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Abstract
The system-on-chip (SoC) is an integration of millions of electronic components, there is always a chance for faults to 
occur due to manufacturing defects. In order to solve this problem, it is essential to test the manufactured chips. The 
time spent on testing increases the testing cost which reflects on the cost of the chip. While testing the SoC, core acces-
sibility and testing time are the main issues to be considered. In order to reduce the testing time, test scheduling has to 
be performed in an effective manner. In this article ACO, Modified ACO, ABC, Modified ABC, Firefly and Modified Firefly 
test scheduling algorithms were tested on two SoC benchmark circuits. Experimental results show that the Modified 
ABC algorithm performs better than the other algorithms used in test scheduling. When compared with ACO, Modified 
ACO, ABC, Firefly and Modified Firefly algorithms, the Modified ABC algorithm’s testing time has been reduced by 82%, 
69%, 25%, 43% and 48% for d695 SoC and 80%, 73%, 20%, 41% and 47% for p22810 SoC benchmark circuits respectively.

Keywords  Integrated circuits · System-on-chip · Ant colony optimization · Firefly algorithm artificial bee colony 
optimization

1  Introduction

Semiconductor integrated circuits (ICs) are the basis of 
electronic products in the modern world. ICs are embed-
ded in most of the systems and products. Several ICs 
introduced consequent to the growth in semiconductor 
technology are called system-on-chip (SoC). The SoC is an 
integration of IC that contains many transistors. The main 
issue in SoC testing is the IC complexity. To solve this issue 
the reusable core IC needs to be designed and verified. The 
cores may be manufactured internally or bought exter-
nally. System integrator brings these cores into the system. 
When the system becomes more complicated, faults need 
to be tested. This complication also increases the test cost. 
Test access mechanism (TAM) is employed to test cores 
individually [1, 2].

The SoC test model is used to test individual cores and 
inter connections. In the SoC model, the major compo-
nents are a wrapper, TAM and test scheduling. The thin 
shell encircling the core called wrapper acts as an inter-
face between the core and TAM. Test vectors are provided 
through TAM wires to the wrapper [3]. Automatic test 
equipment (ATE) stores the test vectors and through TAM 
wires, vectors are provided to the SoC. Interconnection is 
tested in external mode and the core is tested in internal 
mode. There are three modes in which testing of the SoC 
is done. They are bypass, soft and lower power modes. 
Scheduling of test is classified as partitioned, non-parti-
tioned and pre-emptive testing. While cores are tested, 
the obtained response is compared with the expected 
response and the difference indicates the error. During the 
testing of interconnects, test stimuli are generated and the 
response is observed. All the cores need to be tested [4, 5]. 
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The benchmark circuits d695 and p22810 are considered 
and the various algorithms are used for the benchmark 
circuits. The result is shown with regard to the test time 
which determines the test cost. The Modified Firefly Algo-
rithm minimizes the test price by minimizing the total test 
application time. Hence, it is a better optimization tech-
nique than the other proposed algorithms.

An objective function is used to attain the tuning 
parameters of the system model to test under different 
load settings of d695 and p22810 SoC benchmark circuit. 
The purpose of algorithm for optimization is to reduce the 
test time which is the objective function stated in the fol-
lowing Eq. (1).

where Si and So represent the input and the output scan 
chain lengths and tpi represents the test pattern for core i 
of the benchmark circuit for optimization.

2 � Literature review

Earlier works mainly focused on optimization of the TAM 
and wrapper design for reducing the test time for core-
based systems [6] [7]. The three scheduling techniques are 
partitioned, non-partitioned, and preemptive techniques. 
All the cores must be completed at the end of the testing. 
Internal testing and external testing, Built in self test (BIST) 
and ATE are used. The SoC testing problem consists of core 
wrapper design, test scheduling and test access mecha-
nism design. The test shell acts as an interface between the 
core and the host containing three types of I/O terminals, 
namely function I/O, test rail I/O, and direct test I/O. In the 
test wrapper approach, the bypass feature is not allowed 
which means only one core is served at a time [8, 9]. For 
2-D bin packing problem, Simulated Annealing Algorithm 
minimizes the testing time [10].

In non-partitioned test scheduling until all the tests in 
a section are completed no new test can be started which 
increases the test time. In the partitioned technique, the 
test time is reduced by allowing the test to be scheduled 
as soon as possible. Pre-emptive test scheduling mini-
mizes idle time. In order to reduce the testing time of the 
core-based systems earlier works mainly focused on effi-
cient wrapper design and TAM optimization design. Wrap-
per design and the related algorithm are based on access 
requirements of core terminals like functional access.

