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Abstract
This paper studies the numerical solution of the unsteady free convention in a slanted cavity under effect of the frac-
tional derivative containing a porous medium. To simplify all the computations, the main equations are mapped from 
the irregular physical domain into a regular polygon in a shape of a rectangular computational domain utilizing non-
linear axis transformations. Using the finite differences method, the fractional partial differential equations are solved. 
The primary results are teased in the ordinary case at � = 1, Ra = 1000 and � = 0.0 and those are found in an excellent 
agreement with the previous results from the open literatures. The obtained numerical data are represented in terms 
of the isotherms and streamlines contours as well as the local and average Nusselt numbers at the heated wall. Wide 
ranges of the key-parameters are considered i.e. orders of the fractional derivatives � and � are varied from 1 to 0.7, the 
Rayleigh number Ra is varied from 102 to 104 and the inclination angle takes the values � = 0

◦

, 15
◦

, 30
◦ and 45◦ . The results 

revealed that the decrease in order of the fractional derivatives enhances the fluid activity while both of the local and 
average Nusselt numbers are reduced regardless of the Rayleigh number values.

Keywords  Natural convection · Slanted enclosures · Porous media · Fractional derivative · Finite difference method 
(FDM)

List of symbols
a	� Cavity width
L	� Cavity length
t	� Time
A	� The ratio between height and width
g	� Gravity constant
qw	� Wall heat flux
K 	� Permeability of the porous medium
k	� Effective thermal conductivity of the porous 

medium
Nu	� Nusselt number
Num	� Average Nusselt number
T 	� Temperature of fluid
Tc	� For cold wall temperature
Th	� For hot wall temperature

x, y	� Cartesian coordinates
X , Y 	� Transmutation coordinates
D∝	� Operator of the fractional derivatives with respect 

to Cartesian coordinates x, y
D�	� Operator of the fractional derivatives with respect 

to time t

Greek symbols
α	� Effective thermal diffusivity of the porous medium
β	� Coefficient of thermal expansion
ΔT 	� Temperature difference
�	� Dimensionless temperature
�	� Dimensionless time
�, �	� Dimensionless variables
�	� Kinematic viscosity
�	� Stream function
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�	� Inclination angle
� 	� Dimensionless stream function
�	� Prescribed error

1  Introduction

1.1 � Introduction of natural convection

No one can deny that studying of the natural convec-
tion is very important especially in the porous media 
because it has a lot of application in industrial, engineer-
ing and agricultural such as building insulation, grain 
storage, groundwater decontamination, solar collector, 
thermal drying process, casting solidification and petro-
leum reserve, etc. All these applications and other are 
widely reviewed in [1–6] As a result of this large num-
bers of applications of this phenomenon, it has become 
an important research topic in the recent centuries. In 
general, the researchers focus on investigating of the 
numerical solution of convection for triangular, square 
or rectangular enclosures because of it is easy to solve. 
Varol et al. [7]. At first, they used finite difference method 
then they applied successive under relaxation method. 
Temperature diffusion and flow field were discussion 
at different aspect ratio and Rayleigh numbers. They 
noted that the location of heater has effect such as 
when located it at the bottom wall a lot of whirlpool 
were formed and the highest heat transfer obtained con-
ferring to the of other cases. Mansour and Ahmed [8] 
studied the free convection heat transfer in a slanted tri-
angular cavity contained nanofluid (Cu-water) in porous 
media under the effect generation of heat. They found 
that the average Nusselt number became better when 
increase the nanoparticle volume fraction also, increas-
ing parameter of heat generation causes to low in the 
value of the average Nusselt number. A numerical stud-
ied of unstable magneto hydrodynamic natural convec-
tion in a slanted cavity contain a porous medium with 
heat generation inside has been performed by Mansour 
et al. [9]. They studied two cases, the first case consid-
ered all wall of enclosure at zero degree of temperature 
and the second case the vertical walls are kept adiabatic 
and they presented results of the average Nusselt num-
ber for some variables conditions. In 2011, Mansour et al. 
[10] discussed the problem of double-expanded con-
vection in slanted triangular cavity containing a porous 
medium with different sinusoidal of the boundary condi-
tions in the being of sink heat source, numerically. They 
found that the fluid motion is accelerated in case of the 
being of heat sink and the fluid motion is decayed in the 
presence of heat source.

