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Abstract
The bond interface between fiber-reinforced polymer (FRP) and masonry units is one of the weakest links in tensile 
strengthened masonry structures. Several empirical formulae have been proposed for estimation of bond strength 
between FRP reinforcements and masonry units. However, the accuracy of existing formulae for predicting bond strength 
seems to be significantly limited. In the present study, the M5´ and Multivariate adaptive regression splines approaches 
are employed to predict the bond strength between FRP reinforcement and masonry units. To develop new models, a 
comprehensive database including 575 test series (230 distinctive specimens) is collected from different sources in the 
literature. The newly proposed formulations consider several preeminent parameters involved in the debonding pro-
cess including the reinforcement width, the ratio between widths of FRP reinforcement and masonry unit, the tensile 
strength of substrate, the axial strength of reinforcement, and bond length. A comparative study is conducted to evalu-
ate the performances of the developed models against the well-known equations. Results indicated that the proposed 
models remarkably outperform the existing equations in terms of accuracy. Furthermore, a sensitivity analysis is done 
to determine the most important parameters in predicting the bond strength. Finally, the safety of different methods is 
evaluated based on the demerit point classification scale.
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Abbreviations
FRP  Fiber Reinforced Polymer
EBR  Externally Bonded Reinforcement
MARS  Multivariate Adaptive Regression Splines
DPC  Demerit Points Classification
GCV  Generalized Cross-Validation
BF  Basis Function
MAE  Mean Absolute Error
RMSE  Root Mean Square Error
C  Carbon
G  Glass
B  Basalt
S  Steel
CB  Clay Brick
B-old  Ancient Brick
B-new  Recent Brick

NS-tuff  Tuff Natural Stones
YT  Yellow Tuff
GT  Gray Tuff
LS  Lime Stones
NS-Limes  Lime Natural Stones
CS  Calcareous Stones

1 Introduction

Fiber reinforced polymer (FRP) sheets or laminates have 
been successfully applied as externally bonded reinforce-
ment (EBR) systems for quite some time in civil engineer-
ing constructions. In particular, the use of FRP EBR system 
for strengthening and retrofitting the existing masonry 
buildings like monumental heritage is significantly 
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increased. The reason for increasing the use of FRP mate-
rials for retrofitting masonry buildings is due to the favora-
ble properties of FRP EBR techniques such as high strength 
and resistance to corrosion, high durability, non-magnetic, 
high fatigue resistance, and no increment in mass and 
stiffness of the structure [1]. In common practice, the FRP 
EBR technique is designed based on several empirical 
and semi-empirical design equations. The design proce-
dure of FRP EBR technique including installation, loads, 
safety requirements and acceptable features of materials 
has been coded in several guidelines. Different in-plane 
or out-of-plane failure modes of retrofitted masonry units 
have also been investigated in recent years [2, 3].

The bond interface between FRP and masonry units 
is often one of the weakest links in tensile strengthened 
masonry structures, and debonding at this interface is 
one of the critical failure modes of FRP EBR systems. Dur-
ing the design procedure, bond strength at the interface 
level must be taken into account because of its sudden 
and brittle failure. Debonding process is very complex due 
to several preeminent parameters involved in this process 
including mechanical properties of masonry blocks, mor-
tar joints, adhesive, and FRP reinforcement. This mecha-
nism involves the presence of cracks a few millimeters 
underneath the bond line inside the masonry units [4]. 
In fact, FRP debonding will initiate in the substrate if the 
bond strength directly depends on the tensile strength of 
masonry units.

Various experimental studies have been conducted to 
investigate the effect of different influential parameters on 
debonding failure and a number of empirical and analyti-
cal prediction models have been developed. As examples 
of such studies, one can refer to [5, 6]. However, due to 
the complexity and the brittle characteristics of debond-
ing failure mechanism, a remarkable scatter has been 
observed between predicted maximum bond strength 
and the measured ones [7]. Many of these models are 
highly empirical, and their predictive abilities are limited 
by the corresponding data sets from which they were 
derived and do not provide a reliable prediction of maxi-
mum transferable load. Recently, soft computing methods 
have been successfully used to develop predictive models 
for different problems in civil engineering [8–11]. In par-
ticular, Mansouri and Kisi [7] evaluated the applications of 
neuro-fuzzy and neural network approaches for estimation 
of debonding strength for masonry elements retrofitted 
with FRP composites using eight available experimental 
datasets consisting of altogether 109 data points. Results 
showed that approaches can be successfully used to pre-
dict the bond strength. However, these methods do not 
give sufficient insight into the generated models and are 
not as easy to use as the empirical formulas. Gene expres-
sion programming has been used by Mansouri et al. [12] 