In open shop scheduling, the shop consists of m pro-
cessors, J jobs each with m tasks of length ≥ 0. For each 
task, no job is processed on more than a single proces-
sor. The objective of open shop scheduling is the reduc-
tion of finish time of individual processor schedules. Sim-
ulated annealing (SA) Algorithm was used to resolve the 

(1)T (Wi) = (1 +max(si + s0) ⋅ tpi +min(si , s0))

bin packing problem of two dimensions by minimizing 
the TAT. The wrapper design method was used to gener-
ate a sequence of rectangles using Genetic Algorithm 
formulation. From the set of rectangles generated for 
the core one rectangle has to be selected to reduce total 
testing time [11].

In hierarchy aware test planning method used for the 
optimization of TAM, the issue of hierarchical SoCs is 
addressed. Two practical scenarios emerge: (1) For the 
child cores TAM architecture and Wrappers are fixed 
(hard) and for a parent, cores are determined (soft). (2) 
TAM and Wrappers for both the parent and the child 
cores are soft. A multilevel TAM architecture is proposed 
which describes the use of flattened SoCs for multilevel 
TAM optimization. The new wrapper architecture having 
two disjoint test modes for testing parent cores and child 
cores is proposed. particle swarm optimization (PSO) is 
an optimization algorithm dependent on the flocking 
behavior of the bird developed by Kennedy [12]. Real ant 
behavior leads to Ant Colony Optimization depending 
on the mechanism followed by an ant in search of the 
shortest route for food.

3 � Proposed work

3.1 � Ant colony optimization

Ant colony optimization (ACO) is [13, 14], an approach 
based on ant population to solve computational problems. 
This is based on the social nature of ants for identifying 
the best route to the food source from the nest by indirect 
communication among ants using Pheromone, a chemical.

It is a metaheuristic optimization technique. Ants leave 
pheromone behind while moving so that the other ants 
smell this pheromone and follow it. In ACO artificial ants 
develop newer solutions using the mixture of heuristic 
information and artificial pheromone trail. ACO has been 
shown to be efficient in solving many problems.

3.2 � Modified ant colony optimization

In the existing techniques even if the number of cores 
increases, ants’ count will remain constant. On each itera-
tion, for the same ants’ count when the number of test 
cores decreases, the testing time increases which leads 
to inefficient output. This problem is solved in a modified 
ACO [15–17] technique. In the proposed work, whenever 
the number of cores decreases, ants’ count will also get 
reduced. This leads to a reduction in the testing time of 
the system. Hence more efficient output can be obtained.



Vol.:(0123456789)

SN Applied Sciences (2019) 1:1079 | https://doi.org/10.1007/s42452-019-1116-x	 Research Article

3.3 � Artificial bee colony (ABC) algorithm

A meta-heuristic technique based on honey bee intelligent 
behavior to solve numerical problems is called Artificial 
bee colony algorithm [18–20]. The steps involved in the 
ABC algorithm is shown as a flowchart in Fig. 1.

3.4 � Modified artificial bee colony algorithm

For ABC technique among common control parameters 
like population size, only one control parameter is used. 
But when the ABC technique is used for a composite func-
tion, the convergence rate is poor. In this process perturba-
tion frequency is a parameter that affects new solutions. 
The ABC technique can be modified by controlling the 
perturbation frequency. This is referred to as the modified 
artificial bee colony (MABC) algorithm [21–23]. In general, 
ABC algorithm frequency is constant. When a newer solu-
tion is produced through only one parameter of parent 
solution, the issue can be overcome by MABC algorithm. 
The modification is done by adding a control parameter 
additionally.

By this modification, for every parameter Xij, a random 
number is generated and if it is lower than the modifica-
tion rate, random variable Xij is modified. Another change 
in the ABC algorithm is dependent on the variance opera-
tor ratio. In ABC, the current solution is added with random 
perturbation at local minima to obtain a new solution. This 
magnitude of perturbation is controlled by the scaling fac-
tor of the new control parameter.

Step 1 Randomly generate food sources Si.
Step 2 Food sources are assigned to the employed bee. For every 

food source fitness value f (Si) is evaluated.
Step 3 Initialize M = 0 and L1 = 0, L2 = 0 … LN = 0

M = Number of times of repeating an entire foraging 
process.

Li = Number of times of applying a neighbor operator to 
food source ‘i’ where i = 1… N.