1.2 � Brief introduction on fractional calculus

The fractional calculus attracted a lot of researches in the 
last and present centuries. The theory of fractional calcu-
lus improved as theoretical branch for mathematicians. 
Recently many papers have been presented in the frac-
tional derivatives rules which aiming to generalize rules of 
ordinary derivatives. Also, there are a lot of applications of 
this direction in mechanics, control theory, chemistry and 
physics, so on [11, 12]. It was begun in 1695, when L’Hopital 
asked if the expression d

0.5

dx0.5
 has any meaning. Since then, 

many researches started to try to replace the concept of the 
usual derivative to fractional derivatives. The most famous of 
them, Riemann–Liouville which relied on repeating the inte-
gral operator n time and used the famous Cauchy formula, 
at the end changed n! to the Gamma function and then the 
definition of the fractional integral of non-integer order for 
� ∈ [n − 1, n] can be written in form:

Then, Caputo used the integrals to define fractional deriv-
atives for � ∈ [n − 1, n) in the form

In another direction, Grunwald–Letnikov depended on 
repeated the time derivative � and then analyzing by using 
the Gamma function in the binomial coefficients [13–17]. 
But all the previous fractional derivatives were complicated, 
and they lost a lot of the main properties of ordinary deriva-
tives like chain rule and product rule. Recently, it is appeared 
a new fractional derivative definition “the conformable frac-
tional derivative” and that definition is perpendicular on the 
fundamentals definitions of the derivative for 0 < 𝛼 ≤ 1 and 
t > 0:

and at zero the fractional derivative is knowing as 
f �(0) = limt→0+ f

�(t) [18, 19]. When � = 1 , this fractional 
derivative reduces to the ordinary derivative. The conform-
able fractional derivative has the following properties:

(1)D∝
a
(f )(t) =

1

Γ(n − �)

dn

dtn

t

∫
a

f (x)

(t − x)�−n+1
dx.

(2)D∝
a
(f )(t) =

1

Γ(n − �)

t

∫
a

f (n)(x)

(t − x)�−n+1
dx.

(3)D�f (t) = lim
�→0

f
(

t + �t1−�
)

− f (t)

�
,

D� tp = p tp−� , p ∈ z, D�c = 0, ∀ f (t) = c,

D�(a f + b g) = aD�f + bD�g, ∀ a, b ∈ ℝ,

D�(f g) = f D�g + f D�g,

D� f (g) =
df

dg
D�g, D� f (t) = t1−�

df

dg
,
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where f , g are two �− differentiable functions and c is an 
arbitrary constant. The last equations are proved by Khalil 
et al. in [18]. The conformable fractional derivative of some 
functions

Karayer et al. [20] introduced the conformable fractional 
Nikiforov–Uvarov (NU) method for some prospect in quan-
tum mechanics which gives accurate Eigen case solutions 
of Schrodinger equation (SE). Zhao et al. [21] discuss a new 
connotation of the delta conformable fractional derivative 
which has the identity factor on time scales. In, Ünal et al. 
[22] evidenced the power series solutions about given point 
in case of conformable fractional differential equations of 
linear sequential homogeneous of order 2α and introduced 
the Hermite conformable fractional polynomials as well as 
the basic properties of these polynomials. Abu Hammad 
and Khalil [23] introduced the conformable fractional Fou-
rier series. Cenesiz and Ali [24] establish the solution of 
conformable fractional heat equations for time and space 
by conformable Fourier transform. Jena and Chakraverty in 
[25] solved Navier–Stokes equations of fractional order by 
using a hybrid technique called homotopy perturbation 
Elzaki transform method. They merge Elzaki transform and 
homotopy perturbation method. This method was verified 
by using it on 3 different problems. It was shown that this 
proposed method is reliable, effective and easy to carry out 
various problems relating of science and engineering. Jena 
et al. [26] introduced the solution of a damped beam equa-
tion whose damping characteristics are well defined by the 
fractional derivative. They applied the homotopy analysis 
method for calculating the dynamic response and they 
compared the obtained results with the solutions achieved 
by Adomian decomposition method (ADM) to show the 
accuracy and efficiency of this method. Jena and Chakrav-
erty [27] presented a new technique namely residual power 
series method to find the analytical solution of the Frac-
tional Black–Scholes equation with an initial condition for 
European option pricing problem. Caputo sense is used 
to define the fractional derivative. This technique is based 
on expansion of the fractional power series. The method 
proved its effectiveness through the obtained solutions 
which compared with exact solutions solved by other tech-
niques. Jena and Chakraverty [28] solved the time-fractional 
model of vibration equation of large membranes by using 
an iterative technique namely residual power series method 
(RPSM) and they used Caputo sense to define the fractional 
derivative. This method proved its efficacy and the results 
obtained are verified graphically.

