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Abstract
Peroxy sulfates (PS) like peroxydisulfate (PDS), and peroxymosulfate (PMS) have been accomplished as an efficient rea-
gents for  KHSO4/NaNO2 mediated nitration of aromatic compounds (S) such as phenols in aqueous bisulfate and acetoni-
trile medium, under the conditions  [NaNO2] ≫ [PS]. The kinetics of the reaction depicted first order dependence on [S], 
 [NaNO2], and [PS]. Reaction rates were sensitive to the introduction of electron donating or withdrawing groups. How-
ever, our efforts to correlate the kinetic results into Hammett’s structure–reactivity equation were not fruitful. Observed 
deviations from the linearity of Hammett’s equation have been interpreted in terms of effective Hammett’s constants 
( ̄σ or σeff), para resonance interaction energy (ΔΔGp) values and Yukawa–Tsuno’s resonance stabilization parameter (r). 
The observed negative magnitude of entropy of activation (∆S#) values suggests greater solvation and/or cyclic transi-
tion state before yielding products.

Keywords Peroxy sulfates (PS) · Peroxydisulfate (PDS) · Peroxymosulfate (PMS) · KHSO4/NaNO2 mediated nitration · 
Aromatic compounds · Structure–reactivity study

1 Introduction

Peroxosulfur salts (PS) like peroxydisulfate (PDS) and 
peroxymonosulfate (PMS) are among the family of the 
most versatile oxidants in aqueous solution [1–15]. The 
peroxydisulfate ion  (S2O8

2−), and the peroxomonosulfate 
ion  (SO5

2−) are oxyanions. Both PDS and PMS are power-
ful oxidizing agents with reduction potentials (PDS with 
E° = 2.01 V, and PMS with E° = 1.84 V) higher than  H2O2 
(E° = 1.76 V) [2]. Important salts comprising peroxydisul-
fate (PDS) anion include sodium persulfate  (Na2S2O8), 
potassium persulfate  (K2S2O8), and ammonium persulfate 
((NH4)2S2O8). These salts are colourless, water-soluble sol-
ids, which are available easily at a low cost and affordable 
to any laboratory as bench top chemicals. These salts are 

highly stable at ambient temperatures with ease of stor-
age and transport [2]. The use of persulfate has recently 
been the focus of attention for an alternative oxidant in 
the chemical oxidation of contaminants [5–9]. Review arti-
cles published by House [1], Wilmarth and Haim [2] furnish 
excellent bibliography and summary of the results pertain 
to the kinetic studies and their plausible mechanisms prior 
to 1961. On the otherhand, Potassium peroxymonosulfate 
(potassium monopersulfate, Caroat, Oxone or PMS) is well 
known for the oxidation of boron-, nitrogen-, phospho-
rus-, and sulfur-containing compounds [10–24]. In highly 
acidic solutions the standard electrode potential for this 
compound is + 2.51 V with a half reaction generating the 
hydrogen sulfate (pH = 0), which makes it as effective oxi-
dizing agent [23].
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Nitration of aromatic and heteroaromatic compounds has 
received a surging impact because nitroarenes are widely 
used as important intermediates and precursors during 
the synthesis of organic and organometallic compounds, 
pharmaceuticals, explosives, dyes, polymers, pesticides, 
plastics, drugs and medicines [25–28]. The classical mixed 
acid or acid mixture (mixture of two strong acids, sulfuric 
and nitric acid) method of nitration is still used in indus-
tries, which is a notoriously polluting process because 
it generates large quantities of hazardous waste acid 
streams. But in the past several decades, several alterna-
tive synthetic protocols were used to prevent such acid 
waste [25–28]. In this part of the work the authors have 
taken up the kinetics and mechanism of PDS and PMS 
triggered nitration of aromatic compounds with a hope 
that the findings will contribute to the greenery of nitra-
tion reactions because the reagents such as PDS, sodium 
nitrite, and bisulphate used herein are green chemicals 
and the excess outlets are minimum under kinetic condi-
tions (Scheme 1). 

2  Experimental details

2.1  General

Reagent grade chemicals procured from Avra, Loba, 
Merck, SD fine chemicals, which are used as suchwith-
out further purification. Distilled water purified over 
acid dichromate and alkaline permanganate is used for 
preparation of solutions. HPLC grade acetonitrile is used 
to prepare stock solutions of phenolic compounds. Sys-
tronics Model 144 spectrophotometer was used to fol-
low the increase in absorbance of the nitro product (OD 
or Absorbance(A)) at 400 nm.

