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Abstract
The article presents comparison of regression methods used to obtain calibration formulas for low-cost optical particulate 
matter sensors. Data for analysis were taken from 1-year collocation study of PMS7003 sensors (Plantower) with research-
grade instrument TEOM 1400a. The PM2.5 fraction was considered in this study. The results of measurements showed 
that PMS7003 was characterized by high reproducibility between units (coefficient of variation was lower than 10%), but 
the raw sensor outputs significantly overestimated PM2.5 concentrations. Data analysis revealed that simple univariate 
models were sufficient to obtain a good fitting quality to TEOM data; however, the best results were achieved for raw 
PM1 outputs (R2 ≈ 0.81). The fitting quality was improved when multi-variable equations were examined (R2 ≈ 0.84). The 
addition of temperature and relative humidity in the models was also beneficial (R2 ≈ 0.87). Stepwise selection algorithm 
was used to choose the best subset of variables in the model. The results of that method were compared with “all pos-
sible regression” approach, demonstrating the convenience of stepwise regression. Data from Plantower sensor were also 
used for training of artificial neural network. That algorithm proved to be very effective for fitting data from one sensor 
(R2 ≈ 0.9), but it was susceptible to deviations in the data from the other units. In general, regression analysis proved to 
be useful for sensor systems for ambient particulate matter measurements.
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1  Introduction

In recent years, the progress in the field of electrical engi-
neering has led to the expansion of air pollution sensing 
devices [1, 2]. Different sensors are currently available on 
the market, allowing the measurements of various gase-
ous species and particulate matter (PM) [3].

Generally, sensor devices are characterized by small 
size and small weight, relatively low power requirements 
and short response time [2–4]. What is significant, their 
price is few orders of magnitude lower than the price of 

traditional air quality measurement instruments. Those 
so-called low-cost sensors are changing the paradigm of 
air pollution monitoring, hitherto based on expensive and 
complex instruments, operated by governmental, industry 
or research agencies [2, 5].

The possibilities of using sensors in the measurements 
of air quality are very wide. Those inexpensive devices 
might be used for the improvement in the spatial coverage 
of ambient air pollution data. Therefore, they can supple-
ment the conventional monitoring stations networks [2, 6]. 
They could also provide data in real time (or near real time) 
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and increase the temporal resolution of measurements. 
This feature is useful for “hot spot” detection or indication 
of elevated pollutant events [7, 8].

Many low-cost sensors are usually easy to use and 
often adopted by citizen scientist. This trend is particularly 
important in raising public awareness about the air pollu-
tion [9–11]. Compact and lightweight versions of sensors 
with high-resolution data acquisition could be also used 
for personal exposure monitoring. Such monitors might 
be helpful in finding link between short-term pollutant 
exposures and health effects [11–14].

The application of low-cost sensors in not limited to 
atmospheric air only and sensor techniques might be 
used for indoor air quality assessment as well. Characteri-
zation of indoor concentrations, identification of emitting 
sources and management of ventilation rates and energy 
are just a few examples of the use of sensors in indoor 
spaces [15–19].

It should be noted that sensor is always only a constitu-
ent of a larger whole—a sensor system [4]. Such system 
might have a form of a stand-alone monitor (stationary, 
hand-held, portable, mobile or wearable [10, 20–22]) or 
might be integrated into a node of a widespread network 
[23–26]. Sensor system may contain one or many pol-
lutant sensors and often includes additional sensors for 
temperature and/or relative humidity measurements [4]. 
Besides the sensing devices, the system includes other, 
configuration-dependent, elements: housing, sampling 
probe, power source, control board, data acquisition and 
data analysis module, data transmission module, position-
ing system [2, 4, 23].

In general, sensors have an analogue output (voltage or 
current) or digital output (e.g. in the form of mass or vol-
ume concentration). However, the sensor response might 
be largely influenced by cross-sensitivities (in case of gas 
sensors), particles properties (in case of particulate matter 
sensors) or environmental factors (in both cases). There-
fore, data quality is a critical issue in the usage of low-cost 
sensors and the calibration or recalibration of sensors 
before the deployment is necessary in many situations [3, 
4]. The most popular way of such data adjustment is based 
on a field collocation with a reference-grade or research-
grade instrument [27–31]. During this “training” period, 
the relationship between raw sensor data and reference 
data is established and the data correction algorithm is 
developed [32]. For this reason, the most important part of 
sensor system might be the data analysis module, where 
data processing occurs.