D
�
e
c t = c t

1−�
e
c t , D

� sin(ct) = c t
1−� cos(ct),

D
� cos(ct) = −c t1−� sin(ct),

D
�
e
c t� = c �ec t

�

, D
� sin(ct�) = c � cos(ct�),

D
� cos(ct�) = −c� sin(ct�).

In this leaf, the fractional derivative is applied to dis-
cuss the unsteady free convection flow for a slanted cavity 
contained a porous medium and checked the effects of 
the fractional parameter on properties of the heat transfer 
and fluid motion for various values of the inclination angle, 
Rayleigh numbers and the aspect ratio. Also, one of the 
aims of this research is to achieve the heat and fluid flow 
in irregular enclosures not only in case of ordinary deriva-
tives but also in case of fractional derivatives. It is difficult 
to work with a slanted cavity so, by using the nonlinear 
axis transformations, the computational field is charted 
into an orthogonal shape as proposed in [29]. The finite 
difference method is used to find the numerical solution 
of the governing equations; this method is presented in 
[30, 31] with some modifications.

2 � Problem description and mathematical 
analysis

The considered physical model is an enclosure containing 
porous medium fluid. Figure 1 shows that the wall length 
is L and the tendency angle of the cavity walls is Φ . Th refer 
to inclined left wall and Tc refer to right walls, while the hori-
zontal walls are thermally insulated. It assumed that Darcy’s 
law is contract, the fluid is normal and the inertial effects 
and Bossiness fluid are ignored within the porous medium. 
Considering all these suppositions, the conservation equa-
tions in the fractional form are expressed as: 

Equations (4) and (5) are a generalization of the following 
equations, see Nield and Bejan [1]:

where u =
��

�y
, � = −

��

�x
 are the velocity components and 

D� is the fractional differential operator.
Introducing the following grid transformations:

Substituting Eqs. (8) and (9) into Eqs. (4) and (5), the 
following system is obtained:

(4)D��

x
� + D��

y
� = −

gK�

�
D�

x
T

(5)�D
�

t T + uD�

x
T + �D�

y
T = �(D��

x
T + D��

y
T )

(6)Dyu − Dxv = −
gK�

�
DxT.

(7)�DtT + uDxT + �DyT = �(DxxT + DyyT ) .

(8)X = x − y tanΦ, Y = y

(9)Dx = DX , Dy = DY − tanΦDX

(10)

D��

X
� − 2 sinΦ cosΦD�

X
(D�

Y
�) + cos2 ΦD��

Y
� = −

gK�

�
D�

X
T cos2 Φ.
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Using the following dimensionless parameter:

where Tr = (Th + Tc)∕2 and ΔT = Th − Tc with Th > Tc.
Substituting Eq. (12) into Eqs. (10), (11), the following 

system is obtained:

where A is the aspect ratio of the cavity and Ra is the Ray-
leigh number:

The subjected boundary conditions are given by:

(11)�D
�

t + D�

y
�D�

x
T − D�

x
�D�

y
T =

�

cos2 Φ

[

D��

x
T − 2 sinΦ cosΦD�

x
(D�

y
T ) + cos2 ΦD��

y
T
]

.