HSO−

5
+ 2H+

+ 2e− → HSO−

4
+ H2O

2.2  Kinetic method of following the reaction

The reactant solutions were kept stirred in a water 
thermostat at desired temperature, and, samples were 
pipetted out into a cuvette at different time intervals, 
and the coloured product analysed spectrophotometri-
cally. Systronics Model 144 spectrophotometer was used 
to follow the increase in absorbance of the compound 
(OD or A) at 405 nm. Absorbance values were in agree-
ment with each other with an accuracy of ± 3 percent-
age error. The kinetic runs were conducted under pseudo 
order conditions [Phenol] and  [NaNO2] ≫ [catalyst]([PDS] 
or [PMS]) in aqueous  KHSO4 solutions. We have used 
graphical method of approach to determine order of 
reaction using the following first order and second order 
rate Eqs. (1 and 2) appropriately depending on reaction 
conditions.

In the above expressions, if (x) is the product obtained dur-
ing the course of reaction, and (a) the initial concentration 
of reactant, (a–x) represents unreacted concentration of 
reactant at given instant of time (t). If  At is the absorb-
ance of nitrate species produced during the course of 
reaction at a given time,  A∞ is the absorbance at infinite 
time (at the end of the reaction) and  A0, the absorbance 
(if any) before the on-take of reaction, then  (A∞ − A0) and 
 (A∞ − At) are proportional to (a) and (a – x) respectively. The 
pseudo first-order logarithmic plots [ln  (A∞ − A0)/(A∞ − At)] 
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Where X= -OH or -NH2; Catalysts =PDS, PMS

PDS/NaNO2/KHSO4

PMS/NaNO2/KHSO4

Aq. ACN/Reflux at  45-50oC

Aq. ACN/Reflux at 45- 50oC

Scheme  1  Peroxysulfates/NaNO2 mediated nitration of aromatic 
compounds in aqueous bisulfate medium

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

Time (min)

y=0.00831x;
 R2=0.9989

ln
 [(

A
∞
- A

0) 
/ (

A
∞
- A

t)]
 

Fig. 1  First order plot of phenol.  103[Phenol] = 5.0  mol/dm3; 
 104[PDS] = 5.0  mol/dm3;  103[NaNO2] = 5.0  mol/dm3;  103[KHSO4] =  
5.0 mol/dm3; MeCN(% V/V) = 5.0; temperature = 313 K
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versus time were linear passing through origin indicating 
first order kinetics in [Peroxysulfate] ([PDS] and [PMS]), as 
shown in Figs. 1, 2, 3, 4, 5 and 6. The observed first-order 
rate constants, k′, were evaluated from the slopes of these 
plots. The plot of (k′) versus [Substrate]) was linear, passing 
through the origin (under otherwise similar conditions) 
showing first order dependence on [Substrate] (Figs. 7, 8). 
The plot of (1/(A∞ − At) versus time under pseudo second 
order conditions  [NaNO2] ≫ [Catalyst] = [Phenol],  [KHSO4] 
(where  A0,  At, and  A∞ are the absorbance at any given time 
t and at the end of the reaction respectively). Representa-
tive second order plots are given in Figs. 9, 10, 11, 12 and 
13 respectively.

2.3  General procedure for synthesis of nitroarenes 
under kinetic conditions

We have taken up the synthesis of nitroarenes under 
kinetic conditions used in the present study to identify and 
confirm the reaction products. Reaction mixture prepared 
under kinetic conditions in a clean two necked round bot-
tom flask and constantly stirred the mixture under reflux 
conditions. Progress of the reaction was monitored chro-
matographically with TLC. After completion, the reac-
tion mixture was treated with  NaHCO3 solution to attain 
neutral condions. The organic layer was separated, dried 
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Fig. 2  First order plot of P-Cresol.  103[P-Cresol] = 5.0  mol/dm3; 
 104[PDS] = 5.0  mol/dm3;  103[NaNO2] = 5.0  mol/dm3;  103[KHSO4] =  
5.0 mol/dm3; MeCN(% V/V) = 5.0; temperature = 298 K
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Fig. 3  First order plot of P-Chloro phenol.  103[P-Chloro phe-
nol] = 5.0  mol/dm3;  104[PDS] = 5.0  mol/dm3;  103[NaNO2] = 5.0  mol/
dm3;  103[KHSO4] = 5.0  mol/dm3; MeCN(% V/V) = 5.0; temperature =  
298 K
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Fig. 4  First order plot of phenol.  103[Phenol] = 5.0  mol/dm3; 
 104[PMS] = 5.0  mol/dm3;  103[NaNO2] = 5.0  mol/dm3;  103[KHSO4] =  
0.010 mol/dm3; MeCN(% V/V) = 5.0; temperature = 303 K
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Fig. 5  First order plot of P-Cresol.  103[P-Cresol] = 5.0  mol/dm3; 
 104[PMS] = 5.0  mol/dm3;  103[NaNO2] = 5.0  mol/dm3;  103[KHSO4] =  
0.010 mol/dm3; MeCN(% V/V) = 5.0; temperature = 308 K
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over  Na2SO4, and evaporated under vacuum. The crude 
product was purified by column chromatography using 
ethyl acetate – hexane as eluent to get pure product. The 

