
Vol.:(0123456789)

SN Applied Sciences (2019) 1:709 | https://doi.org/10.1007/s42452-019-0693-z

Research Article

An Eulerian approach for dynamic analysis of reservoir 
adjacent to concrete gravity dam

Kalyan Kumar Mandal1 · Munna Aziz1

© Springer Nature Switzerland AG 2019

Abstract
The present paper deals with the finite element analysis of infinite reservoir adjacent to gravity dam. Two-dimensional 
eight-node isoparametric elements are used to discretize the domain. In order to reduce the degrees of freedom in the 
domain, the equation of motion for fluid motion is simulated by pressure-based Eulerian formulation. Different artificial 
boundary conditions are compared to obtain most suitable boundary condition. In this comparison of boundary condi-
tions, it is noted that almost all the boundary conditions are frequency dependent. Some of the conditions are suitable 
for the exciting frequency less than the fundamental frequency of reservoir. However, the boundary condition proposed 
by Gogoi and Maity is suitable for all ranges of exciting frequencies. Further, the force vibration analysis is carried out 
with and without considering compressibility of water. The hydrodynamic pressure on dam is independent of exciting 
frequency when the compressibility of water in the reservoir is neglected. However, the effect of exciting frequency 
on the performances of reservoir is distinct for compressible fluid. Similarly, the magnitude and location of maximum 
hydrodynamic pressure change continuously, if the inclination of upstream face of dam is considered.

Keywords Infinite reservoir · Absorbing boundary · Compressibility · Finite element analysis · Time history analysis

1 Introduction

The precise estimation of hydrodynamic pressure on water 
retaining structures such as concrete gravity dam is con-
sidered to be the major issue in design of these structures. 
Westergaard [1] evaluated hydrodynamic pressure on the 
vertical upstream face of dam. Thus, a lot of research work 
was carried out in this area. A group researcher [2–6] used 
displacement-based finite element method to obtain hydro-
dynamic pressure. Another group of researchers [7–10] used 
Eulerian approach as the number of unknowns per node 
reduces to one and the critical irrotational condition of fluid 
motion is satisfied automatically. Again, in finite element 
analysis of reservoir adjacent to concrete gravity dam, dif-
ficulties arise mainly due to the infinite extend of reservoir. 
The first radiation boundary condition in fluid domain was 
proposed by Sommerfeld [11]. Similarly, Sharan [12] pro-
posed another boundary condition considering the effect 

of absorption of presser wave at reservoir bottom. Maity and 
Bhattacharya [13] incorporated a nonreflecting condition 
at the artificial boundary of infinite reservoir. However, this 
condition cannot be defined for the case when the exciting 
frequency is greater than the fundamental frequency of the 
reservoir. Gogoi and Maity [7] proposed similar frequency-
dependent absorbing boundary condition for the analysis of 
infinite reservoir. The hydrodynamic pressure acting on con-
crete gravity dam depends on several parameters such as 
characteristic of reservoir bottom, compressibility of water 
in the reservoir and the inclination of upstream face of dam. 
In most of the cases, the reservoir bottom is considered to 
be rigid and the hydrodynamic pressure on adjacent dam 
obtained from such cases is overestimated. Lotfi [14] stud-
ied the effect of sediment layer at reservoir bottom on the 
performance of reservoir. In this study, the sediment layer 
is considered to be viscoelastic and almost incompress-
ible. Some researchers [12, 15, 16] implemented a damping 
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boundary condition at the reservoir bottom to simulate the 
reservoir bottom absorption. In some cases, the reservoir 
is considering water to be incompressible [17–19]. On the 
other hand, Maity and Bhattacharya [13], Gogoi and Maity 
[7], Mirzabozorg et al. [8]. Mandal and Maity [9, 10, 20], Adhi-
kary and Mandal [21] considered water to be compressible.

It is apparent from the literatures referred above that for 
precise estimation of hydrodynamic pressure on concrete 
gravity dam, finite element analysis is considered to be an 
efficient numerical tool in which water in the reservoir can 
be modelled as either compressible or incompressible fluid. 
Several truncation boundary conditions are available in the 
existing literatures. However, the suitability of these bound-
ary conditions is not explained. In the present study, a com-
puter code in MATLAB environment has been developed to 
compare existing boundary conditions. Further, the study is 
extended to observe the effect of compressibility of water 
and the inclination of dam upstream face.