(12)
𝜂 = Y∕(L cosΦ), 𝜏 = t(𝛼̄∕𝜎aL cosΦ), 𝜁 = X∕a,

𝛹 = 𝜓∕𝛼̄, 𝜃 = (T − Tr)∕ΔT

(13)

D��

�
� − 2

sinΦ

A
D�

�
(D�

�
� ) +

1

A2
D��

�
� = −Ra cos2 ΦD�

�
�.

(14)

A

cosΦ
(D��

�
� −

2 sinΦ

A
D
�

�
(D�

�
�) +

1

A2
D
��

�
�)

=D�

�
�D

�

�
� + D

�

�
� − D

�

�
�D

�

�
�.

(15)A = a∕L, Ra =
aΔT�gk

��

(16)

� = 0, � =
1

2
, on � = 0

� = 0, � = −
1

2
on � = 1

� = 0,
��

��
− A sinΦ

��

��
= 0 on � = 0, 1

The local Nusselt number takes the form:

Since, qw is the heat transfer rate, it can be evaluated at 
the slanted walls as:

In Eq. (18), k is the porous medium thermal conductivity 
and n is the unit vector normal to the slanted walls.

Substituting Eqs. (16) and (17) in Eq. (15), the local Nusselt 
number being in the form:

Also, the average Nusselt number is given by:

3 � Numerical method and validation

In this part, the finite differences method is applied to find 
numerically the solution of the fractional partial differential 
Eqs. (12) and (13) subjected to the boundary conditions 
(15). The fractional derivatives are approximated using the 

(17)Nu(� , �) =
a qw

ΔTk
,

(18)qw = −kn.∇T ,

(19)n = {− cosΦ i, sinΦj}.

(20)Nu(� , �) =
−1

cosΦ
(
sinΦ

A

��

��
−

��

��
)�=0,1

(21)Nu(�) = ∫
1

0

Nu(� , �) d�

Fig. 1   a Physical model and b transformed computational domain
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definition in Eq. (3), then the second differences approaches 
are used to implement the first and second derivatives. The 
resulting algebraic system is solved using SUR method with 
successive parameter � = 0.7 . The grid 101 × 101 is chosen 
for all computations after conducting a grid dependency 
study. The convergence criteria of 10−6 are applied to ter-
minate the loops and many validation tests are reported.

3.1 � The finite difference method in the fractional 
derivative

Since Guranwald letnikov derivatives with order α > 0 
defined as follow:

The Riemann–Liouville derivatives for α > 0 in the form

where n is an integer number and n − 1 ≤ 𝛼 < n.
The caputo definition for α > 0

The relation between Riemann and Caputo given in the 
following

In Eq. (22) let ��
j
= (−1)j

(

�

j

)

.

Then

where u(t) is defined on [ t0, t] , Δt =
(t0−t)
nt

 (uniform time 

step), nt is a positive integer tk is the temporal grid 
points,tk = t0 + kΔt , k = 0, …, nt.

Then the Riemann–Liouville derivative can be 
approximated

(22)D�

a,t
f (t) = lim

h→0,Nh→t−a
h−�

N
∑

j=0

(−1)j
(

�

j

)

f (t − jh)

(23)D
α
a
f(t) =

1

Γ(n − �)

dn

dtn

t

∫
a

(t − s)n−∝−1f (s)ds

(24)cD
α
a
f(t) =

1

Γ(n − �)

t

∫
a

(t − s)n−∝−1f (n)(s)ds

(25)D
α
a,t
f(t) = cD

α
a,t
f(t) +

n−1
∑

k=0

f (k)(a)(t − a)k−a

Γ(1 − �)

(26)D�

t0,t
u(t) = lim

h→0,Nh→t−t0
ΔT−�

N
∑

j=0

��

j
u
(

tk−j
)

(27)D𝛼

t0,t
u
(

tk
)

≈ D𝛼

t0,t
ǔ
(

tk
)

= Δt−𝛼
k
∑

j=0

𝜔𝛼

j
u
(

tk−j
)

Equation (27) is called slandered formula, for 1 < 𝛼 < 2 
the formula is more stable

The relation (28) has one order convergence which the 
numerical scheme is more stable {��

j
}k
j=0

 is the first k + 1 
coefficient of the Taylor series.