synthesized compounds were characterized by 1H NMR 
and mass spectroscopic methods (Table 1). 

2.4  Test for the detection of free radicals

Freshly prepared acrylamide or deareated acrylonitrile 
were added to the reaction mixture containing potassium 
peroxydisulfate (PDS) and/or peroxymonosulfate (PMS) 
under nitrogen atmosphere in situ in order to detect the 
formation of free radical intermediates during the course 
of reaction, olefinic monomers to detect whether free radi-
cal intermediates are formed in situ during the course of 
reaction. Peroxysulfates such as potassium peroxydisulfate 
(PDS) and/or peroxymonosulfate (PMS) did not initiate/
induce polymerization of added olefinic monomers even 
after 24 h under reflux conditions. This observation indi-
cated the absence of free radical intermediates during the 
course of present reaction.

2.5  Effect of variation of [additives]

In order to have a closer look into the mechanism and the 
rate law, effect of variation of different additives like  [KHSO4] 
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Fig. 6  First order plot of P-chloro Phenol.  103[P-chloro Phe-
nol] = 5.0  mol/dm3;  104[PMS] = 5.0  mol/dm3;  103[NaNO2] = 5.0  mol/
dm3;  103[KHSO4] = 0.010  mol/dm3; MeCN(% V/V) = 5.0; tempera-
ture = 303 K
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Fig. 7  Plots of (k′) versus [Sub] in PDS/NaNO2 mediated nitration reactions of Phenols.  104[PDS] = 5.0 mol/dm3;  103[NaNO2] = 5.0 mol/dm3; 
 103[KHSO4] = 0.010 mol/dm3; MeCN(% V/V) = 5.0; temperature = 298 K; a Phenol, b p-Cresol, c p-Bromophenol
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(0.005–0.050 mol/dm3),  [NaNO2] (0.001–0.010 mol/dm3), 
and [peroxysulfate] (0.001–0.002 mol/dm3) were studied 
under otherwise similar conditions (Table 2). None of these 

additives had any significant effect on the the rate of nitra-
tion. These observations put together probably point out 
that peroxy sulphates (PDS and/or PMS) are stoichiometric 
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Fig. 8  Plots of (k′) versus [Sub] in PMS/NaNO2 mediated nitration reactions of Phenols.  104[PMS] = 5.0 mol/dm3;  103[NaNO2] = 5.0 mol/dm3; 
 103[KHSO4] = 0.010 mol/dm3; MeCN(% V/V) = 5.0; temperature = 298 K; a Phenol, b p-Cresol , c p-Bromophenol
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Fig. 9  Second order plot of phenol.  104[Phenol] = 5.0  mol/
dm3;  104[PDS] = 5.0  mol/dm3;  103[NaNO2] = 5.0  mol/dm3; 
 103[KHSO4] = 5.0 mol/dm3; MeCN(% V/V) = 5.0; temperature = 298 K
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Fig. 10  Second order plot of P-Cresol.  104[P-Cresol] = 5.0  mol/
dm3;  104[PDS] = 5.0  mol/dm3;  103[NaNO2] = 5.0  mol/dm3; 
 103[KHSO4] = 5.0 mol/dm3; MeCN(% V/V) = 5.0; temperature = 298 K
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reagents, which in situ generate nitronium ion species when 
they react with nitrite  (NO2

−) in the presence of mild acid 
(obtained from the dissociation of  (HSO4

−) bisulphate anion). 
Further, the constancy in the k′-values with the increase in 
[PS] confirms that order with respect to [PS] is unity.