2  Theoretical formulation

The state of stress for a Newtonian fluid is defined by an iso-
tropic tensor as

where T
ij
 is total stress. T

′

ij
 is viscous stress tensor which 

depends only on the rate of deformation in such a way 
that the value becomes zero when the fluid is under rigid 
body motion or rest. The variable p is defined as hydrody-
namic pressure whose value is independent explicitly on 
the rate of deformation, and �ij is Kronecker delta. For iso-
tropic linear elastic material, the most general form of T

′

ij
 is

where μ and λ are two material constants. μ is known as 
first coefficient of viscosity or viscosity and (λ + 2μ/3) is sec-
ond coefficient of viscosity or bulk viscosity. D

ij
 is the rate 

of deformation tensor and is expressed as

Thus, the total stress tensor becomes

For compressible fluid, bulk viscosity (λ + 2μ/3) is zero. 
Thus, Eq. (4) becomes

(1)Tij = −p�ij + T
�

ij

(2)T
�

ij
= �Δ�ij + 2�Dij

(3)Dij =
1

2
(
�vi

�yj
+

�vj

�xi
) and Δ = D11 + D22 + D33

(4)Tij = −p�ij + �Δ�ij + 2�Dij

(5)Tij = −p�ij −
2�

3
Δ�ij + 2�Dij

If the viscosity of fluid is neglected, Eq. (5) becomes

Generalized Navier–Stokes equations of motion are given 
by

where Bi is the body force and ρ is the mass density of 
fluid.Substituting Eq. (6) in Eq. (7), the following relations 
are obtained.

If u and v are the velocity components along x and y axes, 
respectively, and fx and fy are body forces along x and y direc-
tion, respectively, and if the convective terms are neglected, 
the equation of motion may be written as

Neglecting the body forces, Eqs. (9) and (10) become

The continuity equation of fluid in two dimensions is 
expressed as

where c is the acoustic wave speed in fluid. Now, differen-
tiating Eqs. (11) and (12) with respect to x and y, respec-
tively, the following relations are obtained.

Adding Eqs. (14) and (15), the following expression is 
finally arrived.
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Differentiating Eq. (13) with respect to time, the following 
expression can be obtained.

Thus, from Eqs. (16) and (17), one can find the following 
expression: 

Simplifying Eq. (18), the equation for compressible fluid 
may be obtained

If the compressibility of fluid is neglected, Eq. (19) will be 
modified as

The pressure distribution in the fluid domain may be 
obtained by solving Eq. (19) with the following boundary 
conditions. A typical geometry of tank–water system is 
shown in Fig. 1.

(i) At surface I

Considering the effect of surface wave of the fluid, the 
boundary condition of the free surface is taken as
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g
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And if the surface weave is neglected, the condition 
becomes

 (ii) At surface II

At water–tank wall interface, the pressure should satisfy

where aei� t is the horizontal component of the ground accel-
eration in which � is the circular frequency of vibration and 
i =

√

−1 . n is the outwardly directed normal to the element 
surface along the interface. �f is the mass density of the fluid.

 (iii) At surface III

If this surface is considered as rigid, then pressure 
should satisfy the following condition

And if the reservoir bottom absorption is considered, 
Eq. (23a) is modified as [16] 

where

� is the frequency-independent reflection coefficient.

 (iii) At surface IV

The specification of the far-boundary condition is one 
of the most important features in the FE analysis of a semi-
infinite or infinite reservoir. This is due to the fact that the 
developed hydrodynamic pressure, which affects the 
response of the structure, is dependent on the truncation 
boundary condition. Application of Sommerfeld [11] radia-
tion condition at the truncation boundary leads to

L represents the distance between the structure and the 
truncation boundary. Incorporating the effect of reservoir 
bottom absorption, Sharan [12] has incorporated the fol-
lowing condition.

