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Abstract
Carbyne is a carbon allotrope whose structure is a one-dimensional chain of sp-hybridized carbon atoms. Carbyne’s 
mechanical and electrical properties, as predicted by theoretical studies, have attracted great interest because they would 
lead to many promising applications. Thus, much effort has been devoted to the synthesis of carbyne. Long linear atomic 
carbon chains encapsulated in carbon nanotubes have recently been produced by high-temperature heat treatment 
of double-wall carbon nanotubes (DWCNTs). Here, we present an alternative approach to produce long linear carbon 
chains: field electron emission accompanied by electrical discharge from single-wall carbon nanotube (SWCNT) films. 
Raman spectroscopy and transmission electron microscopy were performed on SWCNT films after the electrical discharge 
during field electron emission. The results showed that a large number of long linear carbon chains were formed within 
the SWCNTs and DWCNTs. For DWCNTs with an inner diameter of 0.7 nm, the atomic carbon chains lay directly along the 
central tube axis. However, for SWCNTs with an inner diameter of 1.0 nm, the encapsulated carbon chains were bent in 
some places and positioned close to the nanotube wall, away from the central tube axis.

Keywords  Carbon nanotube · Carbyne · Field electron emission · Transmission electron microscopy · Raman 
spectroscopy

1  Introduction

Carbyne is an allotrope of carbon that consists of an 
infinitely long chain of sp-hybridized carbon atoms. The 
structure of carbyne can take on two possible configura-
tions: (1) cumulene, which has repeating double bonds 
throughout the chain, and (2) polyyne, which has alternat-
ing single and triple bonds. Cumulene may spontaneously 
transform into polyyne through a Peierls distortion [1, 2]. 
It has been theoretically predicted that carbyne possesses 
an exceedingly high stiffness and Young’s modulus [3–5], 
a potentially high thermal conductivity [6–8], and unusual 
electrical transport properties [9–12]. Moreover, carbyne 
has attracted great interest because it can potentially be 

used in many different applications, such as switching 
nanodevices [13, 14], spintronic nanodevices [15–17], and 
hydrogen storage [18].

The existence of carbyne was debated for many dec-
ades until the successful synthesis of a linear acetylenic 
carbon chain with end-capping groups [19]. The organic 
synthesis technique yielded an acetylenic carbon chain 
consisting of 44 atoms [20]. In addition, transmission elec-
tron microscopy has also identified short free-standing 
carbon chains directly forming from carbon nanotubes 
[21–25] and graphene [26–36] under electron-beam irra-
diation and application of electrical current. Furthermore, 
the electric current passing through carbon chains [25, 30, 
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32, 35] and their tensile force at fracture [23] were meas-
ured in situ.

Isolated long linear atomic carbon chains have not yet 
been observed under ambient conditions because of their 
high chemical reactivity and extreme instability. However, 
it has been reported that there is the possibility to grow 
such chains in multiwall carbon nanotubes (MWCNTs) 
by the arc discharge method in hydrogen gas [37], liquid 
nitrogen [38, 39], argon gas [40], or helium gas [41, 42]. 
Carbon chains have also been fabricated by the high-tem-
perature fusion reaction of molecules such as C10H2 [43] 
and adamantane [44] within double-wall carbon nano-
tubes (DWCNTs), whose linear cavity can provide a space 
for encapsulating and stabilizing long linear carbon chains. 
Furthermore, Shi et al. [45] have reported long linear car-
bon chains consisting of more than 6000 atoms, synthe-
sized within DWCNTs by high-temperature heat treatment 
under a high vacuum.

Recently, we have found out the presence of long linear 
carbon chains after electrical discharge during field elec-
tron emission from single-wall carbon nanotube (SWCNT) 
films [46], which is different from the previous method by 
arc discharge and high-temperature heat treatment. The 
present reproducible synthesis method may provide a 
new approach to the bulk production of long linear car-
bon chains. In this paper, we report the field emission 
properties accompanied by the electrical discharge of 
SWCNT films that lead to the formation of long linear car-
bon chains encapsulated within carbon nanotubes, and 
characterize these carbon chains by Raman spectroscopy 
and electron microscopy.

