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Abstract
A new three-wave method is efficient and well-developed approach to solve nonlinear partial differential equation. In 
this paper, a (3+1)-dimensional Jimbo–Miwa equation is investigated by using this approach. Some periodic wave solu-
tions and kink solutions are obtained through the Hirota bilinear form. Furthermore, figures of some special periodic 
wave solutions and kink solutions are presented to illustrate the dynamical features of these solutions.
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1 Introduction

As we all know, there are many nonlinear partial differ-
ential equation (NLPDEs) especially soliton equations 
in the fields of physics, chemistry, biology and mechan-
ics. We explain the phenomena and dynamic processes 
in these fields by solving the exact solutions of NLPDEs. 
Naturally, searching exact solutions of NLPDEs becomes 
an important work. In recent years, many methods have 
been proposed to find the exact solutions of the NLPDEs, 
such as Hirota bilinear method [1–4], homogeneous bal-
ance method [5], multiple exp-function method [6, 7], the 
Bäcklund transformation [8]. The Hirota bilinear method is 
considered as a useful method to obtain exact solutions of 
nonlinear evolution equations. We find that a lot of inte-
grable equations can be transformed into Hirota bilinear 
forms by different dependent variable transformations 
such as the KP equation and BKP equation, subsequently, 
different types of solutions can be successfully achieved, 
such as soliton solutions, compacton solutions, Wronskian 
forms of N-soliton soultions, rational solutions (which usu-
ally contain rogue waves and lump solutions) and periodic 

solutions [9–16]. Among them, the periodic solution is the 
one of more important solutions to understand some of 
the natural phenomena. A lot of scholars have constructed 
periodic soliton solutions by using Hirota bilinear forms 
with the aid of symbolic computation [17–19]. Further-
more, some double periodic solutions and quasi-periodic 
wave solutions have been also investigated [20, 21].

In this paper, we will consider the (3+1)-dimensional 
Jimbo–Miwa equation [22], which reads

under the dependent variable transformation

Equation (1.2) can be transformed into the following bilin-
ear form

or, equivalently

(1.1)uxxxy + 3uxuxy + 3uyuxx + 2uyt − 3uxz = 0,

(1.2)u = 2(lnf )x .

(1.3)(D3

x
Dy + 2DtDy − 3DxDz)f ⋅ f = 0,

(1.4)
ffxxxy − fy fxxx − 3fx fxxy + 3fxx fxy + 2ffyt

− 2fy ft − 3ffxz + 3fx fz = 0,
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where f = f (x, y, z, t) is also real function with respect to 
variables x, y, z and t. D3

x
Dy , DtDy and DxDz are called Hirota 

bilinear operators [23] defined by

Many papers focus on analyzing the exact solutions of 
Eq. (1.1). For example, its exact solutions were explicitly 
given by transformed rational function method [24], the 
soliton solutions and Wronskian determinant solutions 
have been obtained by Hirota bilinear forms and Wron-
skian technique [25–27], the Bäcklund transformations 
and Lax system were discussed by Bell-polynomials theory 
[28], the lump and lump-type solutions have been derived 
by Hirota bilinear method [29–36] and some periodic wave 
solutions also have been found in Refs. [37–39].

This paper mainly aims at studying periodic wave solu-
tions of (3+1)-dimensional Jimbo–Miwa equation by using 
the Hirota bilinear form and new three-wave method. 
Through various forms of graphic illustration, we would 
give a better understanding on the evolution of solutions 
of waves.

2  Describe the new three‑wave method

Here, we briefly show the new three-wave method [40, 41]. 

Step 1:  Taking the Cole–Hopf transformation u = 2(lnf )x , 
the Eq. (1.1) is transformed into the proper bilin-
ear form 

 where f = f (x, y, z, t) and the derivatives Dx ,Dy ,Dz ,Dt are 
the Hirota operators.
Step 2:  Based on the Hirota bilinear of Eq.  (2.1), we 

assume that the solution can be expressed in the 
form 

 where ai , bi , ci , li , ki , (i = 1, 2, 3) are real parameters to be 
determined.
Step 3:  Substituting (2.2) into (1.3), with the help of 

maple, collecting all the coefficients about 
cosh

(
c1t + k1x + l1y + b1z

)
,  cos

(
c2t + k2x+

l2y + b2z
)
, cosh

(
c3t + k3x + 3y + b3z

)
, sinh

(
c1t+

k1x + l1y + b1z
)
 , sin

(
c2t + k2x + l2y + b2z

)
 and 

(1.5)

Da
x
Db
t
(f ⋅ g) =

(
�

�x
−

�

�x �

)a(
�

�t
−

�

�t �

)b

× f (x, t)g(x, t)|x� =x,t� =t .