According to Maity and Bhattacharya [13] and Gogoi and 
Maity [7], the following boundary condition at truncation 
surface is proposed.
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Fig. 1  A typical geometry of dam–reservoir system
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According to Maity and Bhattacharya [13], 

And from Gogoi and Maity [7], 

2.1  Finite element formulation for fluid domain

By using Galerkin approach and assuming pressure to be 
the nodal unknown variable, the discretized form of Eq. (19) 
may be written as

where Nrj is the interpolation function for the reservoir and 
Ω is the region under consideration. Using Green’s theo-
rem, Eq. (26) may be transformed to

in which i varies from 1 to total number of nodes and Γ 
represents the boundaries of the fluid domain. The last 
term of the above equation may be written as

The whole system of Eq. (27) may be written in a matrix 
form as
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Here the subscripts f, fs, fb and t stand for the free sur-
face, fluid–structure interface, fluid–bed interface and 
truncation surface, respectively. For surface wave, Eq. (21a) 
may be written in finite element form as

in which

At the dam–reservoir interface, if {a} is the vector of 
nodal accelerations of generalized coordinates, {Ffs} may 
be expressed as

in which

where [T] is the transformation matrix at fluid structure 
interface and Nd is the shape function of dam. At reser-
voir–bed interface,

And at the truncation boundary:
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For any given acceleration at the fluid–structure inter-
face, Eq. (40) is solved to obtain the hydrodynamic pres-
sure within the fluid.

2.2  Time history analysis of dynamic equilibrium 
equation

Dynamic equilibrium equation of fluid can be expressed as

In a linear dynamic system, these values remain con-
stant throughout the time history analysis. The force vec-
tor is given by {Fr}. To obtain the transient response at 
time tN, the time axis can be discretized into N equal time 
intervals ( tN =

∑N

j=1
jΔt ). The choice of method for time 

history analysis is strongly problem dependent. Various 
direct time integration methods exist for time history anal-
ysis that are expedient for structural dynamics and wave 
propagation problem. Amongst these, the Newmark fam-
ily of methods is most popular and is given by

Here, � and � are chosen to control stability and accu-
racy. It is evident from the literature that the integration 
scheme is unconditionally stable if 2� ≥ � ≥ 0.5.

3  Results and discussions

3.1  Validation of the algorithm

In order to validate the algorithm, a benchmark problem is 
considered. The results are compared with an existing lit-
erature [22] for reservoir adjacent to the Pine Flat Dam. The 
reservoir is truncated at a distance of 200.0 m, and Som-
merfeld [11] boundary condition is implemented at this 
truncation surface. In this case, the geometric and mate-
rial properties are as considered by Sami and Lotfi [22]. 
The first five natural frequencies of reservoir are summa-
rized in Table 1. The results obtained from the developed 
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algorithm almost match with the results obtained by Sami 
and Lotfi [22]. Slight discrepancies in results are observed 
due to different meshing of reservoir domain. 

3.2  Comparison of various truncation boundary 
conditions for infinite reservoir

In this section, results from different boundary conditions 
(Sommerfeld [11]; Sharan [12]; Maity Bhattacharya [13]; 
Gogoi and Maity [7]) are compared with the closed-form 
solutions obtained by Bouaanani et al. [23] to study the 
effectiveness of these boundary conditions for finite ele-
ment analysis of infinite reservoir. The water in the present 
case considered is linearly compressible, inviscid and of 
small amplitude of motion. Here, the depth of the reservoir 
(H) is considered as 70 m. The mass density and acoustic 
speed of water are considered as 1000 kg/m3 and 1440 m/
sec, respectively. The reservoir bottom refection coefficient 
is taken as 0.95. The study is carried out for different val-
ues of Tc/H, i.e. 1, 4 and 100. The amplitude of the external 
sinusoidal excitation, i.e. a, is assumed to be equal to the 
gravitational acceleration 1.0 g. The pressure coefficients at 
the heel of the rigid dam (cp =  P/ρaH) are determined for 
different boundary conditions and presented in Table 2. It 
is noted that the pressure coefficient obtained from all the 
boundary conditions are almost equal to those obtained 
from closed-form solution when the truncation of infinite 
reservoir is at a distance of 3.0H. For Tc/H = 4, the Sharan 
boundary [12] gives exact pressure coefficient for reservoir 
length equal or greater than (L) 0.5H. However, for Tc/H = 1 
and 100, the results are almost equal to the exact results for 
L ≥ 1.0H. On the other hand, for all Tc/H values and all trun-
cation lengths, the hydrodynamic pressure obtained from 
Gogoi and Maity boundary condition [7] is equal to those 
obtained from closed-form solution. Thus, the remaining 
study associates with infinite reservoir, Gogoi and Maity 
boundary [7] condition is implemented at the truncation 
surface and the infinite reservoir is truncated at a distance 
of 0.5H from the upstream face of the dam.