The active way to approximate the Riemann–Liouville 
derivative of order 𝛼(0 < 𝛼 < 1) by using the Eq. (25):

The L1 scheme obtained in form:

where 
tj+1∫
tj

(

tk+1 − s
)−�

u�(s)ds  i s  approximated by 
tj+1∫
tj

u(tj+1)−(tj)
Δt

(

tk+1 − s
)−�

ds , then L1 scheme is:

where bj,k=(k−j+1)1−�−(k−j)1−� j = 0,… , k.
In the similar manner the L2 scheme in case of 

𝛼(1 < 𝛼 < 2) is given by:

By using (32) in (33)

(28)D𝛼

t0,t
u
(

tk
)

≈ D𝛼̌

t0,t
u
(

tk
)

= Δt−𝛼
k
∑

j=0

𝜔𝛼

j
u
(

tk−j+1
)

(29)D
α
a,t
f(t) = cD

α
a,t
f(t) +

n−1
∑

k=0

f (k)(a)(t − a)k−a

Γ(1 − �)

(30)

D�

t0,t
u
(

tk+1
)

=
u
(

t0
)(

tk+1 − t0
)

Γ(1 − �)

+
1

Γ(1 − �)

k
∑

j=0

tj+1

∫
tj

(

tk+1 − s
)−�

u�(s)ds

(31)

D𝛼

t0,t
ǔ
(

tk+1
)

=
u
(

t0
)(

tk+1 − t0
)

Γ(1 − 𝛼)
+

Δt−𝛼

Γ(2 − 𝛼)

k
∑

j=0

bj,k
[

u
(

tj+1
)

− u(tj)
]

(32)

D�

t0,t
u
(

tk+1
)

=
u
(

t0
)(

tk+1 − t0
)−�

Γ(1 − �)
+

u�
(

t0
)(

tk+1 − t0
)1−�

Γ(2 − �)

+
1

Γ(2 − �)

k
∑

j=0

tj+1

∫
tj

s1−�u��
(

tk+1 − s
)

ds

(33)u��
(

tk+1 − s
)

≈
u
(

tk−j−1
)

− 2u
(

tk−j
)

+ u(tk+1−j)

Δt2
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where bj = (j − 1)2−� − j2−� and 
{

Wj

}k+1

j=−1
 can be expressed 

by 
{

bj
}k

j=0
 by defining u��

(

tk+1 − s
)

 in subinterval [ tj,tkj+1] in 
the form:

A new scheme is obtained, namely, L2 C in the form:

When � = 1 , the scheme L1 in Eq. (28) is reduced to the 
back forward difference, L2 in Eq. (31) is reduced to the 
forward difference method and L2 C in Eq. (32) is reduced 
to the centered difference method, see [32–34]:

3.2 � Validation

Table 1 shows comparisons of the average Nusselt for 
varies values of Ra(Ra = 100, 1000, 100,00) with many 

(34)

D𝛼

t0,t
ǔ
(

tk+1
)

=
u
(

t0
)(

tk+1 − t0
)−𝛼

Γ(1 − 𝛼)
+

u�
(

t0
)(

tk+1 − t0
)1−𝛼

Γ(2 − 𝛼)

+
Δt−𝛼

Γ(3 − 𝛼)

k
∑

j=0

bj
[

u
(

tk−j−1
)

− 2u
(

tk−j
)

+ u
(

tk+1−j
)]

=
u
(

t0
)(

tk+1 − t0
)−𝛼

Γ(1 − 𝛼)
+

u�
(

t0
)(

tk+1 − t0
)1−𝛼

Γ(2 − 𝛼)

+

k+1
∑

j=−1

Wju
(

tk+1−j
)

u��
(

tk+1 − s
)

≈
u
(

tk−j−1
)

− u
(

tk−j
)

+ u
(

tk+2−j
)

− u
(

tk+1−j
)

2Δt2

(35)

D𝛼
t0,t

ǔ
(

tk+1
)