(2.1)H(Dx ,Dy ,Dz ,Dt ,⋯)ff = 0,

(2.2)

f = a1 cosh
(
c1t + k1x + l1y + b1z

)
+ a2 cos

(
c2t + k2x + l2y + b2z

)
+ a3 cosh

(
c3t + k3x + l3y + b3z

)
,

sinh
(
c3t + k3x + l3y + b3z

)
 , whose coefficients 

become zero, we can obtain a set of determining 
equations for ai , bi , ci , li , ki , (i = 1, 2, 3) . By the 
transformation (1.2), we will find the solutions of 
Eq. (1.1).

3  Periodic wave solutions 
of the (3+1)‑dimensional Jimbo–Miwa 
equation

According to the new three-wave method of the above 
stated in Sect. 2, we assume that Eq. (1.1) has the following 
type solutions. That is

where ai , bi , ci , li , ki , (i = 1, 2, 3) are arbitrary real constants.

In order to get the periodic wave solutions, substitut-
ing (3.1) into (1.3), collecting the coefficients about 
cosh

(
c1t + k1x + l1y + b1z

)
 ,  cos

(
c2t + k2x + l2y + b2z

)
 , 

cosh
(
c3t + k3x + l3y + b3z

)
 , sinh

(
c1t + k1x + l1y + b1z

)
 , 

sin
(
c2t + k2x + l2y + b2z

)
 and sinh

(
c3t + k3x + l3y + b3z

)
 , 

we can obtain a system of algebraic system in 
ai , bi , ci , li , ki , (i = 1, 2, 3) . Solving this system of equations 
with the help of symbolic computation, we get the follow-
ing solutions of parameters:

Case 1.

w h e r e  ai(i = 2, 3), b1, cj(j = 1, 2), kp(p = 1, 2, 3)  a n d 
lq(q = 1, 3) are arbitrary real constants.

(3.1)

f = a1 cosh
(
c1t + k1x + l1y + b1z

)
+ a2 cos

(
c2t + k2x + l2y + b2z

)
+ a3 cosh

(
c3t + k3x + l3y + b3z

)
,

(3.2)

a1 = 0, a2 = a2,

a3 = a3, b2 = −
2k3l3

(
−2 k2

3
+ c2

)

3k2
2

,

b3 =
l3
(
−k2

3
+ 3 k2k3

2
+ 2 c2

)
3k2

,

b1 = b1, c1 = c1, c2 = c2,

c3 =
k3
(
−k2

3
− k2k3

2
+ 2 c2

)
2k2

, k1 = k1, k2 = k2, k3 = k3,

l1 = l1,

l2 = −
k3l3

k2
, l3 = l3,



Vol.:(0123456789)

SN Applied Sciences (2019) 1:201 | https://doi.org/10.1007/s42452-019-0198-9 Research Article

Case 2.

w h e r e  ai(i = 1, 2), b3, cj(j = 1, 3), kp(p = 1, 2, 3)  a n d 
lq(q = 2, 3) are arbitrary real constants.

Case 3.

where ai(i = 1, 2, 3), c1, kp(p = 1, 2) and lq(q = 2, 3) are arbi-
trary real constants.

Case 4.

(3.3)

a1 = a1, a2 = a2, a3 = 0, b1 = −
2k2l2

(
2 k1

3
+ c1

)

3k1
2

,

b2 =
l2
(
k1

3
− 3 k1k2

2
+ 2 c1

)
3k1

,

b3 = b3, c1 = c1,

c2 =
k2
(
k1

3
+ k1k2

2
+ 2 c1

)
2k1

,

c3 = c3, k1 = k1, k2 = k2, k3 = k3,

l1 = −
k2l2

k1
, l2 = l2, l3 = l3,

(3.4)

a1 = a1, a2 = a2, a3 = a3, b1 = −
2k2l2(2k

3
1
+ c1)

3k2
1

,

b2 =
l2
(
k1

3
− 3 k1k2

2
+ 2 c1

)
3k1

,

b3 =
k1

3l3
2
+ 3 k1k2

2l2
2
+ 2 c1l3

2

3k1l3
, c1 = c1,

c2 =
k2
(
k1

3
+ k1k2

2
+ 2 c1

)
2k1

, k1 = k1,

k2 = k2,

c3 = −
k2l2

(
k1

3l3
2
− k1k2

2l2
2
+ 2 c1l3

2
)

