→) in represent-
ing clauses. The negated form of a clause is called a goal3
which is written as

By applying De Morgan’s law, which will be described
below, we may rewrite this as

Finally, a finite set of clauses is called a logic program.

3 Inference rules for quantum sequents

Let � and � be finite (possibly empty) sets of formulas
and a1, a2,… an formulas. In sequents, expressions such
as � , a1, an,… , an or a1, a2,… , an,� are used as shorthand
for � ∪ {a1, a2,… , an} . The following inference rules for
quantum sequents are originally due to Nishimura [11].

 i. Structure

∀x1∀x2 …∀xl .(¬p1 ∨ ¬p2 ∨⋯ ∨ ¬pm ∨ q1 ∨ q2 ∨⋯ ∨ qn)

∀x1∀x2 …∀xl .((p1 ∧⋯ ∧ pm) → (q1 ∨⋯ ∨ qn)).

¬∀x1∀x2 …∀xl .(¬p1 ∨ ¬p2 ∨⋯ ∨ ¬pm ∨ q1 ∨ q2 ∨⋯ ∨ qn).

∃x1∃x2 …∃xl .(p1 ∧ p2 ∧⋯ ∧ pm ∧ ¬q1 ∧ ¬q2 ∧⋯ ∧ ¬qn).

𝛤 ′ ⊢ 𝛥′

𝛤 ⊢ 𝛥

 where 𝛤 ′ ⊆ 𝛤 and 𝛥′ ⊆ 𝛥 . Uses of the structural rule
are sometimes not explicitly mentioned.

 ii. Cut

 iii. ∧ -left

 iv. ∧ -right

 v. ¬ -left

 vi. ¬ -right

 where ¬� is the set of all negated formulas of �.
 vii. ¬¬ -left

 viii. ¬¬ -right

 The rules vii and viii are used to eliminate double-
negations that appear in the proof. The application
of these rules may not be explicitly written.

 ix. ∀ -left

 where a[x] is a formula that may contain x, and a[?]
is the same formula as a[x] except that x is substi-
tuted with any term ? in D.

Remark 1 The formulas listed on the left side of the ⊢ sign
constitute the set of all premises, and those on the right
side constitute the set of possible conclusions. That is,
𝛤 ⊢ 𝛥 represents the proof-theoretic assertion that

if all formulas in � hold (in quantum logic), then
some formulas in � hold (in quantum logic). (*)

𝛤 ⊢ 𝛥, a 𝛤 , a ⊢ 𝛥

𝛤 ⊢ 𝛥

𝛤 , a, b ⊢ 𝛥

𝛤 , a ∧ b ⊢ 𝛥

𝛤 ⊢ 𝛥, a 𝛤 ⊢ 𝛥, b

𝛤 ⊢ 𝛥, a ∧ b

𝛤 ⊢ 𝛥, a

𝛤 ,¬a ⊢ 𝛥

a ⊢ 𝛥

¬𝛥 ⊢ ¬a

𝛤 , a ⊢ 𝛥

𝛤 ,¬¬a ⊢ 𝛥

𝛤 ⊢ 𝛥, a

𝛤 ⊢ 𝛥,¬¬a

𝛤 , a[?] ⊢ 𝛥

𝛤 ,∀x ∈ D.a[x] ⊢ 𝛥

2 Battilotti employs ∀-type propositions to represent quantum
superposition instead of our ∃-type ones because the underlying
logic is different.
3 We adopt here a generalized goal that may contain both positive
and negative literals.