=
u
(

t0
)(

tk+1 − t0
)−𝛼

Γ(1 − 𝛼)
+

u�
(

t0
)(

tk+1 − t0
)1−𝛼

Γ(2 − 𝛼)

+
Δt−𝛼

2Γ(3 − 𝛼)
[u
(

tk−j−1
)

− u
(

tk−j
)

+ u
(

tk+2−j
)

− u
(

tk+1−j
)

]

=
u
(

t0
)(

tk+1 − t0
)−𝛼

Γ(1 − 𝛼)
+

u�
(

t0
)(

tk+1 − t0
)1−𝛼

Γ(2 − 𝛼)

+

k+2
∑

j=−1

Wju
(

tk+1−j
)

published results (Baytas and Pop [3], Walker and Homsy 
[35], Bejan [36], Gross et al. [37] and Manole and Lage 
[31]) in case of the ordinary derivatives α = 1. It is noted 
that there are good harmony between the results. Also, it 
is worth mentioned that a home FORTRAN code is used 
and, approximately, 5 min CPU time is the time of each 
computation.

4 � Results and discussion

The obtained results are shown in terms of contours of the 
isotherms and streamlines. Also, profiles of the Nusselt and 
average Nusselt number at the hot wall. In this simulation, 
orders of the fractional derivatives take the range from 0.7 
to 1, the walls inclination angle is varied from 0 to 45◦ , val-
ues of Rayleigh number are between 102 and 104 and the 
aspect ratio is fixed at A = 1.

Table  2 presents results of the average Nusselt for 
some values of the fractional derivatives orders α and � at 
Ra = 100, 1000, 100,00 . It is observed that the decrease in 
time fractional derivatives order � gives a small reduction 
in values of Nu. This behavior is observed only in case of 
Ra = 100 but in other cases ( Ra = 1000, 100,00 ) the average 
Nusselt number is insensitive with variations of � . In addi-
tion, the variations of α are more dominant on behaviors 
of Nu than � . A very good enhancement in values of Nu is 
noted as α decreases from 1 to 0.9.

Figures 2, 3 and 4 display contours of the isotherms 
and streamlines for various values the fractional deriva-
tives orders α and � in cases of Φ = 0 , Φ = 30

◦ and Φ = 45
◦ 

respectively. In all these figures, the Rayleigh number is 
fixed at Ra = 1000 . The results revealed that, in gen-
eral, the streamlines show a large clockwise circular cell 
inside the enclosure with limited increment between the 
minimum value of �min at the boundaries and maximum 
value Ψmax . Also, the isotherms are distributed with equal 
distances from the greatest value of temperature of the 
hot wall to the lowest value of temperature of the cold 
wall. In addition, the decrease in the derivatives orders α 

Table 1   Comparisons of the average Nusselt number at A = 1 and 
Φ = 0

Authors Ra

100 1000 10,000

Baytas and Pop [3] 3.6 14.06 48.33
Walker and Homsy [35] 3.97 12.96 51
Gross et al. [37] 3.141 13.448 42.583
Bejan [36] 4.2 15.8 50.8
Manole and Lage [31] 3.118 13.637 48.33
Present result at ordinary 

case (α = 1)
2.6779 15.07595 57.15578

Present result at (α = 0.9) 3.897 21.31477 84.26131

Table 2   Results of average Nusselt number for various values of �, � 
and Ra

� and � Nu

Ra = 100 Ra = 1000 Ra = 10,000

� = 1, � = 1 2.677966 15.07595 57.15578
� = 1, � = 0.9 2.692308 15.07595 57.15578
� = 1, � = 0.8 2.692308 15.07595 57.15578
� = 0.9, � = 1 3.897436 21.34177 84.26131
� = 0.8, � = 1 5.384615 29.18987 121.4573
� = 0.8, � = 0.8 5.34615 29.18987 121.4573
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Fig. 2   Streamlines and isotherms for various values of α and β at A = 1, Φ  = 0°, Ra = 103
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and � accelerates the fluid flow and enhances the ther-
mal boundary layer near the left wall. On the contrary, 
the increase in the inclination angle Φ acts as a retarding 

force to the fluid movement. It reduces the maximum val-
ues the stream function as Φ decreases. Also, the thermal 
boundary layer near the heated wall is diminished with the 

Fig. 3   Streamlines and isotherms for various values of α and β at A = 1, Φ = 30°, Ra = 103
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growing of Φ . Physical, when Φ is increased the geometry 
of the enclosure become more complex and consequently 
the natural convection is reduced.

