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Abstract
Dengue outbreak has become a significant mosquito-borne disease in Pakistan with the worst outbreak in the Lahore 
district in 2011. This situation has emerged as a serious concern for disaster management authorities, and managing 
risks of dengue outbreaks has become their top priority. This study investigated the relationship of the reported den-
gue cases in the Lahore district in 2011 with the spatial and temporal changes in climatic and environmental factors. 
The quantitative co-relational research method was employed to ascertain the association between dengue incidences 
and weather parameters, land use/cover, and demographic characteristics of the study area. Ordinary least-square and 
geographically weighted regression analyses were conducted to identify the influence of study variables on the dengue 
outbreak. Satellite and ground data were used to derive study parameters. A geostatistical dengue risk model was devel-
oped to identify the risk-prone areas in Lahore. The geographically weighted multivariate regression model indicated 
a statistically significant relationship between dengue cases and the built-up area and population density. These two 
explanatory variables explained 77.4% variance in dengue incidences. This study supported the association between 
the demographic parameters and distribution pattern of dengue outbreaks in the Lahore district. The dengue risk model 
identified the vulnerable areas that need particular attention to mitigate future outbreaks.

Keywords  Dengue fever · Geostatistics · Geographically weighted regression · Ordinary least square · Risk model

1  Introduction

The frequent dengue outbreaks have made dengue fever a 
significant health hazard in Pakistan. A recent study by [17] 
focused on improving the prevention measures through 
spatial mapping of temporal risk in the Lahore district. 
However, the published documents on the influence of 
environmental parameters on the spread of dengue fever 
in the country are limited in number. Dengue hemorrhagic 
fever is a potentially deadly infectious disease spread by 
mosquito bites infected with the virus. Typical species of 
mosquitoes can transmit viruses or parasites to humans 
[24]. The Aedes aegypti is the main mosquito that spreads 
this disease.

Dengue fever outbreaks have grown radically during 
the recent decades in many parts of the world [4, 32, 34]. 

There are more than 100 million new cases of dengue 
fever every year throughout the world [11]. According 
to the World Health Organization (WHO) statistics, about 
100 tropical and subtropical countries are at risk due to 
the dengue virus [5, 15, 34]. The same report states that 
dengue hemorrhagic fever (DHF) is the primary cause 
of childhood mortality in several Asian countries [8, 27]. 
During the last two decades, the dengue incidences have 
increased globally from 148 per 100,000 in 1990 to 810 
per 100,000 in 2013 [26]. There is a pressing need to con-
trol the spread of dengue virus at an early stage to save 
millions of people living in hot and humid regions of the 
world [19].

Weather parameters play a significant role in mosquito 
breeding and disease outbreaks. Therefore, in countries, 
where dengue spread occurs repeatedly, a variation in 
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precipitation, temperature, and humidity can be related to 
dengue outbreaks [6, 12]. Alkhaldy [7] established an asso-
ciation of dengue fever incidences with relative humidity 
and temperature in a city of Saudi Arabia using a generalized 
linear model. Xiang et al. [35] investigated the temperature 
and dengue association in China. He also found a nonlinear 
relationship between dengue and relative humidity and 
extreme wind velocity. Chien and Yu [14] studied the spati-
otemporal patterns of dengue cases and identified elevated 
risk in highly populated areas. In this study, the meteoro-
logical parameters that found to impact dengue incidences 
were 24-h weekly maximum rainfall and weekly minimum 
temperature. Atique et al. [9] studied the influence of mete-
orological parameters on dengue incidences in Lahore, Paki-
stan. He examined the association between the reported 
dengue cases and climatic parameters. He concluded that 
changing climate is causing an increase in dengue cases.

Weather parameters are easy to perceive in identifying 
the specific environmental conditions that support mos-
quito breeding [31]. An intense (35–40 °C) temperature can 
control the flight range of a dengue mosquito [20]. Increase 
in inland water temperature to about 20 °C may accelerate 
the breeding rate of dengue mosquito [13, 23]. According to 
the World Health Organization (WHO), temperatures higher 
than 26 °C and heavy rainfalls significantly influence dengue 
transmission rate. Although weather parameters are con-
sidered to be the primary factors that lead to dengue out-
breaks, there are other factors as well that affect the spread 
of the virus including demography, topography, land use 
practices, and behavioral and societal features of a region.