Step 4 Repeat foraging process
For Employed Bee Phase

   Each food source is employed by a neighborhood 
operator: Si → S.

   If f (S) > f (Si), Si is replaced by S and Li = 0. Or else 
Li = Li + 1.

For Onlooker Bee Phase
   Based on fitness values onlooker bee selects a source 

of food by means of the roulette wheel selection 
method.

   If f (S) > f (Si), select Sj where Lj is the maximum of all 
food sources.

   If f (S) > f (Sj), Sj is replaced by S and Lj = 0. Otherwise 
Li = Li + 1.

For Scout Bee Phase
   If Li = Limit for each food source, applied by a neighbor-

hood operator: Si is replaced by S. Where M = M + 1.
Step 5 Stop the foraging process where M reaches Maximum 

Cycle.

Fig. 1   Flowchart for ABC 
algorithm Initialize Food sources { }

Employed bee seeks a new food source ‘ ’ around food source ‘

i

fi

i i

i

i

i ’ and for

Greedy selection updates ‘ ’ 

Based on probability ‘Pi’ onlooker bee executes a roulette wheel selection of food 
sources and seeks a new fi food source around selected food source 

Food source cannot be improved, a scout bee substitutes by a new random 

Termination fulfills?

Finish of optimization

YES

NO
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3.5 � Firefly algorithm

A metaheuristic technique based on the flashing behavior 
of the firefly was proposed by Yang and came to be called 
Firefly Algorithm [24, 25]. This works on the attractiveness 
between the fireflies while the mating process is based 
on the firefly brightness. Figure 2 demonstrates the Firefly 
Algorithm flowchart giving the steps in which it proceeds.

3.6 � Modified firefly algorithm

The Modified Firefly Algorithm [26–28] overcomes the 
problem of the Firefly Algorithm. It reduces the random-
ness of the technique and enhances the movement of Fire-
flies. Figure 3 illustrates the flowchart of Modified Firefly 
Algorithm and the steps by which it proceeds. In modi-
fied firefly Algorithm, randomization parameter α varies 
between �0 and �∞ , where �0 and �∞ are initial and final 
values during iteration. Exploitation and exploration abili-
ties are kept under balance. If � is larger, the convergence 
will be better. Distance function ri and movement of ith 
firefly are shown by the Eqs. (2) and (3).

(2)ri,best =
√

(xi − xgbest)
2 + (yi − ygbest)

2

where � = rand − 1∕2 , gbest = global best. If any local best 
solution does not occur in the neighborhood, ith firefly 
gets attracted to the best solution. Modified Firefly Algo-
rithm reduces the randomness to minimize the probability 
into local optima. Hence convergence is achieved quickly 
and fireflies move to global optima. 

Figure 3 gives the flowchart of Modified Firefly Algo-
rithm, giving the steps by which it proceeds.

4 � Results and discussion

The results are presented for two international test con-
ference (ITC’02) benchmark circuits d695 and p22810.

4.1 � d695 SoC Benchmark

Figures 4, 5, 6, 7 and 8 show the initialization of cores for 
d695 SoC benchmark circuit using Ant Colony, Modified 
Ant Colony Algorithm, Artificial Bee Colony Algorithm, 

(3)
xi = xi + �0e

−�r2
i,j (xj − xi) + �0e

−�r2
i,best (xgbest − xi)

+ �� + ��(xi − gbest)

Fig. 2   Flowchart of firefly 
algorithm
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Fig. 3   Flowchart of modified 
firefly algorithm

Yes

No

No

Rank fireflies depending on fitness and decide best fitness

Calculate Fitness f (X)

Develop Fireflies initial population Xi; for i =1, 2…n 

Increment Gen by 1

For i = 1 to n
For j = 1 to n 

If f (Xj) > f (Xi)
Move firefly i to j

Estimate new solution, Update ranking and fitness

Best solution Found and
Terminate Process

Gen 
>maxGen

Yes

Update Distance and Movement using Equations 1 and 2

Fig. 4   Core initialization of 
ACO optimization—d695 SoC
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Modified Artificial Bee Colony Algorithm and Firefly 
Algorithm respectively. Numerous iteration parameters 
are taken as input. The testing time and best result point 
are computed.

It can be understood from Fig.  4 that the param-
eters alpha, beta and rho are started by the value 1, 1 

and 0.5 respectively. The best result point is found as 
1426.35 and the testing time is achieved as 0.120265. 
Similarly, for other algorithms the best result point and 
testing time are calculated by considering various input 
parameters.