In Fig. 5a–c, profiles of the Nusselt numbers at the hot 
wall for variations of the fractional derivatives orders α and 
� are plotted. Also, these figures corresponds the cases of 
square enclosure (Φ = 0) and slanted enclosures ( Φ = 30

◦ , 

Φ = 45
◦ ) respectively. It is found that the Nusselt number 

decreases monotonically as α and � decreases. Like effect 
of α and � , the increases in Φ results in a reduction in the 
local Nusselt due to the decrease in the thermal bound-
ary layer mentioned later. Moreover, as it be observed 
from Fig. 6 which show the average Nusselt number for 

Fig. 4   Streamlines and isotherms for various values of α and β at A = 1, Φ = 45°, Ra = 103
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variations of α, � and Φ , a clear reduction in profiles of Nu 
is noted as either α and � or Φ decrease.

With the help of Figs. 7, 8, 9 and 10, effects of varia-
tion the fractional derivatives α and � on the contours of 
the isotherms and streamlines at Ra = 104 . In these fig-
ures, values of the walls inclination angle Φ are taken to 
be equal 0◦

, 15
◦

, 30
◦ and 45◦ , respectively. By comparing 

case of Ra = 103 with the current case, one can observe 
that great enhancements in rate of the fluid flow are found 
in case of Ra = 104 due to the increase in the buoyancy 
force. In addition, like case of Ra = 103 , the decrease in α 
and � enhances the minimum values the stream function 
indicating a good natural convective transport. But as the 
inclination angle increases, negative effects on the stream-
lines and temperature distributions are noted regardless 
values of the Ra, α and �.

Figures 11 and 12 show rate of transfer of heat repre-
sented by profiles of the local and average Nusselt num-
bers for some values of the fractional derivatives orders α 
and � and, also, for variations of the inclination angle in 
case of the high Rayleigh number 

(

Ra = 104
)

 . It is clear 
that a significant reduction in both of the local and aver-
age Nusselt number is found as the fractional derivatives 
orders α and � decreases. Also, similar behaviors are noted 
as the inclination angle increases. Physically, these behav-
iors are due to the reduction in the thermal boundary layer 
near the left wall that is obtained as α and � decreases or 
Φ increases.
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Fig. 5   a Nusselt number at the hot wall for various values of α at 
Φ = 0°, Ra = 103. b Nusselt number at the heated wall for various val-
ues of α at Φ = 30°, Ra = 103. c Nusselt number at the heated wall for 
various values of α at Φ = 45°, Ra = 103
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Fig. 7   Streamlines and isotherms for different values of α and β at A = 1, Φ = 0°, Ra = 104
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Fig. 8   Streamlines and isotherms for various values of α and β A = 1, Φ = 15°, Ra = 104
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Fig. 9   Streamlines and isotherms for various values of α and β at A = 1, Φ = 30°, Ra = 104
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5 � Conclusion

The unsteady fluid flow and free convection in a slanted 
cavity containing a porous medium has been discussed 
under effect of the conformable fractional derivative. The 

finite differences method is used to solve the conformable 
fractional partial differential equations. In the ordinary 
case at α and β equal 1, the results very agree with the 
previous result from the open literatures. The following 
conclusions are summarized from the current study:

Fig. 10   Streamlines and isotherms for various values of α and β at A = 1, Φ = 45°, Ra = 104
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•	 In both cases of the low Rayleigh number and high Ray-
leigh number, values of the fractional derivatives orders 
less than 1 enhances the flow rate while they reduce 
rate of the heat transfer.

•	 The natural convection in case of the high Rayleigh 
number is the best comparing by the low Rayleigh 
number.

•	 The increase in the walls inclination angle gives a 
clear reduction in both the fluid flow and heat trans-
fer.
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