2l3
3k1

, k3 = −
k2l2

l3
, l1 = −

k2l2

k1
,

l2 = l2, l3 = l3,

(3.5)

a1 = a1, a2 = 0, a3 = a3, b1 =
2k3l3

(
2 k1

3
+ c1

)

3k1
2

,

b3 =
l3
(
k1

3
+ 3 k1k3

2
+ 2 c1

)
3k1

,

b2 = b2, c1 = c1, c2 = c2,

c3 =
k3
(
k1

3
− k1k3

2
+ 2 c1

)
2k1

, k1 = k1, k2 = k2, k3 = k3,

l1 =
k3l3

k1
, l2 = l2, l3 = l3,

w h e r e  ai(i = 1, 3), b2, cj(j = 1, 2), kp(p = 1, 2, 3)  a n d 
lq(q = 2, 3) are arbitrary real constants.

Thus, from Case 1, the f is given by

So we obtain one solution of Eq. (1.1), that is

where k, l is defined by

From Case 2, by the same calculation, we can obtain 
another solution, that is

where f, m, n are defined by

From Case 3, similarly, we can get the third solution, that is

(3.6)

f = a2 cos

(
k2x −

k3l3

k2
y + c2t −

2k3l3
(
−2 k2

3
+ c2

)

3k2
2

z

)

+ a3 cosh

(
k3x + l3y +

k3
(
−k2

3
− k2k3

2
+ 2 c2

)
2k2

t

+
l3
(
−k2

3
+ 3 k2k3

2
+ 2 c2

)
3k2

z

)
.

(3.7)u1 =
2fx

f
=

−2a2k2 sin (k) + 2a3k3 sin (l)

a2 cos (k) + a3 cosh (l)
,

(3.8)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k = k2x −
k3l3

k2
y + c2t −

2k3l3
�
−2 k2

3
+ c2

�

3k2
2

z,

l = k3x + l3y +
k3
�
−k2

3
− k2k3

2
+ 2 c2

�
2k2

t

+
l3
�
−k2

3
+ 3 k2k3

2
+ 2 c2

�
3k2

z.

(3.9)u2 =
2a1k1 sinh (m) − 2a2k2 sin (n)

a1 cosh (m) + a2 cos (n)
,

(3.10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f = a1cosh(m) + a2cos(n),

m = c1t + k1x −
k2l2

k1
y −

2k2l2
�
2 k1

3
+ c1

�

3k1
2

z,

n =
k2
�
k1

3
+ k1k2

2
+ 2 c1

�
2k1

t

+ k2x + l2y +
l2
�
k1

3
− 3 k1k2

2
+ 2 c1

�
3k1

z.

(3.11)u3 =
2 a1k1 sinh (h) − 2 a2k2 sin (r) + 2

a3k2 l2

l3
sinh (s)

a1 cosh (h) + a2 cos (r) + a3 cosh (s)
,
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where f, h, r, s are given by

(3.12)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = a1 cosh (h) + a2 cos (r) + a3 cosh (s),

h = k1x −
k2l2

k1
y + c1t −

2k2l2
�
2 k1

3
+ c1

�

3k1
2

z,

r = k2x + l2y +
k2
�
k1

3
+ k1k2

2
+ 2 c1

�
2k1

t

+
l2
�
k1

3
− 3 k1k2

2
+ 2 c1

�
3k1

z,

s =
k2l2

l3
x − l3y +

k2l2
�
k1

3
3l3

2
− k1k2

2l2
2
+ 2 c1l3

2
�

l3
3k1

t

−

�
k1

3
3l3

2
+ 3 k1k2

2l2
2
+ 2 c1l3

2
�

k1l3
z.

From Case 4, similarly, we can get the fourth solution, that 
is

where f, v, w are given by

(3.13)u4 =
2 a1k1 sinh (v) + 2 a3k3 sinh (w)

a1 cosh (v) + a3 cosh (w)

(3.14)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f = f = a1 cosh (v) + a3 cosh (w),

v = k1x +
k3l3

k1
y + c1t +

2k3l3
�
2 k1

3
+ c1

�

3k1
2

z,

w = k3x + l3y +
k3
�
2k1

3
− k1k3

2
+ 2 c1

�
k1

t

+
l3
�
k1

3
+ 3 k1k3

2
+ 2 c1

�
3k1

z.