Fig. 5   Core initialization of 
modified ACO optimization—
d695 SoC

Fig. 6   Core initialization of ABC 
optimization—d695 SoC
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4.2 � p22810 SoC Benchmark

Figures  9,10,11,12 and 13 show the initialization of 
cores for p22810 SoC benchmark circuit using ACO, 
Modified ACO, ABC, Modified ABC and Firefly algorithms 

respectively. Numerous iteration parameters are taken 
as input. The testing time and the best result point are 
computed.

Tables 1 and 2 show the comparison of testing time 
obtained from ACO, Modified ACO, ABC, Modified ABC, 
Firefly and Modified Firefly algorithms for d695 and 

Fig. 7   Core initialization of 
modified ABC optimization—
d695 SoC

Fig. 8   Core initialization of 
firefly algorithm—d695 SoC
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p22810 SoC benchmark circuits. It can be easily inferred 
that the Modified ABC Algorithm gives optimal test time 
when compared with the other proposed algorithms.

Figures 14 and 15 show the test time comparison for 
several algorithms proposed in a graphical format for 

d695 and p22810 benchmark circuits. The obtained graph 
explains that the various proposed algorithms show a spe-
cific quantity of reduction in the testing time compared 
with the ACO algorithm.

Fig. 9   Core initialization of 
ACO optimization—p22810 
SoC

Fig. 10   Core initialization of 
modified ACO optimization—
p22810 SoC
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5 � Conclusion and future work

In this paper, the optimization of SoC has been per-
formed by reducing the testing time using various algo-
rithms for d695 and p22810 benchmark circuits. The vari-
ous TAM widths have been taken into consideration. The 

final obtained result has shown that the Modified ABC 
Algorithm is more efficient in reducing the test time for 
SoC benchmarks. When compared with ACO, MACO, ABC, 
Firefly and Modified Firefly Algorithms the testing time 
of Modified ABC Algorithm has been reduced to 82%, 
69%, 25%, 43% and 48% for d695 SoC and 80%, 73%, 

Fig. 11   Core initialization of 
ABC optimization—p22810 
SoC

Fig. 12   Core initialization of 
modified ABC optimization—
p22810 SoC
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20%, 41% and 47% for p22810 SoC benchmark circuit 
respectively. Hence the objective of reducing the test-
ing cost is achieved by minimizing the SoC testing time 
using the proposed algorithm.

In future, this work can be extended to mixed-signal 
VLSI chips contains digital circuits, and analog circuits. As 
more complex, mixed signal SoC designs continue to stress 

Fig. 13   Core initialization of 
firefly algorithm—p22810 SoC

Table 1   Test time comparison 
of different TAM width for d695 
SoC

TAM 
Width 
“W”

ACO Modified ACO ABC Modified ABC Firefly Modified firefly

64 0.115898931 0.035986249 0.026773415 0.021173415 0.0330091 0.0284903
56 0.115730567 0.03665028 0.026808083 0.021208182 0.0330489 0.0288502
48 0.116411767 0.036791811 0.026919859 0.021319759 0.0331303 0.0287198
40 0.116405873 0.038201633 0.026976328 0.021376328 0.0331698 0.0290803
32 0.116222444 0.03609952 0.027006077 0.021416077 0.0332729 0.0287055
24 0.116115549 0.037655745 0.027072338 0.021472338 0.0333701 0.0285497
16 0.124666684 0.037780764 0.027182794 0.021582793 0.0337692 0.0297982

Table 2   Test time comparison 
of different TAM width for 
p22810 SoC

TAM 
width 
“W”

ACO Modified ACO ABC Modified ABC Firefly Modified firefly

64 0.435908149 0.36743764 0.026297126 0.020897126 0.0450991 0.0412982
56 0.436873964 0.36687257 0.026399611 0.021009611 0.0451194 0.0410196
48 0.439020897 0.36792353 0.026530394 0.021110394 0.0452393 0.0409398
40 0.442404672 0.36914785 0.026634811 0.021264811 0.0452993 0.0408891
32 0.44337699 0.36939797 0.026776916 0.021426916 0.0455389 0.0418761
24 0.45058744 0.37184387 0.026886905 0.021566905 0.0458695 0.0415116
16 0.47002504 0.39647125 0.026969701 0.021539701 0.0460583 0.0420491
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on verification methodologies and schedules, designers 
need new approaches for solving today’s test challenges.
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