Overall, different approaches are used to create cali-
bration formulas. In some cases, simple linear models are 
sufficient to adjust the raw data [8, 33]. In other cases, non-
linear equations or multi-parameter methods are neces-
sary to obtain results close to Ref. [25, 30, 34, 35]. More 

sophisticated techniques, from the field of machine learn-
ing, are also utilized for this purpose [36, 37].

This article presents comparison of different algorithms 
for the adjustment of data from low-cost optical particu-
late matter sensors. Data for testing have been collected 
during 1-year collocation study with research-grade 
instrument (TEOM 1400a) for PM2.5 measurements. On the 
basis of the previous analyses [27], PMS7003 sensor from 
Plantower was chosen for this investigation. This sensor 
has proved to work stable for several months of measure-
ments, showed high linear correlation with comparison 
instrument and was precise in terms of reproducibility 
between units [27].

The paper focuses on the linear regression methods 
(univariate and multiple regressions); however, compari-
son with nonlinear algorithm (artificial neural network) 
was made too.

2 � Materials and methods

2.1 � Measurement site and control instrument

The collocation study took place in Poland at the Mete-
orological Observatory of Department of Climatology 
and Atmosphere Protection of University of Wrocław. In 
the vicinity of the observatory, there are detached houses 
and allotments and a large municipal park. In this area, 
the main sources of particulate matter are the individual 
heating systems in households.

The observatory is equipped with instruments for PM10 
and PM2.5 measurements (TEOMs); however, operational 
problems with PM10 unit have led to the exclusion of this 
device from analysis. TEOM 1400a analyser is an exam-
ple of tapered element oscillating microbalance [38]—a 
research-grade instrument, with the possibility of near 
real-time monitoring, which proved to be useful for low-
cost sensors testing [27, 39, 40]. TEOM with a PM2.5 inlet 
provided 1-min averaged data that were stored in the 
database.

2.2 � Measurement set‑up for PM sensor

Special measurement box was designed for the purpose 
of testing different sensors under the same measurement 
conditions. The box was made from PVC and was equipped 
with rainproof lid, air inlets and a fan, forcing the air flow. 
Power suppliers, microcomputer and USB hubs for con-
necting the sensors were placed inside this enclosure. The 
measurement set-up included also data logger with tem-
perature and relative humidity (RH) sensor for the meas-
urements of those parameters in the vicinity of PM sen-
sors. The box was placed near TEOM intake (circa 1.5–1.8 m 
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below). Construction details of the measurement box may 
be found in [27].

PMS7003 (Beijing Plantower Co., Ltd, China) is a small 
and lightweight sensor (48 × 37 × 12 mm, ~ 30 g), which 
can be classified as low-cost device (approximate price at 
the level of 15–20 $). PMS7003 is a light-scattering optical 
sensor that composes of a small measurement chamber 
with light-emitting diode, light detector (photodiode) and 
a set of focusing lenses. This sensor uses also a microfan to 
induce the flow of air.

According to the PMS7003 datasheet, the minimum 
detectable particle diameter is 0.3 μm. The sensor contains 
a microprocessor that provides digital signals in two forms:

1.	 Mass concentration (µg/m3) of PM1, PM2.5 and PM10 
fractions with correction factor for “factory environ-
ment” (“FE”) and for “atmospheric environment” (“AE”);

2.	 Number of particles per unit volume (0.1 l of air) for 6 
size bins: beyond 0.3 μm (bin 1), beyond 0.5 μm (bin 2), 
beyond 1.0 μm (bin 3), beyond 2.5 μm (bin 4), beyond 
5.0 μm (bin 5) and beyond 10.0 μm (bin 6). The product 
manual contains information that particles diameters 
and the number of particles in size bins are estimated 
on the basis of light-scattering intensities and light-
scattering signal distribution, with the use of Mie the-
ory. It can be deduced that the PM1, PM2.5 and PM10 
concentrations are calculated in the subsequent step. 
However, the details of the calculations and also the 
factory calibration procedures and the type of parti-
cles used for calibration are not specified in the data-
sheet.