3  Results and discussion

3.1  Reactive species and mechanism of nitration 
in PDS/NaNO2 mediated nitration of aromatic 
compounds

Persulfate is known to exist mainly as PDS anion  (S2O8
2−) in 

aqueous solution. However, in the present study, nitration 

of aromatic compounds is conducted in presence of 
 NaNO2 by taking  [NaNO2] ≫ [PDS] in aqueous bisulphate 
 (HSO4

−) medium. Nitrite picks up a proton, released from 
the dissociation of  HSO4

− to form  (HNO2), which could be 
oxidised PDS anion  (S2O8

2−) to generate active nitronium 
ion  (NO2

+), as repoted by Edwards and coworkers [8]. Nitro-
nium ion thus formed, reacts with aromatic compounds 
(R-C6H4-X) in a slow step undergo electrophilic nitration 
to afford the nitro aromatic compounds, according to the 
following reaction steps:

Rate-law for the above sequence of mechanistic steps 
could be derived as given in the following steps using equi-
libria (3–5) and step (4).

From step (3)

But from step (4) in situ produced  [HNO2] could be evalu-
ated as,

(3)HSO−

4

Kd
⇌ H+

+ SO2−
4

(4)NO−

2
+ H+

K1
⇌ HNO2

(5)HNO2 + S2O
−2
8

K2
⇌ NO+

2
+ H+

+ 2SO2−
4

(6)NO+

2
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Slow(k1)
�������������������������������→ R-C6H3-X-

(

NO2

)

+ H+

(7)Rate = −d[R-C6H4-X
]

∕dt = k1
[

NO+

2
]

[

R-C6H4-X
]

(8)
[

NO+

2

]

= K2
[

HNO2

][

S2O
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Fig. 11  Second order plot for P-chloro Phenol.  104[P-chloro Phe-
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Substituting for  [HNO2] from Eq. (9) into Eq. (8),  [NO2
+] 

could be obtained as,

From step (3),  [H+] can be obtained from the dissociation 
step of  (HSO4

−) as,

Substitution of  [H+] from Eq. (11) into Eq. (10),  [NO2
+] could 

be again reduced to,

Now, substitution of active species  [NO2
+] from Eq. (12) 

into Eq. (7), final rate law comes out as,

Above rate equation is in consonance with the observed 
kinetic results viz., first order in [Substrate] (i.e., R–C6H4–X), 
and [PDS]. Since  [NO2

−] is taken in large excess over [PDS], 
and  [KHSO4], it implies that order in [active  NO2

+ species] 
is also one. Bisulphate term  ([HSO4

−]) appeared in the 
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numerator of rate law is negated by ([SO4
−2]3) term in the 

denominator, thus accounting for the observed negligible 
 (HSO4

−) effect on rate of the reaction. Thus, at constant 
 (HSO4

−) concentration, and known excess of  [NO2
−] the 

rate law reduces to,

Table 1  Peroxydisulphate 
(PDS) and 
peroxymonosulphate (PMS) 
as catalysts for nitration of 
Phenols

Entry Substrate Product PDS PMS

R.T (h) Yield (%) R.T (h) Yield (%)

1 Phenol 2-NO2 phenol 2 70 4 70
2 o-Cresol 2-Me- 4-NO2 phenol 2 70 4 68
3 P-Cresol 2-NO2 4-Me phenol 2 75 4 74
4 m-Cresol 3-Me- 4-NO2 phenol 2 70 4 68
5 o-Cl phenol 4-NO2 2-Cl phenol 4 80 6 80
6 m-Cl phenol 4-NO2 3-Cl phenol 4 78 6 78
7 p-Cl phenol 2-NO2 4-Cl phenol 4 80 6 80
8 p-Br phenol 2-NO2 4-Br phenol 4 75 6 77
9 o-OH phenol 4-  NO2 benzene-1,2-diol 3 85 4 80
10 m-OH phenol 4-  NO2 benzene-1,3-diol 3 80 4 77
11 p-OH phenol 2-  NO2 benzene-1,4-diol 3 80 4 80
12 p-Nitro phenol 2,4-di Nitro phenol 4 75 6 75
13 p-Amino phenol 2-Nitro4-Amino phenol 3 80 6 80
14 α-Naphthol 2-  NO2-1-Naphthol 2 85 4 80
15 β-Naphthol 1-NO2-2-Naphthol 3 85 5 80

Table 2  Effect of variation of [Additives] on pseudo first order rate 
constants (k′) in PDS, PMS (PS)/NaNO2 mediated nitration reactions 
of phenol