Pakistan, with variable weather patterns and demogra-
phy, had many dengue episodes during the past two dec-
ades. The dengue fever was not known in Pakistan until 1994 
when the first victim was identified in its southern city, Kara-
chi. In the Punjab province, specifically in the Lahore District, 
dengue cases are on the rise since 2007 [21, 28]. The 2011 
dengue outbreak of Lahore that prevailed from March to 
December of that year is considered as the worst in history.

In our study, geospatial tools were utilized to evalu-
ate the influence of various weather and demographic 
parameters on dengue incidences. Geospatial techniques, 
including remote sensing (RS) and geographical informa-
tion system (GIS), are extensively utilized to analyze spatial 
and temporal data in monitoring and mapping epidemics 
and risk-prone areas [15, 21, 32].

2 � Materials and methods

2.1 � Study area

This study is based on the dengue outbreaks of Lahore in 
2011. Lahore is a district of Pakistan’s Punjab province. The 

study area is a semiarid region with hot and long summers, 
heavy monsoon rains, and mild dry winters. During sum-
mers, the temperature reaches 40–48 °C in May–July. The 
wet season starts from the end of July with heavy rainfalls. 
The average annual precipitation in Lahore is 628.8 mm, 
and the maximum rainfall within 24 h is 250–300 mm. 
December, January, and February are the coldest months 
of the year when the temperature drops up to − 1 °C.

There are nine towns in the district of Lahore. These 
towns are further divided into union councils (UCs) that 
are the smallest administrative divisions. This study does 
all analysis at the UC level.

2.2 � Methodology

The primary purpose of this study was to study the rela-
tionship of the dengue incidences of Lahore in 2011 with 
its weather and demographic variables using regressions 
analysis. First, the published literature was searched to 
identify the potential explanatory variables. Based on 
previous studies, the parameters selected for testing their 
association with dengue cases were average Normalized 
Difference Vegetation Index (NDVI), average Normalized 
Difference Water Index (NDWI), maximum land surface 
temperature (LST) (Celsius), average land surface tempera-
ture (LST) (Celsius), built-up area (square meters), popula-
tion density, and population (in thousand) at union coun-
cil (UC) level. The data of these parameters at the time of 
outbreak were acquired, and the information regarding 
the number of dengue cases was collected. The methodo-
logical workflow is illustrated in Fig. 1 that presents the 
schemes of different study phases.

Linear regression tools of ArcGIS software are ordi-
nary least-squares regression (OLS) and geographically 
weighted regression (GWR). As its name suggests, the 
ordinary least-squares regression (OLS) is a standard linear 
regression method obtained by minimizing the squares 
of the errors between observed and predicted data. OLS 
is also called a global regression method that globally 
minimizes the prediction errors. Equation 1 is a multiple 
regression equation in which ‘Y’ is the dependent variable 
(dengue in our case) with X1, X2, …. Xn are ‘n’ number of 
explanatory variables. The y-intercept of the model is ‘a’ 
and b1, b2, … bn are the regressions coefficients.

On the other hand, geographically weighted regres-
sion (GWR) is called a local regression technique based 
on observed spatial patterns of the variables as they 
change their values across the study area. GWR provides 
a mean of exploring spatially varying relationships. GWR 
models explain this relationship for every location on 
a map. GWR provides a mean of exploring spatially 

(1)Y = a + b1X1 + b2X2… bnXn
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varying relationships. GWR models (Eq. 2) explain this 
relationship for every area on a map. GWR is also used 
to identify the hotspots and to help understand why hot 
spots are present.

In Eq. 2, β (ui, vi) indicates the vector of the location-
specific parameter estimates, (ui, vi) represents the geo-
graphic coordinates of location i in space, and εi is the 
error term with mean zero and common variance σ2. It 
should be noted that excluding the geographic coor-
dinates (ui, vi) will make Eq.  2 a multiple regression 
model. GWR uses kernel-based and geographically 
weighted least squares on a point-wise basis to esti-
mate these parameters. GWR is also used to identify the 
hot spots and to help understand why hot spots are 
present. Regression analyses were used in this study to 
build models to map variation in the dependent vari-
able due to changes in the explanatory or independent 
variable(s).