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1255 | https://doi.org/10.1007/s42452-019-1193-x

The point to notice here is that the assertion (*) itself is
made in the metalanguage, which is, of course, governed
by classical logic. This means that the terms all and some in
(*) should be interpreted classically. Hence (*) differs from
the following assertion:

if the conjunction of all formulas in � hold (in quan-
tum logic), then the disjunction of all formulas in �
hold (in quantum logic). (**)

For comparison, consider the case of classical sequent cal-
culus where 𝛤 ⊢ 𝛥 represents the proof-theoretic asser-
tion that

if all formulas in � hold (in classical logic), then some
formulas in � hold (in classical logic). (*CL)

In this case, both the object and the metalogic are classical
logic. Hence (*CL) coincides with the following assertion:

if the conjunction of all formulas in � hold (in clas-
sical logic), then the disjunction of all formulas in �
hold (in classical logic). (**CL)

What is the implication of these observations? In classical
sequent calculus, a comma between formulas on the left
side of the ⊢ sign is interchangeable with a conjunction
sign (∧), and one on the right side a disjunction sign (∨).
While the former is still true in the quantum case4, the lat-
ter is not: a comma between formulas on the right side of
the ⊢ sign is not interchangeable with a disjunction sign.
With this fact in mind, we introduce the operation ∨ not
via the inference rules of sequents, but via the following
De Morgan’s law:

Uses of De Morgan’s law are not explicitly mentioned here-
after. Likewise, we introduce the quantifier ∃ via

Then the following inference rule may be derived:

a ∨ b ≡ ¬(¬a ∧ ¬b).

∃x ∈ D.a[x] ≡ ¬∀x ∈ D.¬a[x].

𝛤 ⊢ a[?]

𝛤 ⊢ ∃x ∈ D.a[x]
(∃-RIGHT)

When each side of the ⊢ sign contains only a single for-
mula, the deducibility relation ⊢ can be seen as a partial
order relation ≤ . With this ordering, the set of all formulas
forms an ortholattice. Sometimes the following additional
axiom is adopted for this lattice to be orthomodular [5]:

Remark 2 One apparent difference between classical and
quantum sequent calculus consists in ¬ -right rule (vi). The
classical ¬ -right rule is stated as follows:

Assuming ¬ -right (CL), we obtain ¬ -right of the quantum
version as follows:

However, the converse is not provable. Hence, it may be
said that ¬ -right is weaker than ¬ -right (CL). This distinc-
tion stems from the noncommutativity of observables. We
examine this point in more details in the next section.

4 Relations between distributivity,
commutativity, and ¬‑rule

The distinction between quantum and classical logics has
commonly been ascribed to the presence or absence of
the distributivity of ∧ over ∨ , or, that of the commutativ-
ity of observables in the corresponding physical theory.
In the previous section, we observed that the crux of the
distinction between both logics lies in the ¬ -right rule of
the corresponding sequent calculus. In this section, we
examine the relations between these three properties:
distributivity, commutativity, and ¬ -right rule.

4.1 Distributivity

Let a, b and c be formulas. The following sequent repre-
sents the distributivity of a over b and c , and is written as
D(a, b, c) for brevity:

Note that even in quantum sequent calculus, the
reverse direction of the distributivity always holds.
In fact, the following diagram depicts the proof of
(a ∧ b) ∨ (a ∧ c) ⊢ a ∧ (b ∨ c) .

a ∧ (¬a ∨ (a ∧ b)) ⊢ b.

𝛤 , a ⊢ 𝛥

𝛤 ⊢ ¬a,𝛥
(¬-RIGHT(CL))

a ∧ (b ∨ c) ⊢ (a ∧ b) ∨ (a ∧ c).

4 The following rule that can be viewed as the converse of ∧ -left
holds even in quantum sequent calculus.

In fact,

𝛤 , a ∧ b ⊢ 𝛥

𝛤 , a, b ⊢ 𝛥

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1255 | https://doi.org/10.1007/s42452-019-1193-x Research Article

4.2 Commutativity

The sequent a ⊢ (a ∧ b) ∨ (a ∧ ¬b) represents the com-
mutativity of a and b , and is written as C(a, b) for brevity.
In fact, the following proposition holds.

Proposition 1 The sequents C(a, b) and C(b, a) are both
valid in a Hilbert space model in which the subspaces a and
b commute.