Fig. 1  The periodic wave solution of Eq. (3.16) with z = 0, t = 0 . a Perspective view of the wave. b Contour plot

Fig. 2  The periodic wave solution of Eq. (3.16) with z = 0, t = 0 . a x-curve with y = 0 (red), y = 1 (blue) and y = −1 (green). b y-curve with 
x = 0 (red), x = 1 (blue) and x = −1 (green)
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Now we depict the dynamic behaviors of some special 
periodic wave solutions in each Case.

In Case 1, we take the parameters as

get

Its plot when z = 0, t = 0 is showed in Fig. 1 and the wave 
along different axis is depicted in Fig. 2.

(3.15)
a2 =1, a3 = 2, b1 = 1, c1 = 1, c2 = 1, k1 = 2, k2 = 1,

k3 =2, l1 = 1, l3 = 1,

(3.16)

u1 =
−2 sin

(
t + x − 2 y +

4

3
z
)
− 8 sinh

(
3 t − 2 x − y −

13

3
z
)

cos

(
t + x − 2 y +

4

3
z
)
+ 2 cosh

(
3 t − 2 x − y −

13

3
z
) .

In Case 2, we take the parameters as

get

Their plots when z = 0 and t = 10, 30 are respectively 
depicted in Figs. 3 and 4.

In Case 3, we take the parameters as

(3.17)
a1 =1, a2 = 2, b3 = 1, c1 = 1, c3 = 1, k1 = 1,

k2 =2, k3 = 2, l2 = 1, l3 = 1,

(3.18)

u2 =
2 sinh (t + x − 2 y − 4 z) − 8 sin (7 t + 2 x + y − 3 z)

cosh (t + x − 2 y − 4 z) + 2 cos (7 t + 2 x + y − 3 z)
.

(3.19)
a1 = 3, a2 = 12, a3 = 2, c1 = 3, k1 = 1, k2 = −1, l2 = −2, l3 = 1,

Fig. 3  The periodic wave solution of Eq. (3.18) with z = 0, t = 10 . a Perspective view of the wave. b Contour plot

Fig. 4  The periodic wave solution of Eq. (3.18) with z = 0, t = 30 . a Perspective view of the wave. b Contour plot
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Fig. 5  The periodic wave solution of Eq. (3.20) with y = 0, t = 0 . a Perspective view of the wave. b Contour plot

Fig. 6  The periodic wave solution of Eq. (3.20) with z = 0, t = 0 . a Perspective view of the wave. b Contour plot

Fig. 7  The kink solution of Eq. (3.22) with z = 0, t = 0 . a Perspective view of the wave. b Contour plot
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get

Their plots when t = 0 and y = 0, z = 0 are showed in 
Figs. 5 and 6, respectively.

In Case 4, we take the parameters as

get

Their plots when z = 0 and t = 0, z = 0 are showed in 
Figs. 7 and 8, respectively.

4  Conclusions

In this paper, associating with the Hirota bilinear form of 
the (3+1)-dimensional Jimob-Miwa equation, we construct 
the periodic wave solutions and kink solutions through 
the new three-wave method. Some special solutions 
are shown graphically in order to demonstrate that the 
method is quite effective for handling nonlinear evolution 
equations. Meanwhile, the solutions obtained in this paper 
can effectively explain more phenomena in fluid or plasma 
mechanics.

(3.20)u3 =
6 sinh

(
3 t + x − 2 y −

20

3
z
)
− 24 sin

(
4 t + x + 2 y +

8

3
z
)
+ 8 sinh

(
3 t + 2 x − y −

19

3
z
)

3 cosh

(
3 t + x − 2 y −

20

3
z
)
+ 12 cos

(
4 t + x + 2 y +

8

3
z
)
+ 2 cosh

(
3 t + 2 x − y −

19

3
z
) .

(3.21)
a1 =2, a3 = 5, b2 = 6, c1 = 2, c2 = −4, k1 = 1,

k2 =7, k3 = 2, l2 = −2, l3 = −1,

(3.22)

u4 =
4 sinh

(
2 t + x − 2 y −

16

3
z
)
+ 20 sinh

(
t + 2 x − y −

17

3
z
)

2 cosh

(
2 t + x − 2 y −

16

3
z
)
+ 5 cosh

(
t + 2 x − y −

17

3
z
)
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