Table 1  First five natural frequencies of the reservoir

Mode number Natural frequency (Hz)

Present study Sami and 
Lotfi [22]

1 3.121 3.115
2 4.812 4.749
3 8.101 7.796
4 9.897 9.300
5 10.324 9.958
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3.3  Analysis of infinite reservoir with different 
inclinations of upstream face for compressible 
fluid

In this section, the hydrodynamic pressure at the upstream 
face of concrete gravity dam having different inclinations 
is computed against harmonic excitations of different fre-
quencies and earthquake excitation. For this, the geomet-
ric and material properties of reservoir are as considered in 
Sect. 3.2 and the water is considered to be compressible. 
The hydrodynamic pressure distribution along the reser-
voir–structure interface having different inclinations of 
the upstream face is presented in graphical form (Figs. 2, 
3, 4, 5). Here, the reflection coefficient at the reservoir 
bottom is considered as 0.95 and results are presented 
for three different slopes of the fluid–structure interface, 
i.e. θ = 30°,  45° and  60°. From these plots, it is evident that 
with the increase in inclination the pressure coefficient 
(cp) is also increased. It is also clear that the distribution 
for Tc/H = 4100 (Figs. 3, 4) is almost parabolic, but in case 

of Tc/H = 1 (Fig. 2) the distribution is slightly different. For 
earthquake excitation (Koyna earthquake), the distribu-
tion of hydrodynamic pressure (Fig. 5) along the face of 
the dam follows almost similar pattern for all angles of 

Table 2  Comparison of truncation boundary conditions

Tc/H L/H α Exact cp Sommerfeld [11] Sharan [12] Maity and Bhattacharya 
[13]

Gogoi and Maity [7]

cp % Error cp % Error cp % Error cp % Error

1 0.2 0.95 0.1073 0.8080 653.03 0.3152 193.8 Not defined 0.10378 − 3.30
0.5 0.6937 546.51 0.3171 195.5 0.10872 1.38
0.2 0.5 0.1414 4.2313 2892.4 0.2930 107.2 0.14609 3.316
0.5 0.2657 8.80 0.2939 107.8 0.14359 1.54

4 0.2 0.95 4.4364 33.01 644.07 0.6969 − 84.2 Not defined 4.46194 0.57
0.5 4.864 9.63 1.1068 − 75.0 4.46040 0.53
1.0 6.488 46.24 2.0032 − 54.9 4.43624 0.0
0.2 0.5 1.2187 56.998 4577 0.6838 − 43.8 1.86418 52.9
0.5 12.658 93.86 1.0729 − 9.74 1.28262 5.19
1.0 11.661 852.90 1.3630 11.59 1.24975 2.48

100 0.02 0.95 0.7431 25.618 3347.4 0.6550 − 11.8 0.7402 − 0.04 0.74247 − 0.07
0.1 0.5 0.7430 5.1551 593.7 0.7064 − 4.93 0.7423 − 0.01 0.7431 0.00
0.02 25.697 3347.4 0.6550 − 11.8 0.7402 − 0.04 0.74236 − 0.08
0.1 5.1710 593.7 0.7064 − 4.92 0.7422 − 0.01 0.74301 0.00

Fig. 2  Distribution of hydrodynamic pressure coefficient along an 
inclined surface for Tc/H = 1 
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inclination. However, the maximum hydrodynamic pres-
sure occurs when the angle of inclination is  60°.