Proof Note that two subspaces commute if and only if
their projection operators commute. By abuse of notation,
we use the same symbols a, b and c for their correspond-
ing subspaces of some Hilbert space ℍ , with the super-
script ⊥ denoting the orthocomplement in ℍ . We have
ab⊥ = a(I − b) = a − ab where I is the identity operator.
Then we have a = ab + ab⊥ . Thus a ≤ ab + ab⊥ which
means that the sequent a ⊢ (a ∧ b) ∨ (a ∧ ¬b) is valid
in this model. By the same token, it can be shown that
b ⊢ (b ∧ a) ∨ (b ∧ ¬a) is valid. ◻

Conversely, the following proposition also holds.

Proposition 2 In a Hilbert space model in which the
sequents C(a, b) and C(b, a) are both valid, the subspaces a
and b commute.

P r o o f S u p p o s e t h a t a ⊢ (a ∧ b) ∨ (a ∧ ¬b) a n d
b ⊢ (b ∧ a) ∨ (b ∧ ¬a) are both valid. This means
that the inequalities a ≤ ab + ab⊥ and b ≤ ba + ba⊥
both hold in this model. Since the reverse inequali-
ties ab + ab⊥ ≤ a and ba + ba⊥ ≤ b both hold in any
(complemented) lattice, it follows that the equalities
a = ab + ab⊥ and b = ba + ba⊥ both hold (*). For nota-
tional simplicity, let a� = ab⊥, b� = ba⊥ , and c = ab .

Then we have a�c = 0, b�c = 0 and a�b� = 0 which mean
that a′, b′ and c are mutually orthogonal. Since it fol-
lows from (*) that a = c + a� and b = c + b� , we have
ab = (a� + c)(b� + c) = a�b� + a�c + cb� + cc = c a n d
ba = (b� + c)(a� + c) = b�a� + b�c + ca� + cc = c f r o m
which we conclude that ab = ba . ◻

In quantum theory, if a and b commute, then of course
b and a commute. Furthermore, the theory requires that a
and ¬b , ¬a and b , and ¬a and ¬b also commute. Therefore,
it is reasonable to require that in a Hilbert space model
in which a and b commute, the following four axioms be
introduced all together:

C(a, b) ≡ C(a,¬b) ≡ a ⊢ (a ∧ b) ∨ (a ∧ ¬b)

C(¬a, b) ≡ C(¬a,¬b) ≡ ¬a ⊢ (¬a ∧ b) ∨ (¬a ∧ ¬b)

C(b, a) ≡ C(b,¬a) ≡ b ⊢ (b ∧ a) ∨ (b ∧ ¬a)

C(¬b, a) ≡ C(¬b,¬a) ≡ ¬b ⊢ (¬b ∧ a) ∨ (¬b ∧ ¬a)

The model theoretic argument also yields the following:
if C(a, c) and C(b, c) are both valid, then C(a ∧ b, c) is also
valid. We write C(� , c) to mean C(ai , c) for i = 1, 2,… , n ,
and C(∧� , c) to mean C(a1 ∧ a2 ∧⋯ ∧ an, c) , where
� = {a1, a2,… , an}.

4.3 Relations between the rules

With respect to the relation between distributivity and
commutativity in quantum logic, we note the following.

Proposition 3 In quantum sequent calculus, D(a, b,¬b)
holds if and only if C(a, b) holds.

Proof Suppose that D(a, b,¬b) holds. We must show that
C(a, b) holds.

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1255 | https://doi.org/10.1007/s42452-019-1193-x

For the converse, suppose that C(a, b) holds. We must show
that D(a, b,¬b) holds.

Now let us investigate the relation between commu-
tativity (distributivity) and the ¬ -right rule. The following
¬ -right(CL)’ rule is a weakened version of ¬ -right(CL) rule.
In other words, ¬ -right(CL)’ is a derivable rule of quantum
sequent calculus plus ¬ -right(CL) (i.e. classical sequent cal-
culus), but the converse is not true. This means that quan-
tum sequent calculus plus ¬ -right(CL)’ is strictly weaker
than classical sequent calculus.