103[Phenol] = 5.0 mol/dm3; MeCN(% V/V) = 5.0; temperature = 303 K

104 [PS] (mol/
dm3)

103  [NaNO2] 
(mol/dm3)

[KHSO4] (mol/
dm3)

103 k′/min

PDS PMS

5.00 5.00 0.005 4.90 1.90
5.00 5.00 0.010 4.85 1.82
5.00 5.00 0.015 4.80 1.99
5.00 5.00 0.020 4.94 1.78
5.00 5.00 0.025 4.79 1.80
5.00 5.00 0.050 4.95 1.95
5.00 1.00 0.010 4.81 1.79
5.00 2.00 0.010 4.98 1.93
5.00 4.00 0.010 5.00 2.00
5.00 8.00 0.010 5.05 1.85
5.00 10.0 0.010 4.92 1.96
10.0 20.0 0.010 4.99 1.87
15.0 20.0 0.010 5.10 1.97
20.0 20.0 0.010 4.82 2.05
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On the basis of the foregoing discussion, the sequential 
mechanistic steps for the nitration of aromatic compounds 
of this study can be summarized as shown in Scheme 2.

3.2  Reactive species and mechanism of nitration 
in PMS/NaNO2 mediated nitration of aromatic 
compounds

Potassium Permonosulfate is a salt of Caro’s acid  (H2SO5), 
which is known to mainly exist as PMS  (HSO5

−). Present 
investigation (the nitration reactions) is taken up in aque-
ous bisulphate  (HSO4

−) solutions, under the conditions 
 [NaNO2] ≫ [PMS],  [HSO4

−];  [HSO4
−] > [PMS]. Bisulphate 

 (HSO4
−) behaves like a monoprotic acid and gives a pro-

ton  (H+) according to the equilibrium (1) as mentioned in 
the previous section. In aqueous  HSO4

− medium Nitrite ion 
(NO2

‒) may protonate to form  HNO2. The PMS  (HSO5
2−) may 

oxidize  HNO2 and generate active nitronium ion  (NO2
+) 

species in situ, which inturn reacts with aromatic com-
pounds (R-C6H4-X) in a slow step, which undergo electro-
philic nitration and afford the nitro aromatic compounds, 
as shown in the following reaction steps, given in the fol-
lowing steps

(14)

Rate = −d
[

R-C6H4-X
]

∕dt = k
[

NO
+

2

][

R-C6H4-X
]

(

where
[

NO
+

2

]

=

(

KdK1 K2[PDS]
[

HSO
−

4

][

NO
−

2

]

∕

[

SO
2−

4

]3
))

(3)HSO−

4

Kd
⇌ H+

+ SO2−
4

(4)NO−

2
+ H+

K1
⇌ HNO2

Rate-law for these mechanistic steps could be derived 
using equilibria (3, 4 and 1) and step (1).

From step (1)

But from step (4) in situ produced  [HNO2] could be evalu-
ated as,

Substituting for  [HNO2] from Eq. (19) into Eq. (18),  [NO2
+] 

could be given as,

Upon substitution of  [H+] from Eq. (11) into Eq. (18) and 
further simplification, the active species  [NO2

+] could be 
written as,

Subtitution of active species  [NO2
+] from Eq.  (21) into 

Eq. (19), final rate law comes out as,

Above rate equation is keeping in with the observed 
kinetic results viz., first order in [Substrate] (i.e., R-C6H4-
X), and  [PMS]t. Since  [NO2

−]t ≫  [PMS]t, and  [KHSO4], 
it is understood that order in [active  NO2

+ species] is 
also one. Bisulphate term  ([HSO4

−]) appeared in the 
numerator of the rate law is negated by  (SO4

2−) term in 
the denominator, suggesting the observed negligible 
 (HSO4

−) effect on rate of the reaction. Thus, at constant 
 (HSO4

−) concentration, and known excess that rate law 
reduces to,

On the basis of the foregoing discussion, the sequential 
mechanistic steps for the nitration of aromatic compounds 
of this study can be summarized as shown in Scheme 3.