(2)

Yi = Xt
i
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Ui , Vi
)

+ �i = �o
(
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k=1
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2.3 � Data collection

The epidemic data containing 17,330 dengue cases, 
registered in Lahore during March–December 2011, 
were acquired from the Ministry of Health (MoH) and 
Punjab Disaster Management Authority (PDMA). Popu-
lation statistics were derived from the Government of 
Punjab’s Pre-investment report [16]. GIS data includ-
ing the boundaries of the Lahore district, towns, and 
UCs were acquired from The Urban Unit, Lahore. In 
this study, satellite imageries of SPOT-5 and Landsat-5 
(TM) were used for calculating land use/covers and 
land surface temperatures of the study area. Spot-5 
has a high spatial resolution (5-m) multispectral data, 
whereas Landsat-5 (TM) has a medium-resolution (30-
m) images. Google Earth high-resolution imagery was 
used to digitize built-up areas in which precision was not 
possible using the coarser-resolution images. Satellite 
images were selected with dates of acquisition match-
ing with the temporal scale of the study. SPOT 5 images 
were obtained from the Space and Upper Atmospheric 
Research Commission’s (SUPARCO) satellite ground sta-
tion. Landsat TM satellite images were downloaded from 

Fig. 1   Methodological work-
flow
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the Earth Explorer Web site (http://earth​explo​rer.usgs.
gov/).

2.4 � Geospatial analysis

Multiple bands ratios (indices) can identify many types 
of land use/land cover (LULC) from satellite data. The 
Normalized Difference Vegetation Index (NDVI) for 
vegetative cover and the Normalized Difference Water 
Index (NDWI) for wet area identification are the most 
commonly used spectral indices that were calculated in 
this study. For NDWI and NDVI, SPOT-5 satellite datasets 
were utilized, whereas land surface temperature (LST) 
was derived from the thermal band of Landsat-5 (TM). 
Maps for NDVI and LST with spatially distributed dengue 
cases are presented in Fig. 2. Rainfall distribution at UC 
level could not be estimated due to limited data from 
only one weather station in Lahore. The coarser-reso-
lution satellite-based precipitation data (0.25° × 0.25°) 
were also not sufficient for this purpose. However, the 
precipitation data from the single station identified 
a lag time between the peaks of rainfall and dengue 
incidences (See Fig.  3). It was decided, therefore, to 

Fig. 2   LST, NDVI, and distribu-
tion of dengue cases

Fig. 3   Meteorological data and dengue incidences

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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relate dengue outbreaks with wet surfaces present in 
the study area after the rainfall event. The NDWI was 
deemed sufficient for analyzing this relationship in the 
absence of rainfall data.

The population at UC level was not readily available, 
and therefore, the town-wise population was distrib-
uted among UCs proportional to the built-up area in 
each UC. Built-up area was digitized using Google Earth 
imagery. Houses and other structures were precisely 
identified on high-resolution Google Earth images.

The average values of NDVI, NDWI, LST, and maxi-
mum LST were calculated at UC level using the Zonal 
Statistics tool of ArcGIS. In ArcGIS, the zonal statistic 
tool was used to calculate the statistic (averages and 
maximum values) for each union council in the union 
council dataset, using LST, NDVI, and NDWI images. A 
single output value for each parameter was computed 
for each UC in the union council dataset.

Histograms of regression variables were developed 
and are shown in Fig. 4. From this figure, it is evident 
that many study variables are not normally distributed. 
A very high number of dengue cases (1438) in the Can-
tonment UC made the data highly skewed. The natu-
ral logarithm transformation was applied to dengue 
cases, built-up area, maximum LST, and population. Trail 
regression runs were performed using transformed vari-
ables. The log-transformed data could not produce any 
meaningful results—either the R2 values of the models 
were low, or the regression analysis could not be per-
formed successfully using ArcGIS tools. Regression tools 
were then applied on data without any transformation.