The “local” ¬ -right(CL)’ rule that holds for certain a and b
(and for an arbitrary c) is referred to as Nr(a, b) for brev-
ity. As will be seen below, admitting Nr(a, b) for some,
not all, a and b instead of ¬ -right(CL) suffices to perform
actual computations. In quantum logic, if commutativity
(or equivalently, distributivity) holds for certain formulas,
then ¬ -right(CL)’ rule also holds for them. That is,

Proposition 4 If C(a, b) holds, then Nr(a, b) holds in quan-
tum logic.

Proof Suppose that C(a, b) holds. We must show that
Nr(a, b) holds.

a, b ⊢ c

a ⊢ ¬b ∨ c
(¬-RIGHT(CL)�)

The next proposition is a sort of converse to the pre-
vious one. Let a and b be formulas and � a finite set of
formulas. The following inference rule should be called
Nl(a, b) for brevity.

Proof Suppose that C(a, b) holds. Then we also have
C(¬b,¬a) . Hence Nr(¬b,¬a) holds by Proposition 4. We
must show that Nl(a, b) holds.

 ◻

Our scheme is as follows. Given a model of quantum
logic, we add to Nishimura’s quantum sequent calculus all
the sequents C(⋅ , ⋅) representing each commutative pair
of physical quantities in that model. In this system, we are
allowed to use the corresponding inference rules Nr(⋅ , ⋅)
and Nl(⋅ , ⋅) by which we can prove many substantial theo-
rems even in quantum logic.

𝛤 ⊢ a ∨ b

𝛤 ,¬a ⊢ b

 ◻

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1255 | https://doi.org/10.1007/s42452-019-1193-x Research Article

5 Quantum logic programming

As stated in Sect. 1, a logic program is driven by two fun-
damental processes: a pattern matching process called
unification and a goal rewriting process called backchain-
ing. In this section, we present quantum versions of those
processes to show how the quantum logical computation
can be realized.

5.1 Unification and backchaining

In our quantum sequent calculus, the following inference
rules are derived from the definition.
i. Backchaining (I) (The positive literal case) The following

derived rule holds under the condition that C(� , r)
holds.

where � is a logic program, ∀x1 ∈ D1 …∀x
l
∈ D

l
.

(¬p1 ∨⋯ ∨ ¬p
m
∨ q1 ∨⋯ ∨ q

n
) is a clause in � and r is

an atomic formula that is unifiable with qk.

Proof

𝛤 ⊢ p1 ∧⋯ ∧ pm ∧ ¬q1 ∧⋯ ∧ ¬qn (except for qk)

𝛤 ⊢ r
(BC (I))

where ? is a variable to be substituted. ◻

To utilize Backchaining (I), find the substitution � satisfy-
ing the equation qk(?)� ≡ r� and then apply this substitu-
tion to the whole proof diagram obtained up to that stage
(this is the so-called unification). Here, a substitution � is a
function that assigns to each first-order variable x a term
x�.

 ii. Backchaining (II) (The negative literal case) The fol-
lowing derived rule holds under the condition that
C(� , r) holds.

where � is a logic program, ∀x1 ∈ D1 …∀x
l
∈ D

l
.

(¬p1 ∨⋯ ∨ ¬p
m
∨ q1 ∨⋯ ∨ q

n
) is a clause in � and r

is an atomic formula that is unifiable with pk.

𝛤 ⊢ p1 ∧⋯ ∧ pm ∧ ¬q1 ∧⋯ ∧ ¬qn (except pk)

𝛤 ⊢ ¬r
(BC (II))

Proof

Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1255 | https://doi.org/10.1007/s42452-019-1193-x

where ? is a variable to be substituted. ◻

To utilize Backchaining (II), find the substitution � sat-
isfying the equation pk(?)� ≡ r� and then apply this sub-
stitution to the whole proof diagram obtained up to that
stage.

 iii. Backchaining (III) (The positive literal case)

 where � is a logic program, ∀x1 ∈ D1 …∀xl ∈ Dl .q(x)
is a clause in � and r is an atomic formula that is
unifiable with q.