2 � Experimental

SWCNT films synthesized by an enhanced direct injection 
pyrolytic synthesis method (Meijo Nano Carbon Co., Ltd., 
film thickness; approximately 40 μm, a nominal diam-
eter of SWCNT; 1–3 nm) were used in the present study. 
In the as-prepared SWCNT films, DWCNTs and triple-wall 
carbon nanotubes were contained as minor constituents. 
Field electron emission experiments were conducted on 
these SWCNT films at room temperature under a vacuum 
pressure of 8.3 × 10−6 Pa in a parallel-plate configuration. 
The distance between the electrodes was 0.16 cm. The 
field emission specimens were prepared by cutting the 
SWCNT films into roughly 5 × 5 mm pieces, and attach-
ing each piece onto the surface of an aluminum cathode 
using an Ag adhesive paste (Dotite D-500, Fujikura Kasei 
Co., Ltd.). The morphology and structure of the specimens 
were observed by scanning electron microscopy (SEM; FEI 
Quanta 200 FEG, 15 kV) and transmission electron micros-
copy (TEM; JEOL JEM-2010, 120 kV). The TEM specimens 

were prepared by dropping SWCNTs dispersed in isopropyl 
alcohol onto a microgrid. Raman characterization of the 
specimens was carried out with a Renishaw inVia Reflex 
Raman microscope using a laser excitation source with 
a wavelength of 532 nm at room temperature (measure-
ment conditions; laser power 0.15 mW, exposure time 
10 s).

3 � Results and discussion

The field emission characteristics of the SWCNT films were 
measured at room temperature under a vacuum pressure 
of 8.3 × 10−6 Pa. Figure 1a plots current–voltage curves 
obtained during field emission from an SWCNT film. The 
first field emission experiment started with an emission 
current of more than 10 nA at a voltage of 354 V and 
increased up to 962 μA at 868 V (arrowhead a), at which 
point an electrical discharge occurred and the applied 
voltage was immediately made to decrease to zero. The 

Fig. 1   a Current–voltage curves measured during field emission 
from an SWCNT film. Arrowheads a–h indicate the discharge volt-
ages from the first to eighth field emission experiment, respec-
tively. b Fowler–Nordheim plots obtained from (a)
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process of field emission followed by electrical discharge 
was repeated eight times (see Fig. 1a). The voltages indi-
cated by arrowheads a–h in Fig. 1a show, respectively, 
the discharge voltages from the first to eighth field emis-
sion experiment, which tend to increase with the number 
of repetitions. The turn-on voltage (defined here as the 
applied voltage to obtain an emission current of 10 nA) 
increased as the field emission experiment proceeded (see 
Table 1), indicating that it became increasingly more diffi-
cult to emit electrons during field emission under the same 
applied voltage, owing to morphological and destructive 
changes in the SWCNT film by the electrical discharge, as 
shown in Fig. 2b. According to the Fowler–Nordheim equa-
tion [47], the emission current I is given by

where A is the emitting area, β is the field enhancement 
factor, V is the applied voltage, d is the distance between 
electrodes, and � is the work function of the emitter. The 
graph obtained by plotting ln(I/V2) against 1/V is called the 
Fowler–Nordheim plot and is used to analyze the emission 
current–voltage curve. Figure 1b shows the Fowler–Nor-
dheim plots obtained from the current–voltage curves 
in Fig. 1a, assuming � = 4.6 eV for graphite and using a 
d value of 0.16 cm. In all the Fowler–Nordheim plots in 
Fig. 1b, the slopes of the plots in the high-voltage regions 
deviate from those in the low-voltage regions, i.e., a reduc-
tion in emission current occurs at high voltages. The field 
enhancement factor for each field emission experiment 
is estimated from the slopes in the low-voltage regions 
in Fig. 1b (see results in Table 1). The enhancement fac-
tors decreased with each repetition of the field emission 
experiment owing to the morphological changes that the 
SWCNT film underwent due to the electrical discharge dur-
ing field electron emission.

Figure  2a, b shows SEM images of an as-prepared 
SWCNT film and an SWCNT film after electrical discharge 
repeated eight times in the field emission experiment as 
shown in Fig. 1, respectively. The surface morphology of 
the as-prepared SWCNT film, which is composed of entan-
gled SWCNTs, is homogeneous as shown in Fig. 2a, while 
after the electrical discharge, parts of the SWCNT film are 

I = 1.4 × 10−6
A�2V2

d2�
exp

(

−6.49 × 107
d�3∕2

�V
+

9.8

�1∕2

)

damaged and torn up, resulting in the formation of holes, 
as seen in Fig. 2b. These significant morphological changes 
suggest that the electrical discharge during field emission 
causes structural transformation of the SWCNTs.