Three copies of PMS7003 sensor were mounted inside 
the measurement box and connected via USB hub with 
microcomputer. Sensor signals were averaged in 1-min 
intervals and stored in the database for further analysis.

3 � Data analysis

3.1 � Data preparation and preliminary analysis

Data from TEOM and PM sensors registered from 
21/08/2017 to 20/08/2018 were utilized in this study. 
1-min averaged TEOM outputs and Plantower signals 
were used to create a new set of 1-h averaged data. This 
type of data is usually provided by automated measuring 
systems [41] from governmental monitoring stations and 
is very popular in informing the public about the air qual-
ity. Averaging was made only for hours with at least 75% 
completeness of data.

The preliminary analysis covered the evaluation of 
reproducibility between units of PMS7003 sensor. 1-min 

and 1-h averaged PM2.5 outputs with “FE” correction factor 
were used to calculate the correlations of PMS7003 units 
and coefficient of variation (CV). Low CV value indicates 
high reproducibility of sensor units, and CV value below 
10% is considered acceptable in the low-cost sensor stud-
ies [21, 42]. The PM2.5 output was chosen on the basis of 
an assumption that it should reflect PM2.5 concentrations 
in the best way.

The other aspect of preliminary study was the assess-
ment of sensor signals: mass concentrations and number 
of particles in bins. Additionally, combinations of bins in 
form of differences between bin 1 and the other bins were 
taken into account. Sensor outputs were investigated on 
the basis of Pearson’s correlation coefficient (r).

After the preliminary investigation, the hourly averaged 
dataset was randomly divided into training set (70% of 
data) and validation set (30%) that were used to create 
and evaluate different calibration models. There were 6116 
samples in training set and 2621 samples in validation set. 
Both datasets contained similar range of PM concentra-
tions from TEOM device. All data processing was per-
formed in MATLAB environment.

3.2 � Evaluation criteria

The performance of calibration equations was assessed 
for two datasets: training and validation. Two popular 
goodness-of-fit indicators were used for that purpose: 
coefficient of determination (R2, dimensionless) and root 
mean square error (RMSE, expressed in µg/m3). The R2 
value near 1 reflects very good agreement with control 
measurements and small R2 indicates poor fitting quality. 
In turn, small value of RMSE demonstrates small error of 
fitting.

3.3 � Regression methods for PM sensor calibration

3.3.1 � Univariate regression

Generally speaking, regression analysis is used for deter-
mining the relationship between two or more variables. 
Regression model includes the dependent variable 
(response) and other variables, which are thought to pro-
vide information on the behaviour of response-independ-
ent variables (also called predictors or explanatory vari-
ables) [43]. In this study, the concept of so-called inverse 
calibration was adopted [44]. TEOM readouts were chosen 
as dependent variable and PM sensor data as predictor 
variables.

Firstly, the univariate regression with only one inde-
pendent variable was tested. On the basis of the previous 
study [27], the linear models were assumed to be sufficient 
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to describe the relationship between TEOM and sensor sig-
nals. The following linear equations were examined:

where y denotes the dependent variable (TEOM response), 
x is the independent variable (one of the sensor outputs: 
one type of mass concentration or number of particles 
for size bins or bins combination) and ε is a random term. 
Regression coefficients a0 (the intercept) and a1 (the slope) 
were estimated by ordinary least squares procedure [43].

3.3.2 � Multiple regression

Linear additive models with several independent variables 
were examined in this study as well. The general equation 
taken into account had form:

where k is the number of independent variables (x1…xk) 
and a0…ak are the regression coefficients.

Two types of models were tested:

1.	 Model that included different forms of sensor outputs 
(mass concentrations, particles number in size bins, 
combination of bins);

2.	 Model with the mentioned sensor outputs and also 
with temperature and relative humidity.

In the case of PMS7003, small impact of high levels of RH 
was previously noticed [27], so the second approach was 
aimed to assess the validity of including environmental 
factors in calibration equation.