Proof

where ? is a variable to be substituted. ◻

To utilize Backchaining (III), find the substitution � sat-
isfying the equation q(?)� ≡ r� and then apply this sub-
stitution to the whole proof diagram obtained up to that
stage.
iv Backchaining (IV) (The negative literal case)

 where � is a logic program, ∀x1 ∈ D1 …∀xl ∈ Dl .¬p(x)
is a clause in � and r is an atomic formula that is unifi-
able with p.

Proof

where ? is a variable to be substituted. ◻

To utilize Backchaining (IV), find the substitution � sat-
isfying the equation p(?)� ≡ r� and then apply this sub-
stitution to the whole proof diagram obtained up to that
stage.

As described above, we must admit that a sort of partial
commutativity is still required to allow the quantum logic
version of backchainings (I) and (II) to proceed.

5.2 Proof procedure

Let � be a logic program and G a goal. To prove the
sequent 𝛤 ⊢ G , apply ∃ -right if G is of the form ∃x ∈ D.a ,
∧ -right if G is of the form a ∧ b and a backchaining if G is
an atomic formula. The choice of which backchaining to

𝛤 ⊢ r
(BC (III))

𝛤 ⊢ ¬r
(BC (IV))

r⊢p(?)

¬p(?)⊢¬r

∀x1∈D1…∀xl∈Dl .¬p(x)⊢¬r

𝛤⊢¬r

use depends on the choice of a clause in � . In the case
where no backchaining is applicable, the proof fails at that
point. In the case where more than one clause is applica-
ble, one of the clauses is chosen indeterministically, and
if this attempt fails, the proof backtracks to the last choice
point to try another option.

6 An example: unification as measurement

In the previous sections, we have observed that the frame-
work of quantum logic programming is based on the idea
that a proof in quantum logic can be seen as a kind of
computation. In this final section, we illustrate how this
computation is interpreted in terms of quantum physics.

In quantum logic programming, an experimental con-
text is given as a set of clauses, say, � , and a query is given
as a goal, say, ∃x ∈ D.c(x) , which means that the proposi-
tion c holds for some measurement outcome x . The fact
that the sequent 𝛤 ⊢ ∃x ∈ D.c(x) is provable means that
there exists some measurement outcome x that makes c(x)
hold in the context � . The specific measurement value of
x is obtained via unification and backchaining.

As an example, consider an experiment measuring the
spins of two particles, say A and B , along the Z-axis. The set
D of possible outcomes of this experiment is {‘up’, ‘down’} .
Now suppose that A and B are entangled, that is, if one has
spin up then the other has spin down and vice versa:

if A has spin ‘up’ then B has spin ‘down.’
if A has spin ‘down’ then B has spin ‘up.’

Prior to the measurement, the quantum correlation of the
pair is expressed by the set of the following clauses5:

∀x ∈ D.(¬p(x) ∨ ¬q(x))

∀x ∈ D.(p(x) ∨ q(x))

Here, p(x) denotes the assertion that ‘ A has spin
x ’ where either x = ‘up’ or x = ‘down.’ Similarly,
q(x) denotes the assertion that ‘ B has spin x .’ Let
� ≡ {∀x ∈ D.(¬p(x) ∨ ¬q(x)) , ∀x ∈ D.(p(x) ∨ q(x))(con-
straints on the correlation), ∀x ∈ D.p(x) (a quantity to be
observed)} be a logic program and G ≡ ∃x.(p(x) ∧ ¬q(x))
a goal.