to predict the debonding strength of retrofitted masonry 
members using ten available experimental databases [5] 
consisting of 134 data points. Although the approach has 
successfully been used to predict the bond strength and 
results in an explicit formulation of maximum load but it is 
well known that compiling more comprehensive database 
is requisite in generating exact predictive models.

The main purpose of this study is to employ M5′ and 
Multivariate adaptive regression splines (MARS) algorithms 
to develop transparent models to predict maximum bond 
strength and determine the most effective parameters. To 
achieve this aim, a new comprehensive database collected 
from different sources in the literature (230 data points from 
23 available experimental studies). The M5′ model tree as a 
robust data-based method provides understandable formu-
las that allow users to have more insight in the physics of the 
phenomenon [13, 14]. The MARS algorithm is also known 
as a self-organized predictive approach that can discover 
complex behaviors between input and output parameters 
and determine the most effective parameters for predicting 
the maximum bond strength [15]. Five different predictive 
variables that characterize the mechanical and geometrical 
properties related to the FRP rods and the substrate includ-
ing: (1) the reinforcement width, (2) ratio between the 
widths of FRP reinforcement and masonry unit, (3) tensile 
strength of substrate, (4) axial strength of reinforcement and 
(5) bond length are considered as input variables. A com-
parative study is implemented to evaluate the performances 
of the developed models against the most common design 
equations in literature. In addition, the safety analysis based 
on the Demerit Points Classification (DPC) scale has been 
also done to measure the reliability of the proposed formula-
tions. It is demonstrated that the M5′ and MARS algorithms 
can successfully be used as reliable alternative approaches 
to predict the bond strength of FRP EBR systems.

2  Background

Failure of masonry or concrete elements externally bonded 
with Fiber Reinforced Polymer (FRP) under shear stresses 
corresponds to debonding of reinforcement, and the separa-
tion almost occurs a few millimeters below the adhesive. The 
externally bond strength between FRP and masonry sub-
strate have been tested and analyzed generally on the basis 
of a single pull-off test. In the test, the direct tensile force Papp 
is applied to the FRP plate bonded to a masonry substrate 
in order to determine the maximum transferable load (Fmax). 
A sketch of a single pull-off test for FRP to masonry unit is 
given in Fig. 1. The shear behavior of reinforcement elements 
externally bonded to a masonry substrate is often modeled 
by a shear stress-tangential slip law [16]. This model can be 
more refined by a normal stress-displacement law [7].
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It is well-known that the transmissible force increases 
asymptotically up to a maximum value by increasing the 
length of the substrate [17]. The maximum transmissible 
load is related to geometrical/mechanical properties of the 
plate and fracture energy of interface law. In general, the 
maximum transferable force by an anchorage of infinite 
length for substrates made of brittle materials with FRP 
externally bonded is written as:

where x is the longitudinal axis, �(x) is the bond shear 
stress distribution along the interface and bp is the rein-
forcement width. The energy required to achieve a local 
bond element to complete shear debonding is expressed 
as the fracture energy and it is related to the area below 
the interface bond shear stress–slip law, (� − s) and can 
be defined as:

The relationship between the fracture energy of the inter-
face law, Гp, and maximum transferable force Fmax (debond-
ing load) for a bond–slip model based on a general inter-
face bond shear stress–slip law �(s) , is written as [17]:

where Ep is the Young’s modulus of the FRP reinforcement 
and tp is the thickness of the FRP.

(1)Fmax = bp

∞

∫
0

�(x) ⋅ d(x)

(2)�p =
∞

∫
0

�(s) ⋅ d(s)

(3)Fmax = bp

√
2Eptp�p

Depending on the shape of the interface law, a function 
of the strength of the substrate subjected to cracking can 
be defined as the fracture energy, Гp, in the following form:

in which kb representes the effect of the reinforcement 
width on Fmax through a width factor coefficient. k� is the 
coefficient with dimension (L) expressing the shape of the 
(� − s) law. Complete debonding (� = 0) occurs where Sult 
is the ultimate slip of the bond law �(s) and k� = Sult∕2 with 
condition that the bond–slip law is stated as a bilinear law 
[17].