The time history of hydrodynamic pressure at point 
A (Fig. 1) is also plotted for different excitations. Here 
the reflection coefficient is considered as 0.95 in case 
of sinusoidal acceleration (Figs. 6, 7, 8) and 0.95 and 0.5 
(Figs. 9, 10) for earthquake excitation for better under-
standings the responses of reservoir under earthquake 

excitations. For sinusoidal acceleration with different 
frequencies, the maximum hydrodynamic pressures at 
point A occur when θ = 60° and this difference is com-
paratively higher when Tc/H = 1.0. Similarly, for earth-
quake excitation, the hydrodynamic pressure increases 
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Fig. 5  Distribution of hydrodynamic pressure coefficient along an 
inclined surface for Koyna earthquake 

-3

-2

-1

0

1

2

3

0 0.05 0.1 0.15 0.2

30 degree inclina�on 45 degree inclina�on

60 degree inclina�on

Pr
es

su
re

co
ef

fic
ie

nt

Time (sec)

Fig. 6  Variation of hydrodynamic pressure at point A for Tc/H = 1
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Fig. 7  Variation of hydrodynamic pressure at point A for Tc/H = 4
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Fig. 8  Variation of hydrodynamic pressure at point A for Tc/H = 100

Fig. 9  Variation of hydrodynamic pressure at point A for reflection 
coefficient 0.95 for Koyna earthquake 
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with the increase in angle of inclination, the maximum 
hydrodynamic pressure occurs when the angle of the 
upstream face of the dam is  60° and this increase is more 
when the reflection coefficient is 0.95.    

3.4  Analysis of infinite reservoir with different 
inclinations of upstream face for incompressible 
fluid

In the present section, the compressibility effect of water is 
neglected. The geometry of infinite reservoir is as consid-
ered in Sect. 3.2. The mass density of water is considered 
as 1000 kg/m3. Similar to Sect. 3.3, the study is carried out 
for different upstream slopes and hydrodynamic pres-
sure at point A (Fig. 1) is determined against sinusoidal 
acceleration of different frequencies (Figs. 11, 12, 13). It is 
clear from these figure that the variation of hydrodynamic 
pressure with upstream slope of hydrodynamic pressure is 
almost similar to the trend obtained in case of compressi-
ble fluid, i.e. the hydrodynamic pressure increases with the 
increases in upstream slope and maximum hydrodynamic 

pressure occurs when the upstream slope is  60° and the 
variation of hydrodynamic pressure coefficient with Tc/H is 
not so much significant when the compressibility of water 
is neglected.

4  Conclusions

The characteristics of hydrodynamic pressures on concrete 
gravity dam are studied for different exciting frequencies. 
The governing equation for water is expressed in terms of 
the pressure variable and is discretized by the finite ele-
ment method. In finite element modelling of reservoir, a 
simple but effective boundary condition at the truncation 
surface of the infinite reservoir is used in the present study. 
The present far-boundary condition has capable of taking 
care of reservoir bottom absorption effects. It is observed 
from the results that the present far-boundary condition 
produces accurate results for all ranges of excitation fre-
quencies. The results also show that the unbounded reser-
voir domain may be truncated even at a relatively smaller 
distance away from the dam, resulting in great computa-
tional advantages. The variation of hydrodynamic with dif-
ferent excitations of various frequencies is not significant, 
i.e. hydrodynamic pressure on dam remains independ-
ent of exciting frequency when the water is modelled as 
incompressible one. On the other hand, the hydrodynamic 
pressure coefficient very much depends on the frequency 
of excitation for compressible water. Similarly, the effect 
of reservoir bottom absorption is found to be small for 
lower values of excitation frequencies. However, this effect 
may not be neglected if the excitation frequency becomes 
equal or more than the fundamental frequency of the 
reservoir. The hydrodynamic pressure increases with the 
increase in the slope of the upstream face of the rigid dam. 
The distribution of hydrodynamic pressure also varies with 
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for Tc/H = 1 

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

30 degree inclina�on 45 degree inclina�on

60 degree inclina�on

Pr
es

su
re

co
ef

fic
ie

nt

Time (sec)

Fig. 12  Variation of hydrodynamic pressure coefficient on at heel 
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this slope. The variation is almost parabolic for vertical 
upstream face, and the maximum pressure occurs at the 
heel of the dam. However, for other upstream slope the 
distribution is something different and maximum hydro-
dynamic pressure occurs just above the hell of rigid dam.
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