(15)HSO−

5
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4
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2
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(Where R= EWG or EDG; 
X= Functional group)

(PDS species)
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R-C6H4-X

+

Scheme  2  PDS/NaNO2 mediated mechanism of Nitration of aro-
matic compounds
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3.3  Temerature effect on the rate of nitration

The PDS and PMS catalysed nitration of different phenols 
reactions have been studied in different aqueous ace-
tonitrile medium at four to five temperatures in twenty 
centigrade degree range (300–325°K). The free energy 
of activation (∆G#) at a given temperature is calculated 
using Eyring’s theory of reaction rates [29, 30] using the 
following steps:

Substituting for R, N, and h (in SI units), ∆G# could be sim-
plified accordingly as,

Substituting the value of a temperature (T) in Kelvin 
degrees and second order rate constant (k), ∆G# could be 
obtained. We have also evaluated enthalpy and entropies 
of activation (∆H# and ∆S#) from the slope and intercept 
values of the Gibbs-Helmholtz plot ∆G# versus tempera-
ture (T), according to the following relationship:

Few representative Gibbs–Helmholtz plots for PDS 
and PMS catalytic nitration reactions are given in Figs. 14, 
15, 16, 17, 18 and 19. Activation parameters thus evalu-
ated are compiled in Table 3.

3.4  Quantitative structure and reactivity study

A perusal of the kinetic revealed that the introduction 
of electron donating or withdrawing groups (EDG and 
EWG) into the aromatic ring generally altered the rate of 

ΔG#
= RT ln (RT∕Nhk)

ΔG#
= 8.314 × T

[

23.7641 + ln(T∕k)
]

ΔG#
= ΔH#

− TΔS#

H+

NO2
+

Nitronium ion

X

R

Slow (k)

O2N

(Where R= EWG or EDG; 
X= Functional group)

(PMS species)
HSO5 +  HNO2

SO4
2

R-C6H4-X

+ H2O

Scheme  3  PMS/NaNO2 mediated mechanism of nitration of aro-
matic compounds
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Fig. 14  Gibbs-Helmholtz plot (∆G# vs temperature) for PDS/NaNO2 
mediated nitration of phenol
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Fig. 15  Gibbs-Helmholtz plot (∆G# vs temperature) for PDS/NaNO2 
mediated nitration of p-Cresol
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Fig. 16  Gibbs-Helmholtz plot (∆G# vs temperature) for PDS/NaNO2 
mediated nitration of P-chloro phenol
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nitration with a decreasing trend: m –Me  > P–MeO  >   –H > P 
– Me >   m–OH > ≈  P–Br  ≈ P–OH > P–Cl.  The  or tho substit ute d 
p h e nol s i n dica t ed a  sequence: o–OH > o–Me  > – H.  Efforts 
were made co rre lat e the rate data into Hammett’s quan-
titative structure and reactivity relationship [31–33] using 
the following equation:

According to Hammett, log(k) versus (σ, the Hammett’s 
substituent constant) a straight line with either a positive 
or negative slope (ρ; Hammett’s Rho) should be obtained. 

log(k) = log
(

k0
)

± ��

But, the Hammett’s plots of log(k) versus σ indicated poor 
linear relationship with very low correlation coefficient 
 (R2) and scattered points. The obtained deviations may be 
explained due to the mesomeric para interaction energy 
(ΔΔGp) parameters, and exalted sigma (σ̅ or σeff) values, as 
suggested by Brown, Okamoto, van Bekkum, Webster and 
others [34, 35].

4  Conclusions

In summary, the author has developed peroxydisulfate 
(PDS) and peroxymonosulfate (PMS) as efficient green 
reagents for the nitration of aromatic compounds (Phe-
nols) using  NaNO2/KHSO4. The reaction followed second 
order kinetics with first order dependence on [Peroxy-
Sulfate] (i.e. [PDS] or [PMS]) and [Phenol], when  NaNO2 
concentration is taken far excess over all other reagents. 
The observed kinetic data is sensitive to the structural 
variation of phenol. Reaction rates accelerated with the 
introduction of electron donating groups and retarded 
with electron withdrawing groups: m –Me  > P–MeO  >   
–H > P – Me >   m–OH > ≈  P–Br  ≈ P–OH > P–Cl. On the other 
ha nd,  or tho substit ute d p h e nol s i n dica t ed a  sequence: 
o–OH > o–Me > –H. But the data did not fit well into the 
Hammett’s quantitative linear free energy relationship. 
Deviations could be probably due to mesomeric para 
interaction energy (ΔΔGp) parameters arising from the 
exalted sigma ( ̄σ or σeff) values, and Yukawa–Tsuno param-
eter (r).
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Fig. 17  Gibbs-Helmholtz plot (∆G# vs temperature) for PMS/NaNO2 
mediated nitration of phenol
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Fig. 18  Gibbs-Helmholtz plot (∆G# vs temperature) for PMS/NaNO2 
mediated nitration of P-Cresol
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