In order to determine the influence of the damage in 
the SWCNT films, they were examined by Raman spec-
troscopy. Figure 3a shows a Raman spectrum of the as-
prepared SWCNT film, measured from the region indi-
cated by arrowhead A in Fig. 2a. Two large peaks appear 
at 1593 and 2677 cm−1, which are assigned to the G and 
2D bands for SWCNTs, respectively. The peaks in the range 
lower than ~ 400 cm−1 are the radial breathing modes 
(RBMs) for SWCNTs. At above 200 cm−1, the spectral noise 
is large as shown in Fig. 3 and the RBMs were hard to be 
assigned accurately. The D band for SWCNTs is observed 
at 1342 cm−1, and its peak intensity, ID, is much smaller 
than that of the G band, IG. The degree of structural dis-
order for carbon networks in SWCNTs, P, is estimated by 
P = ID

/(

ID + IG

)

× 100% . The P value for the as-prepared 
SWCNT film in Fig. 4a is 1.5%. Figure 3b, c shows Raman 
spectra from the non-damaged and damaged regions 
of an SWCNT film after electrical discharge, indicated by 
arrowheads B and C in Fig. 2b, respectively. The P values for 
the SWCNT films after electrical discharge are 4.5 (Fig. 3b) 
and 9.0% (Fig. 3c), suggesting that structural disorder 
is introduced into the carbon networks in the SWCNTs 
upon electrical discharge. In the Raman spectrum from 
the damaged region, a sharp peak and a broad peak 
appear at 1863 cm−1 and ~ 600 cm−1, respectively, as seen 

Table 1   Discharge voltage, turn-on voltage, and field enhancement factor obtained from Fig. 1

1st 2nd 3rd 4th 5th 6th 7th 8th

Discharge voltage (V) 867.7 807.3 1075.7 910.6 1223.4 1286.7 1316.5 1366.2
Turn-on voltage (V) 354.2 386.0 423.6 470.8 457.3 557. 8 575.2 423.4
Field enhancement 

factor × 104
1.501 ± 0.003 1.234 ± 0.031 1.098 ± 0.001 0.903 ± 0.008 1.168 ± 0.001 0.916 ± 0.005 0.885 ± 0.008 1.179 ± 0.033

Fig. 2   SEM images of a an as-prepared SWCNT film and b an 
SWCNT film after electrical discharge in the field emission experi-
ment
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in Fig. 3c. These peaks do not appear in the Raman spec-
tra of as-prepared SWCNT films. On the other hand, linear 
carbon chains in carbon nanotubes are characterized by 
a Raman band in the 1780–1870 cm−1 range, which has 
been termed the L band, and which is associated with 
C–C stretching-mode vibrations [37–40, 42–45, 48, 49]. 
The broad peak at around 600 cm−1 is also related to the 
linear carbon chains, because this peak is detected only 
when the L band is observed [40, 48, 49]. There may be a 
possibility that the lower frequency peak at 600 cm−1 is 
attributed to bending modes of sp linear structures [50]. 
The simultaneous appearance of the marked peaks at 1863 
and 600 cm−1 suggests the formation of linear atomic car-
bon chains in the SWCNT film upon electrical discharge. 
Figure 4a, b shows, respectively, an enlarged image of the 
damaged region indicated by arrowhead C in Fig. 2b and 
the corresponding Raman mapping image using the L 
band. The regions where the L band signal is detected are 
colored red in Fig. 4b. The L band is detected exclusively in 
the damaged regions of the SWCNT film. The major peak 
position of the L band ranged from 1854 to 1865 cm−1, and 
its intensity and spectral shape differed, depending on the 
place in the damaged regions. The variation in the L band 
may be attributed to the length and the encapsulating 
environment of the carbon chains [51]. The present results 
demonstrate that field electron emission accompanied by 
electrical discharge leads to the formation of linear car-
bon chains in the SWCNT film. It was also confirmed using 
another film that linear carbon chains are formed even 
after first electrical discharge during field emission, indi-
cating that the repetition process of electrical discharge is 
not essential for the formation of the linear carbon chains. 
However, the damaged area suffered by the first electrical 
discharge is local in the SWCNT film and the yield of the 
carbon chains is low. In the present study, therefore, the 
repetition process of electrical discharge was carried out 
to form a large amount of carbon chains.

To demonstrate the presence of linear atomic carbon 
chains in the SWCNT films after electrical discharge, the 
structure of the SWCNT films was investigated by high-
resolution TEM. In addition to SWCNTs, the SWCNT films 
contained many DWCNTs that encapsulated linear atomic 
carbon chains. Figure 5 shows a typical high-resolution 
image of a DWCNT encapsulating a linear atomic car-
bon chain. The inner diameter of the DWCNT in Fig. 5 is 
0.70 nm, which is consistent with the reported innermost 
tube diameter of MWCNTs [37, 38, 41] and DWCNTs [45] 
encapsulating a carbon chain. As seen in Fig. 5, the car-
bon chain is aligned along the central axis of the inner 
tube of the DWCNT, which is approximately at a van der 
Waals distance from the inner wall. The carbon chain as 
shown in Fig. 5 is longer than 21 nm. Assuming that the 
lengths of single, double, and triple bonds in the chain 

Fig. 3   Raman spectra measured from a the region indicated by 
arrowhead A in Fig.  2a for the as-prepared SWCNT film, b and c 
non-damaged and damaged regions indicated by arrowheads 
B and C in Fig.  2b for the SWCNT film after electrical discharge, 
respectively

Fig. 4   a SEM image of the damaged region indicated by arrowhead 
C in Fig. 2b, and b corresponding Raman mapping image using the 
L band
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are, respectively, 0.1301, 0.1282, and 0.1265 nm [52] and 
the unit cell length of the carbon chain, which is twice the 
undistorted C–C bond (double bond) length, is approxi-
mately 0.256 nm, the carbon chain as shown in Fig. 5 is 
estimated to contain at least 160 contiguous carbon 
atoms.