3.3.3 � Variable selection for multiple regression models

The previously described models contain a quite number 
of variables and some of them may be irrelevant and could 
be eliminated. Generally, the multi-variable models may 
be fitted to get simpler formulas, easier to interpret and 
to implement. Also, the removal of redundant variables 
may simplify the data acquisition and signal processing.

One of the possible strategies for variable selection 
is stepwise regression [43, 44]. In the stepwise selection 
process, variables are sequentially added or removed from 
the model, on the basis of their statistical significance. It 
should be noted that this algorithm finds variable subsets 
that are locally optimal—the selection of the globally best 
subset is not guaranteed.

The algorithm applied in this study started from con-
stant (intercept) term and added and removed predictors 
in subsequent steps. Only linear additive models were 
examined, and the F-test was employed for judging the 
importance of variables. Some stringent criteria to obtain 

y = a0 + a1x + �,

y = a0 + a1x1 + a2x2 +⋯ + akxk + �,

fitted models were applied: p value for a term to be added 
to a model was set to 0.005 and p value for removing vari-
ables was equal 0.010.

The results of stepwise regression were compared to 
the results of “all possible regressions” approach [43], 
where models with all possible subsets of variables were 
created and tested. The discussion on the choice of the 
best subset size was based on two information criteria: 
Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC). Both criteria are used to find the trade-
off between accuracy of fit and the number of predictors 
used in the model [43]. The model with the minimum 
value of AIC or BIC is the most appropriate in relation to 
the concerned criterion.

3.4 � Neural networks for PM sensor calibration

Neural network (NN) is a computation system consisting of 
a number of highly interconnected units (neurons), organ-
ized in layers. Each neuron converts received information 
by means of activation function and produces output 
value, which might be processed by neurons in the next 
layer. The most popular NN approach is feedforward net-
work with input, hidden and output layers. The NN train-
ing process is based on updating the weights of neurons 
via supervised learning. After the training, NN gains the 
unique approximation capabilities [45, 46].

Feedforward NN with 10 neurons with sigmoid trans-
fer function in hidden layer and linear output neuron was 
used in this study. Backpropagation method with Leven-
berg–Marquardt algorithm was adopted for training. Pat-
terns for learning and testing were taken only from train-
ing dataset.

4 � Results and discussion

4.1 � Measurements results

Figure 1 presents the results of 1-year PM2.5 measurements 
with TEOM control device and PMS7003 sensor. (PM2.5 
signals with “FE” and “AE” correction factors for one unit 
were plotted for clarity.) During this period, some power 
outages and data acquisition problems were noticed and 
caused data gaps for both types of devices. An error in 
data transfer script has resulted in loss of bin 6 data (num-
ber of particles beyond 10.0 µm), and this type of data was 
excluded from further analyses.

Nonetheless, all units of Plantower PMS7003 were sta-
ble during this campaign and the trends of their outputs 
were similar to TEOM signals. However, the 1-h TEOM aver-
ages were in the range 1–120 µg/m3 and the PM2.5 values 
from raw sensor outputs were significantly overestimated 



Vol.:(0123456789)

SN Applied Sciences (2019) 1:622 | https://doi.org/10.1007/s42452-019-0630-1	 Research Article

(about three times in case of “FE” outputs). The “atmos-
pheric” (“AE”) PM2.5 output was also not well suited for 
field measurements—overestimation by a factor of 2.2 was 
observed. This situation may derive from factory calibra-
tion using particles with completely different properties 
than PM in ambient air. Thus, it was confirmed that this 
low-cost sensor needs calibration in the final environment 
of measurements.

Regarding reproducibility, it was high in case of Plan-
tower sensor units. The correlation coefficients between 
all units were higher than 0.990, and the lowest variability 
was observed for units no. 1 and no. 2—the correlation 
was at the level of 0.996 for 1-min data and 0.998 for 1-h 
data. Outputs from unit no. 3 were to some extent distant 
from other unit signals, but also highly correlated with 
them (r ≈ 0.99). The scatter of PMS7003 data is presented 
in Fig. S1 in Supplementary Material.