5 As mentioned in Sect. 2, we avoid using the implication opera-
tion (→) in representing clauses.

Vol.:(0123456789)

SN Applied Sciences (2019) 1:1255 | https://doi.org/10.1007/s42452-019-1193-x Research Article

The above diagram shows that 𝛤 ⊢ ∃x.(p(x) ∧ ¬q(x)) is
proved when either ‘up’ or ‘down’ is uniformly substituted
for ?. This corresponds to the fact that the spins of the par-
ticles A and B are measured to be different (one up, and the
other down) in the experimental context � . The computa-
tion can proceed with the help of the partial commutativ-
ity assumption in BC(II), which is automatically satisfied if
we require that the observables involved be simultane-
ously measurable.

Under the same condition � , however, if the goal G is
permuted to ∃x.(p(x) ∧ q(x)) , then any attempt to prove
the sequent 𝛤 ⊢ G fails. For example, the following proof
is incomplete:

 whether ‘up’ or ‘down’ is uniformly substituted for ?.

7 Conclusion

We formulated a feasible computational framework
based on quantum logic. In this framework, the difference
between quantum and classical logics was reduced to that
between the inference rules for quantum and classical
negations. We showed that given partial commutativity,
a new rule for negation akin to the classical one is avail-
able even in the quantum case. As a result, the framework
made it possible to go beyond what the usual quantum
logic-based computation could do.

Compliance with ethical standards

Conflicts of interest The author declares that he has no conflict of
interest.

References

 1. Battilotti G (2010) Interpreting quantum parallelism by sequents.
Int J Theor Phys 49:3022–3029

 2. Battilotti G (2011) Characterization of quantum states in predica-
tive logic. Int J Theor Phys 50:3669–3681

 3. Bowen K (1982) Programming with full first-order logic. Mach
Intell 10:421–440

 4. Bruscoli P, Guglielmi A (2003) A tutorial on proof theoretic
foundations of logic programming. Lect Notes Comput Sci
2916:109–127

 5. Dalla Chiara M L, Giuntini R (2001) Quantum logics. arXiv :quant
-ph/01010 28

 6. Gallier J (1985) Logic for computer science: foundations of auto-
matic theorem proving. Harper & Row, New York

 7. Goldblatt R (1974) Semantic analysis of orthologic. J Philos Logic
3:19–35

 8. Gyongyosi L, Imre S (2019) A Survey on quantum computing
technology. Comput Sci Rev 31:51–71

 9. Hardegree GM (1974) The conditional in quantum logic. Syn-
these 29:63–80

 10. Miller D (1991) Uniform proofs as a foundation for logic pro-
gramming. Ann Pure Appl Logic 51:125–157

 11. Nishimura H (1980) Sequential method in quantum logic. J
Symb Logic 45:339–352

 12. Pykacz J (2000) Quantum logic as a basis for computations. Int
J Theor Phys 39:839–850

 13. Qiu DW (2004) Automata theory based on quantum logic: some
characterizations. Inf Comput 109:179–195

 14. Ying MS (2005) A theory of computation based on quantum
logic(I). Theor Comput Sci 344:134–207

 15. Ying MS (2016) Foundations of quantum programming. Morgan
Kaufmann, Burlington

 16. Ying MS, Duan RY, Feng Y, Ji ZF (2010) Predicate transformer
semantics of quantum programs. In: Mackie I, Gay S (eds)
Semantic techniques in quantum computation. Cambridge
University Press, Cambridge, pp 311–360

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/quant-ph/0101028
http://arxiv.org/abs/quant-ph/0101028

	Feasible computation based on quantum logic
	Abstract
	1 Background
	1.1 Quantum and classical logics
	1.2 Logic programming
	1.3 Sequent calculus

	2 Representation of physical propositions
	3 Inference rules for quantum sequents
	4 Relations between distributivity, commutativity, and -rule
	4.1 Distributivity
	4.2 Commutativity
	4.3 Relations between the rules

	5 Quantum logic programming
	5.1 Unification and backchaining
	5.2 Proof procedure

	6 An example: unification as measurement
	7 Conclusion
	References