3 � Results

In this study, a GIS-based analysis was done to evaluate 
the spatial variation of dengue spread within the study 
area during the rainy season. Regression analysis was used 
to find out the statistical significance of the association 
between dengue cases and the explanatory variables 
(Table 1).

The study parameters (both with and without log-
transformation) did not show their significant linear rela-
tionship with dengue cases as shown in the scatterplots 
(see Fig. 5). First, OLS models were run with different sets 
of explanatory variables but, as expected; none could 
produce satisfactory results with statistical parameters 
including adjusted R2 values. Most of the models showed 
bias due to the significant statistics of Jarque–Bera (Skew-
ness–Kurtosis) test. When this test is statistically significant 
(P < 0.05), the residuals are not normally distributed which 
implies a bias in the model predictions. Some of the runs 
also produced results with statistically significant Koenker 
test that indicate non-stationary relationships between the 
dependent and some or all of the explanatory variables. 
This suggests that even some variables may be significant 
predictors of the dependent variable in some regions, but 
they may result in a weak prediction in other locations. 
Based on these findings, it was concluded that the study 
parameters were not suitable for the OLS global model. 
Table 2 presents the results of these models. In the next 
phase, GWR techniques were employed for the develop-
ment of a dengue predictive model.

The GWR tool of ArcGIS was executed for modeling den-
gue cases. Different trials were conducted changing the 
independent variables using original and log-transformed 
variables. Results could not be computed for log-trans-
formed variables in any of the model run. With the original 

Fig. 4   Histograms of regres-
sion variables



Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:459 | https://doi.org/10.1007/s42452-019-0428-1

data, when all study variables were inputted, the model 
did not run successfully and gave errors. The error message 
indicates the possibility of severe global or severe local 
multi-co-linearity (redundancy among model independ-
ent variables). In multi-co-linearity, one predictor variable 
in a multiple regression model can be linearly predicted 
from others with a substantial degree of accuracy. Table 3: 

(GWR Models with a successful run) illustrates a summary 
of the successful models runs.

The GWR model 3, with ‘built-up area’ and ‘population 
density’ as explanatory variables, gives an adjusted R2 
value of 0.774 (R2 = 0.805). This outcome indicates that by 
using population density and built-up area as explanatory 
variables the model can explain 77.4% of the variance in 
dengue incidences. The GWR standard residual map was 

Table 1   Study parameters S. no Parameter Denoted by

Dependent variable
1 Dengue cases D_CASES
2 Ln (dengue cases) LNDCASES
Explanatory variable
1 Normalized difference water index NDWI
2 Normalized difference vegetative index NDVI
3 Land surface temperature LST
4 Maximum land surface temperature LST_MAX
5 UC built area UC_Built
6 Population BUILTPOP08
7 Population density POPDENSTY
8 Ln (built area in m2) LNBUILT_M2
9 Ln (population) LNPOP
10 Ln (maximum land surface temperature) LNLST_MX

Fig. 5   Study parameters relationship with dengue cases (scatterplots)
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further examined to test the performance of the model. 
The residuals showed the portions of the total variabil-
ity of the observed data which were unexplained by the 
model, due to model under or over predictions. The stand-
ard residual map in Table 3 illustrates the areas of under 
predicted with positive values (where actual dengue cases 
were higher than the model predicted) and over predicted 
with negative values (where dengue cases were lower than 
predicted). A model is considered to be performing well 
when there is no clustered over-/under-prediction areas, 
but the noise is random. Spatial clustering of over-/under-
prediction areas is an indication of missing one or more 
key explanatory variables in the model. The standard resid-
ual map showed that the standard residual values are a 
little high in one place but a little low at some other place, 
and there was no clear structure of model over/under 

predictions. The spatial autocorrelation tool (Moran’s I 
statistic Eq. 3) of ArcGIS can also be used on the model 
residuals to check whether the residuals have a random 
spatial pattern or not.

where Zi is the deviation of an attribute for feature i from 
its mean (xi − X), Wi,j is the spatial weight between feature 
i and j, n is equal to the number of features, and So is the 
aggregate of the spatial weights.