The coefficient of variation (CV) computed for all units 
for 1-min averages was equal to 8.43% and for hourly data 
was equal to 6.47%. Taking into account the high repro-
ducibility of PMS7003, only one unit of that sensor was 
used in further analyses (unit no. 2 was chosen arbitrarily).

Table  S1 in Supplementary Material presents the 
correlation coefficients (r) for 1-min raw outputs from 
PMS7003 sensor (mass concentrations and number of 
particles in bins) and differences between bin 1 and the 
other bins. The highest correlations were computed for 
“FE” mass concentrations—the r value between PM2.5 
and PM1 was equal to 0.995, and for PM2.5 and PM10, it 
was 0.998. This results show very high linear relation-
ships between PM mass outputs. The ratio between 

PM10 and PM2.5 was generally constant and was equal 
about 1.1, and the ratio between PM2.5 and PM1 was at 
the level of 1.5. Such simple relationships might be not 
adequate for ambient air monitoring, where PM mass 
ratios depend on the pollutant sources and may change 
during the year [47, 48].

Very high linear correlations and similar ratios were 
observed for “AE” mass concentrations as well. Generally, 
the “FE” and “AE” outputs were highly correlated (e.g. for 
PM2.5 r = 0.988), but there existed some transfer functions 
that changed the relationships of “FE” and “AE” signals. 
In the case of PM2.5 concentration, “FE” and “AE” outputs 
were the same up to about 25–30 µg/m3, and above that 
level, nonlinear relationship was observed up to about 
100 µg/m3 of “FE” output. Above that threshold, the mass 
concentrations were again highly linearly correlated, but 
the “FE” values were 1.5 times higher the “AE”. The rela-
tionship between the discussed outputs is presented in 
Fig. S2 in Supplementary Material.

PM2.5 output was highly linearly correlated (r = 0.989) 
with bin 3 (particles beyond 1.0 µm). This bin was also 
the most correlated with PM10 data (r = 0.990). Similar sit-
uation was observed for “AE” signals (r ≈ 0.977). In case of 
combinations of bins, the difference between bin 1 and 
bin 5 (i.e. particles number beyond 5.0 µm subtracted 
from particles number beyond 0.3 µm) had the high-
est r value for “FE” PM2.5 (0.982). The linear correlations 
between bins and mass concentrations were in general 
very high, but it seems that some nonlinear function 
might be responsible for calculations on mass concen-
trations and this issue requires further consideration.

(a)

(b)

(c)

Fig. 1   Results of 1-year PM2.5 measuring campaign: (a) TEOM 1400a outputs, (b) PMS7003 outputs with “FE” correction factor, (c) PMS7003 
outputs with “AE” correction factor. 1-h averages for selected sensor were plotted for clarity. Please note different scales on y-axes
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4.2 � Univariate regression results

Table 1 presents the results of simple regression fittings for 
TEOM 1400a and PMS7003 outputs. All regression coeffi-
cients are provided in Table S2 in Supplementary Material.

The highest values of coefficient of determination 
and smallest RMSE levels were observed for both data-
sets for mass concentration outputs with “FE” factors. 
The best results were observed for PM1 data (R2 = 0.815 
and RMSE = 5.09  µg/m3 for training set/R2 = 0.801 and 
RMSE = 4.97 µg/m3 for validation data). The PM2.5 output, 
which appears to be dedicated to the measurements of 
that PM fraction, had a somewhat worse fit.

In case of bins and bins combinations, better results 
were obtained in most situations for the latter ones. 
The highest R2 was at the level of 0.78 in training set for 
difference between bin 1 and bin 2 (all particles num-
ber beyond 0.5 µm subtracted from particles number 
beyond 0.3 µm). Regarding raw bins, model with bin 1 
showed the smallest value of error, suggesting that all 

particles detected by the sensor are mainly related to 
PM2.5 mass concentration. However, it should be men-
tioned that the quality of fitting depends also on the 
quality of control instrument used for comparison. This 
aspect is especially significant for TEOM device, which is 
susceptible to measurement errors under certain con-
ditions [49–51]. The detection possibilities of PMS7003 
should be therefore further investigated by means of 
other reference instrument.