3  Materials and methods

The methodology adopted in this study is based on two 
well-known and practical decision tree algorithms namely 
the M5´ model tree and multivariate adaptive regression 
splines (MARS) approach. The distinctive features of the 
M5′ and MARS algorithms are employed to investigate the 
shear behavior of FRP EBR systems. The details of algo-
rithms are presented as follows:

3.1  M5′ algorithm

M5′ algorithm is an efficient technique for analyzing 
complex systems with very high dimensionality-up to 
hundreds of attributes. Quinlan [13] presented the M5 
algorithm to solve regression and classification problems. 
Later, Wang and Witten [14] improved the M5 algorithm 
to so-called M5′ algorithm. The M5′ algorithm divides a 

(4)�p = k�kb�max

Fig. 1  Schematic diagram of 
single pull-off test for FRP to 
masonry substrate
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complex problem into a number of simple sub-problems 
and provides the response as a combination of the solu-
tions of these sub-problems. The M5′ algorithm gener-
ally includes three processes: (i) building the initial tree; 
(ii) pruning the tree; and (iii) smoothing. An initial tree is 
constructed by dividing data space into smaller subspaces 
based on the divide and conquer method [18]. For more 
illustration, the structure of a derived decision tree with 
two input parameters based on the method of dividing the 
sample space is depicted in Fig. 2. The developed model 
tree looks like an inverted tree in which the root is on the 
top while the leaves are at the bottom. The leaves (i.e., sub-
spaces) are identified based on the divide and conquer 
method (see Fig. 2a). Then, a multivariate linear regression 
(MLR) model is created at each leave (see Fig. 2b).

As shown in Fig. 2a, there are some splitting values that 
divide the whole data sets into several subsets. These split-
ting values are selected from input variables that maximize 
the expected error reduction at each node. The standard 
deviation reduction, SDR, is calculated as a measure of the 
error at each node as follows:

in which T is the set of instances that reach the node, Ti 
is resulted from splitting the node according to a given 
attribute and split value, and sd is the standard variation. If 
the output values of all instances that reach the node vary 
by less than 5% of the standard deviation of the original 
instance set or when few instances remain, the splitting 
procedure will automatically cease. After building the tree, 
a MLR model is created at the bottommost subspace. Dur-
ing generating model tree and MLR model at each leave, 
the over-fitting problem is often inevitable. To mitigate 
this problem, a pruning procedure is usually applied. To 
detect the over-fitting problem, the algorithm provides 
an estimation of expected errors for the testing data set. 
To achieve this, the average of absolute errors between 
the estimated response values by the unpruned tree and 
the actual ones are calculated for the training instances 
that reached each node. However, this average value can 

(5)SDR = sd(T ) −
∑

i

||Ti||
|T |

× sd
(
Ti
)

Fig. 2  The M5′ algorithm 
a splitting the input space 
 X1  ×  X2 to 4 subsets, b final 
developed model based on 
algorithm
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underestimate the expected error for the validation data-
set; in fact, this problem happens because the generated 
tree was actually built based on the training dataset. Con-
sequently, the response values are multiplied by the factor 
(n + v)/(n − v), where n is the number of training data vec-
tors that reach the node and v is the number of attributes 
in the model that represent the output value at that node. 
As a result, the generated leaves that their estimated errors 
are bigger than previous nodes (parents) can be removed 
by the algorithm.

To mitigate the sharp discontinuousness between 
adjacent leaves (classes), the M5′ algorithm employs the 
smoothing phase at various leaves of the pruned tree [19]. 
In this procedure, the estimated value of each leave is fil-
tered along the path back to the root. The value at each 
node that is joining with the estimated value of the linear 
model for that node is calculated as follows:

where P′ is the prediction value which is passed up to the 
next higher node, p is the prediction which is passed to 
the current node from the below, q is the predicted value 
by the developed model at that node, n is the number of 
training instances reached to the previous node, and k is a 
constant Wang and Witten [14]. Finally, the M5′ algorithm 
yields a set of linear multivariable equations (rules) to esti-
mate the target values as shown in Fig. 2b.