(3)I =
n
∑n

i=1

∑n

J=1
Wi,JZiZj

So
∑n

i=1
Z2

I

(4)So =

n
∑

i=1

n
∑

j=1

Wi,j

Table 3   GWR models with successful run

*Models 1, 4, 5, and 6 could not yield any results

Models* 2 3

Dependent variable D_CASES D_CASES
Independent variable BUILTPOP08, UC_BUILT PopDensty, UC_BUILT
R2 0.7937 0.8051
Adjusted R2 0.7639 0.7745
Akaike’s information criterion (AICc): 

measures of model fit/performance
1698 1692

Spatial autocorrelation

Standard residual map
< − 2.5 SD
− 2.5 to 1.5 SD
− 1.5 to 0.5 SD
− 0.5 to 0.5 SD
0.5 to 1.5 SD
1.5 to 2.5 SD
> 2.5 SD
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Whenever there is a structure/clustering of under/
over predictions, the model is not trustworthy, and it is 
an indication that some key explanatory variables are 
missing from the model. The results of spatial autocor-
relation analysis showed that the regression residuals 
are randomly distributed since the z-score (= 1.3) is not 
statistically significant. The null hypothesis of complete 
spatial randomness was definite, and therefore, not 
rejected. This confirms the randomness of the residuals 
required for a well-performing model.

Figure 6 presents the spatial distribution of the regres-
sion coefficients of explanatory variables built-up area 
and population density. The relationship between the 
explanatory variables and the dependent variable can 
be seen across the study area by mapping these coef-
ficients. In Fig. 6, the darker areas are locations where 
the explanatory variables; built-up area, and population 
density are better predictors of dengue cases, whereas 
the lightly shaded areas are places where these are not.

3.1 � Dengue prediction map

The GWR model can help to predict the values of depend-
ent variables using projected values of explanatory vari-
ables. The projected values of 10% and 20%, respectively, 
for built-up areas and population densities in all UCs, are 
assumed to prepare the prediction map. The predicted 
dengue cases are shown in Fig. 7. In a small portion of 
the study area, negative predicted values indicated 
model inaccuracy. The regions with negative values were 

Fig. 6   Spatial distribution of 
regression coefficient – U.C. 
Built-up area and population 
density

Fig. 7   Dengue prediction map
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shaded out and discarded. The majority of the study area 
produced positive and reliable results that predicted risk 
zones.

4 � Discussion

4.1 � Main findings

The OLS global regression models are not suitable for the 
current study. These models even with statistically signifi-
cant parameters were biased and hence undesirable due 
to the significant statistics (P < 0.05) of the Jarque–Bera 
(Skewness–Kurtosis) test. The GWR technique is used to 
develop a dengue predictive model with built-up area and 
population density, and the adjusted R2 value came out to 
be 0.774 (R2 = 0.805). This statistics implies that together 
population density and built-up area explain 77% of the 
variance in predicting dengue incidences. Another model, 
with built-up area and population, had adjusted R2 value 
of 0.764 (R2 = 0.794), but its residual maps did not show 
randomness (Table 3). Other parameters fail to establish a 
statistically significant relationship with the dengue cases.

GWR predictive model builds a spatial relationship of 
dengue cases with population density and built-up area. 
A recent study by Hira et al. [18] has similar results iden-
tifying the built-up area as the most critical factor for the 
likelihood of the vector’s presence than NDVI and precipi-
tation in another region of Pakistan.

4.2 � What is already known?

Many similar studies in other regions of the world, 
although support this study from a big perspective, deliver 
different relationships of study parameters. This differ-
ence is presumably due to the diverse geographical and 
environmental settings in locations where these studies 
were undertaken. One such research, conducted in Tai-
wan, resulted in a GWR model between dengue data and 
population that explained 59% of the total model varia-
tion [25, 33]. Another study done in Indonesia used GWR 
and OLS regression models to find out the relationship 
between dengue data, population, and rainfall [10, 27]. 
The OLS and GWR models for this study had, respectively, 
R2 of 0.43 and 0.45 values. Both studies concluded that 
GWR models were more reliable than OLS global regres-
sion models.