4.3 � Multiple regression results

Complex multiple regression models were created with 
full set of mass concentration outputs (“FE” and “AE” 
types) and bin differences, which have proved to be 
more correlated with TEOM outputs than raw bins data. 
The comparison of results of such regression fittings 
and regression that included temperature and relative 
humidity is shown in Table 2.

The tested multiple regression models were substan-
tially better fitted to TEOM data than univariate models. 
The R2 for the first type of multi-parameter model was 
equal 0.853 for training set, and the result for validation 
set was 0.837. RMSE errors were lower than in the previ-
ous case and equal about 4.5 µg/m3.

The addition of temperature and relative humidity to 
the equation resulted in further improvement in goodness 
of fit. The value of R2 increased by approximately 0.02 (to 
the level of 0.87), and the RMSE error has decreased by 
around 0.3 µg/m3 (to the level of 4.2 µg/m3). It should be 
noted that temperature and RH were registered inside the 
measurement box and may reflect only the environment in 
the vicinity of sensors, only in conditions of that study. The 
inclusion of RH to the model may be beneficial, because 
of some small impact of high humidity levels on perfor-
mance of PMS7003 [27]. As regards the temperature, that 
parameter was moderately correlated with RH during this 
measuring campaign and the impact of temperature for 
that sensor has not been investigated so far. For this rea-
son, the incorporation of temperature into the calibration 
equation may be questionable.

Table 1   Results of univariate regression for training set and valida-
tion set for different types of predictors in regression models

Model structure Training set Validation set

Predictor in model R2 RMSE (µg/m3) R2 RMSE (µg/m3)

PM1 “FE” 0.815 5.09 0.801 4.97
PM2.5 “FE” 0.812 5.13 0.799 5.00
PM10 “FE” 0.811 5.14 0.797 5.02
PM1 “AE” 0.785 5.48 0.768 5.37
PM2.5 “AE” 0.786 5.47 0.770 5.35
PM10 “AE” 0.763 5.76 0.749 5.59
Bin 1 0.776 5.59 0.761 5.45
Bin 2 0.768 5.70 0.757 5.49
Bin 3 0.766 5.72 0.753 5.54
Bin 4 0.760 5.80 0.744 5.64
Bin 5 0.758 5.81 0.745 5.63
Bin 1–bin 2 0.779 5.56 0.762 5.44
Bin 1–bin 3 0.776 5.60 0.761 5.46
Bin 1–bin 4 0.776 5.60 0.761 5.45
Bin 1–bin 5 0.776 5.60 0.761 5.45

Table 2   Results of multiple regression for training set and validation set for different types of predictors in regression models

Model structure Training set Validation set

Predictors in model Number of 
predictors

R2 RMSE (µg/m3) R2 RMSE (µg/m3)

PM1 “FE”, PM2.5 “FE”, PM10 “FE”, PM1 “AE”, PM2.5 “AE”, PM10 “AE”, bin 1–bin 2, bin 1–bin 
3, bin 1–bin 4, bin 1–bin 5

10 0.853 4.54 0.837 4.50

PM1 “FE”, PM2.5 “FE”, PM10 “FE”, PM1 “AE”, PM2.5 “AE”, PM10 “AE”, bin 1–bin 2, bin 1–bin 
3, bin 1–bin 4, bin 1–bin 5, temperature, RH

12 0.874 4.20 0.861 4.17
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4.4 � Stepwise regression results and selection 
of the best subset of variables

Stepwise regression algorithm was utilized for dataset with 
12 variables: all types of mass concentration, bin differ-
ences and both additional environmental factors: temper-
ature and RH. The algorithm performed 12 steps, resulting 
in a model with eight independent variables and an inter-
cept. The following predictors were chosen by this algo-
rithm: PM10 “FE”, PM1 “AE”, PM2.5 “AE”, PM10 “AE”, bin 1–bin 3, 
bin 1–bin 5 and also temperature and RH. The value of R2 
did not significantly decreased as compared to previously 
described equation and was at the level of 0.874 for testing 
set and 0.860 for validation set. The change in RMSE was 
unnoticeable. Regression coefficients for that model are 
given in Table S3 in Supplementary Material.