Long linear carbon chains encapsulated in MWCNTs 
and DWCNTs have been reported previously [37–45]. In 
the present study, carbon chains encapsulated not only 
in DWCNTs but also in SWCNTs were observed, as previ-
ously reported [46]. Figure 6 shows two SWCNTs encap-
sulating carbon chains. The diameters of both SWCNTs 

are approximately 1.0 nm, which is slightly larger than 
the inner diameter of the DWCNTs as shown in Fig. 5. 
Although the lengths of the carbon chains encapsulated 
in the SWCNTs in Fig. 6 are more than 14 nm, their shape 
is not completely straight, as shown in Fig. 5. The carbon 
chain in Fig. 6a is bent at several locations, and portions 
of the chain, e.g., in the region between arrows A and 
B, are positioned close to the nanotube wall, i.e., away 
from the central axis of the SWCNT. This deviation from 
the center probably results from the electronic π–π inter-
action between the carbon chain and the SWCNT wall. 
The image contrast of the carbon chain in the region 
between arrows C and D, as indicated in Fig. 6a, b, is 
as high as that of the nanotube wall, showing that the 
thickness of these carbon chains is not different from 
one-atom thickness of the carbon chain as shown in 
Fig. 5. In the region on the right-hand side of arrow D in 
Fig. 6a, the carbon chain branches off into two as indi-
cated by arrowheads. The intensity profile between the 
nanotube walls indicated by arrows L and R in Fig. 6a is 
shown in Fig. 6c, showing that the SWCNT encapsulates 
at least two carbon chains. In Fig. 6b, the two carbon 
chains are also seen within the SWCNT in the region on 
the left-hand side of arrow C, as shown by arrowheads. 
Thus, the high image contrast of the carbon chain in the 
region between arrows C and D in Fig. 6a, b is thought 
to be due to the overlap of the carbon chains. The car-
bon chains may form cross-linking bonds between the 
chains, as previously reported [27, 34]. The formation of 
a single long linear carbon chain may require the suf-
ficiently confined space of a carbon nanotube with a 
diameter of approximately 0.7 nm.

In the present study, DWCNTs and SWCNTs that encap-
sulated carbon chains were observed in the morphologi-
cally damaged regions of the SWCNT films by electrical 
discharge during field emission. Although such destruc-
tion process by electrical discharge may play some kind 
of a role in the formation of the carbon chains inside the 
carbon nanotubes, it would be difficult to explain the 
formation mechanism of the carbon chains by only the 
destruction process. During field emission, the nano-
tubes experience high temperature [53]. As a possible 
mechanism, it may be conceivable that residual carbon left 
inside and/or outside a carbon nanotube aggregates and 
polymerizes in a narrow cavity of the nanotube to form a 
carbon chain by high-temperature heating and electrical 
discharge.

Although the formation mechanism for long linear car-
bon chains under high electric fields is still unclear, it is a 
fascinating topic for further study. The present results con-
cerning the strong Raman spectral feature at 1863 cm−1 
can potentially pave the way to a novel approach to the 
bulk production of long linear carbon chains involving a 

Fig. 5   High-resolution TEM image of a DWCNT with an inner diam-
eter of 0.7  nm encapsulating a long linear atomic carbon chain 
along its central axis

Fig. 6   a and b High-resolution TEM images of SWCNTs with a 
diameter of 1.0  nm encapsulating more than one carbon chain 
that were not completely linear and in an off-center position close 
to the inner wall. c and d Intensity profiles between the nanotube 
walls indicated by arrows L and R in (a) and (b), respectively
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method other than the conventional high-temperature 
heat treatment of carbon nanotubes and arc discharge.

4 � Conclusion

We carried out field electron emission experiments at a 
vacuum pressure of 8.3 × 10−6 Pa using SWCNT films with a 
low degree of structural disorder for carbon networks and 
examined the structure of the SWCNT films after electri-
cal discharge. The Raman spectroscopy and TEM results 
showed that field electron emission accompanied by elec-
trical discharge from the SWCNT films induced the forma-
tion of long linear carbon chains, i.e., carbyne, within DWC-
NTs and SWCNTs. The present findings may lead to a new 
approach to synthesizing carbyne and promote carbyne 
research aimed at developing innovative applications.
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