4.3 � New additions in knowledge

In developing countries like Pakistan where information is 
not readily available all the time, the collection of data is 

difficult and time-consuming. This research is an attempt 
to use satellite data to overcome this problem. The follow-
ing gaps are identified in the literature.

•	 Although there are various similar studies for the risk 
mapping of dengue using remote sensing data and GIS 
techniques in other parts of the world, less has been 
found within the study area. A model built for a par-
ticular region is based on its unique environmental set-
tings and should not be applied to other areas without 
proper validation [32]. Therefore, to develop a model, 
it is essential to use influencing parameters explicitly 
derived for the specific study area under consideration.

•	 In Pakistan, few attempts to monitor dengue outbreaks 
and to establish their relationship with influencing fac-
tors have been made using GIS or other approaches 
for analysis purposes such as [1–3, 17, 22, 28, 29]. Very 
limited remote sensing analyses have so far been done 
to derive influencing factors such as [18, 30].

Owing to the research gaps mentioned above, the need 
for this study was established. This study could provide 
local, provincial, and federal officials the necessary infor-
mation to better plan and prepare for emergency response 
and recovery and to mitigate future threats. The efforts 
to reduce and control the outbreak of dengue fever can 
be more successful with the help of risk mapping that 
identifies the disease-prone areas. The potential benefi-
ciaries of this study include, but not limited to, the health 
department, national and provincial disaster management 
authorities, and vulnerable communities. This knowledge 
will further enhance the capacity of decision-makers in 
strategizing and creating future action plans to control 
dengue spread. The prediction model is very advanta-
geous as discussed below.

•	 Multiple prediction maps with future values of the 
explanatory variables can help disaster management 
authorities to prepare and face all risk levels of dengue 
outbreaks that are likely to happen in the future [6].

•	 Town planning and urban development schemes 
usually do not consider the health impacts of urban 
growth. The effects of future expansion in built-up 
areas on dengue outbreak can be ascertained using a 
predictive model [20].

•	 The health insurance companies can utilize this model 
for adjusting plan payments by determining the rela-
tive risk of insured populations.

4.4 � Limitations

The dengue incidence data, collected from the Minis-
try of Health (MoH) and Punjab Disaster Management 
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Authority (PDMA), are based on house addresses. Almost 
40% of incidence data did not have addresses at all or 
had incomplete addresses and, therefore, were not 
included in the analysis and removed from the database. 
Thus, the data used in the study are not complete and 
may be considered as a sample dataset that represents 
only 60% of the actual cases.

Moreover, to investigate the distribution pattern of 
dengue in the study area, the study requires to acquire 
data at the union council level. Since the collected data 
are based on house addresses, conversion at the UC 
level was done very carefully to fulfill the requirement 
of the study. Several ground surveys were conducted to 
verify these addresses. Still there exists a possibility of 
wrong assignments of these cases at UC levels owing to 
incomplete addresses in a comparatively large database 
(17,330 cases).

The scope of this study was to evaluate the spatial 
association between dengue cases of Lahore in 2011 
and other parameters using ArcGIS and therefore, was 
limited to the inbuilt regression models of the software. 
Poisson’s regression, which is considered a better model 
for count variables as dengue cases, could also be tested 
in future studies along with OLS and GWR.

5 � Conclusions

The objective of this study was to develop a dengue risk 
model for the Lahore District by identifying the influ-
encing factors that significantly impact dengue out-
breaks. Ordinary least-square (OLS) and geographically 
weighted regression (GWR) analyses were employed to 
develop regression models for dengue cases and study 
parameters. The study results indicated that the study 
parameters are not suitable for the OLS global model. 
The GWR is found to be helpful in establishing a rela-
tionship between dengue incidences and two study 
parameters—population density and built-up area with 
an adjusted R2 value of 0.774 (R2 = 0.805). Other study 
parameters: LST, NDVI, and NDWI, could not establish 
any relationship with dengue cases utilizing the two 
regression techniques: OLS and GWR.
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