The results of stepwise selection were compared to the 
selection based on all possible regressions and informa-
tion criteria: AIC and BIC (Table 3). Generally, all selection 
methods gave similar results in terms of goodness-of-fit 
indicators. The choice based on AIC criterion gave model 
with the lowest error for validation set, but that model 
consisted of the largest number of predictors (10). BIC 
criterion pointed to more truncated model with seven 
variables. It should be noted that BIC value from stepwise 
algorithm was only slightly higher than that model and R2 
and RMSE for both equations were practically the same. 
The other important issue is that all of the presented mod-
els did not include the raw PM2.5 value with “FE” factor, but 
include “AE” mass concentrations. Moreover, temperature 
was also included to those models with relative humidity.

4.5 � Neural network results

Neural network was created with inputs in form of all types 
of mass concentration, bins, bin differences and tempera-
ture and RH (17 variables). The training of neural network 
took 31 epochs, and the results of fitting to TEOM data are 
presented in Table 4. This algorithm gave the best results in 
terms of values of R2 and RMSE, when compared to other 

methods of fitting. In training set, the R2 value exceeded 
0.9 and good approximation was observed also for vali-
dation set (R2 ≈ 0.88), pointing to satisfying generalization 
capabilities of that structure. RMSE was below 4 µg/m3 in 
case of both datasets.

4.6 � Comparison of regression methods

Figure 2 presents the comparison of fitting possibilities of 
four developed models: (a) univariate regression model 
with PM1 “FE” data, (b) multiple regression model with 12 
variables: mass concentrations, bin differences, tempera-
ture and RH, (c) multiple regression model from stepwise 
selection with eight variables and (d) neural network with 
17 inputs: mass concentrations, bins, bin differences, 
temperature and RH. The goodness of fit for presented 
models was good (R2 > 0.8) or very good (R2 > 0.9). Neural 
network gave overall better fitting results for training and 
validation data, but some deviation from ideal relationship 
was observed above 100 µg/m3 (Fig. 2d). The linearity of 
outputs was the highest for multiple regression models 
(Fig. 2b and c), and in the case of fitting with only one pre-
dictor (Fig. 2a), the performance of data adjustment might 
be improved by means of some nonlinear equation.

In addition, it has been observed that all models were 
characterized with some larger data scatter for concentra-
tion range below ~ 30 µg/m3. The reason for that disper-
sion may not necessarily derive from the sensor operation, 
but may arise from the performance of TEOM analyser, as 
discussed in [27].

Additional evaluation of developed models was made 
for measurement results from the two other PMS7003 

Table 3   Results of choice of the best multiple regression models. The first model was chosen with the stepwise regression algorithm, the 
second was chosen on the basis of AIC criterion, and the third was chosen on the basis of BIC criterion

Model structure Training set Validation set Criteria

Predictors in model Number of 
predictors

R2 RMSE, µg/m3 R2 RMSE, µg/m3 AIC BIC

PM10 “FE”, PM1 “AE”, PM2.5 “AE”, PM10 “AE”, bin 1–bin 3, bin 1–bin 5, 
temperature, RH

8 0.874 4.20 0.860 4.17 30660 30719

PM1 “FE”, PM10 “FE”, PM1 “AE”, PM2.5 “AE”, PM10 “AE”, bin 1–bin 2, bin 1–
bin 3, bin 1–bin 5, temperature, RH

10 0.874 4.20 0.861 4.16 30656 30728

PM10 “FE”, PM2.5 “AE”, PM10 “AE”, bin 1–bin 3, bin 1–bin 5, tempera-
ture, RH

7 0.874 4.20 0.860 4.17 30666 30718

Table 4   Results of neural network fitting performance for training 
set and validation set

Model structure Training set Validation set

Neural network R2 RMSE (µg/m3) R2 RMSE (µg/m3)

17 inputs 0.901 3.73 0.881 3.84



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:622 | https://doi.org/10.1007/s42452-019-0630-1

units. That test has been carried out to examine the 
generalization possibilities of described algorithms. The 
results of comparison made on full datasets are presented 

in Table  5. The simplest model with only one variable 
was fitted well to signals from units no. 2 and also no. 1 
(R2 ≈ 0.81, RMSE ≈ 5.1 µg/m3), but was characterized with 

(a) (b)

(d)(c)

Fig. 2   Comparison of fitting possibilities for: a univariate regres-
sion model, b multiple regression model with 12 variables, c mul-
tiple regression model from stepwise selection with eight variables, 

d neural network with 17 inputs. Red indicators refer to data from 
training set and blue indicators refer to validation set. The black 
dashed line indicates the ideal (1:1) relationship

Table 5   Results of comparison 
of data adjustment methods 
performed on full datasets 
from three units of PMS7003 
sensor

Model structure Unit 1 Unit 2 Unit 3

R2 RMSE (µg/m3) R2 RMSE (µg/m3) R2 RMSE (µg/m3)

Univariate 0.807 5.11 0.811 5.06 0.769 5.59
Multi-variable with 12 variables 0.858 4.39 0.870 4.19 0.834 4.73
Multi-variable with eight 

variables (from stepwise 
selection)

0.856 4.42 0.870 4.19 0.845 4.58

Neural network with 17 inputs 0.815 5.01 0.895 3.76 0.667 6.71
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greater error when signals from unit no. 3 where taken 
into account (R2 ≈ 0.77, RMSE ≈ 5.6 µg/m3). The similar sit-
uation was observed for neural network—that structure 
manifested the smallest error for dataset from sensor no. 
2 (R2 ≈ 0.9, RMSE < 4 µg/m3) and good fitting to unit no. 1 
data (R2 ≈ 0.81, RMSE ≈ 5.0 µg/m3), but the performance on 
dataset from unit no. 3 was considerably worse (R2 ≈ 0.67, 
RMSE ≈ 6.7 µg/m3). It might be thought that the trained 
NN structure was overfitted to unit no. 2 signals and func-
tioned still well with comparable data from sensors no. 1, 
but the dissimilar outputs from unit no. 3 have resulted in 
higher inaccuracy.

Such behaviour was not noticed for equations from 
multiple regression—in particular, the model selected 
by the stepwise regression was robust to slightly differ-
ent data from sensor no. 3. The R2 value was in the range 
0.85–0.87 and RMSE reached 4.2–4.6 µg/m3 when all units 
of PMS7003 were considered.

5 � Conclusions

The results of the 1-year collocation study confirmed that 
low-cost optical sensors may be a useful tool for indicative 
monitoring of PM2.5 changes in the ambient air. In par-
ticular, the sensors like PMS7003 from Plantower could be 
used in nodes of widely dispersed networks, because of 
the high reproducibility between units. In such case, cali-
bration equations developed for one unit might be used 
for others, with a negligible loss of accuracy.

In this paper, different calibration equations were evalu-
ated. The results of univariate regression showed that the 
raw sensor outputs dedicated to PM2.5 mass concentration 
do not have to be the best option to establish relationship 
with the control instrument at all. Regarding the PMS7003, 
the output for PM1 was better in terms of higher R2 value 
and lower RMSE than PM2.5 output.

The fitting quality might be improved when multiple 
regression is taken into account. A set of outputs from 
PMS7003 (mass concentrations, number of particles in 
bins or bin differences) may be used to construct more 
complex models, more suited to reference data. The inclu-
sion of additional variables, like temperature and relative 
humidity, could also be beneficial. Furthermore, the results 
of conducted comparison demonstrated that stepwise 
regression might be used to select models that represent 
the compromise between simplicity and accuracy of fit. 
What is important, the selected models did not contain 
the raw PM2.5 output.

Regression models were also contrasted with neural 
network. That algorithm proved to be very effective in 
adjustment of signals from sensor selected for training. 
Nevertheless, it was more susceptible to deviations in data 

from other units. That problem was not so acute in case of 
regression models.

Overall, the study showed that raw signals from low-
cost sensors have to be adjusted to obtain outputs 
matched with reference devices. In such case, regression 
analysis can support the development of calibration equa-
tion for data processing module of the sensor system.
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