4  Multivariate adaptive regression splines 
algorithm

Multivariate adaptive regression splines (MARS) was 
firstly proposed by Friedman [15] as a nonlinear and non-
parametric intelligent computing regression algorithm. 
The MARS algorithm models the nonlinear relationship 
between input and output variables by employing a series 
of piecewise linear or cubic segments (splines). The final 
developed model based on the MARS algorithm is pre-
sented as a linear combination of the piecewise equation 
which is also known as the basis functions (BFs). The slope 
and curvature of each BFs change from one segment to 
the next one. The segments are connected to each other 
at a point that called knot. In fact, a knot specifies the end 
of one region of data and the beginning of another. Unlike 
the well-known parametric linear regression methods, 
the MARS algorithm can model the nonlinear relation-
ship between predictive and response values with more 
flexibility. The algorithm makes no assumptions about the 
functional relationship between response and predictor 
variables. To achieve more flexibility, the MARS algorithm 

(6)P� =
np + kq

n + k

searches all possible interactions between input variables 
by checking all degrees of interactions. On the other hand, 
it can discover the complex structures latent in a high-
dimensional problem by considering all functional forms 
and also interactions. The general MARS function can be 
given as follows:

where f̃ (x) is the predicted response, β0 and βm are con-
stants which must be determined based on an optimi-
zation problem and m is the number of basis functions 
included into the model. It should be stated that the basis 
functions can also be generated based on a product of 
two or more spline functions for different predictive vari-
ables. In general, the spline basis function, λm(x), can be 
calculated as:

where (k,m) is the number of knots, s(k,m) takes either 1 or 
− 1 and represents the right/left regions of the associated 
step function, v(k,m) is the label of the predictor variable 
and t(k,m) is the knot location.

In order to illustrate how the MARS algorithm can detect 
data patterns using piecewise linear spline functions, an 
example is given in Fig. 3. The MARS mathematical equa-
tion is as follows for this example:

in which BF1= max(0, x − 4), BF2= max(0, 4− x), and 
BF3= max(0, x − 10) and max is defined as: max(x1, x2) is 

(7)f̃ (x) = 𝛽0 +

m∑

i=1

𝛽m𝜆m(x)

(8)�m(x) =

m∏

k=1

[
S(k,m)

(
Xv(k,m) − t(k,m)

)]

(9)y = 4.32+2 × BF1 + 1.5 × BF2 − 3.2 × BF3

Fig. 3  Knots and linear splines for a simple MARS example
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equal to x1 if x1> x2, else x2. x =4 and x =10 are the location 
of knots. These two knots divide the x range into three 
intervals where different relationships are detected.

MARS produces the basis functions by searching in a step-
wise manner. The knot locations are determined based on an 
adaptive regression. The final predictive model is generated 
based on a two-stage forward and backward procedures. 
The MARS approach overfits to training database by includ-
ing a great number of basis functions in the forward stage. 
To avoid the overfitting problem, the redundant basis func-
tions are removed from Eq. (8) in the backward stage. MARS 
employs the Generalized Cross-Validation (GCV) as a crite-
rion to remove the redundant basis functions. The expres-
sion of GCV is defined as [20]:

in which N is the number of data and C(B) is a complexity 
penalty that increases with the number of basis function 
(BF) in the model. The complexity penalty is given as:

where d is a penalty for each BF included into the model 
and B is the number of basis functions [15].

5  Model development

5.1  Influential parameters

According to previous studies in the literature, several 
preeminent parameters can involve in the debonding 
process of FRP EBR systems. The most important factors 
commonly used in the previous models and codes includ-
ing the reinforcement width, ratio between widths of FRP 
reinforcement and masonry unit, tensile strength of sub-
strate, axial strength of reinforcement, and bond length 
are employed as the predictor variables in the present 
study. Consequently, the formulation of maximum bond 
strength is considered as follows:

where fmt is tensile strength of substrate, Eptp is axial rigid-
ity of FRP reinforcement, bp is the width of FRP reinforce-
ment, Lb is the bond length, and kb is width factor, which 
the common expression for this factor is as follow [21]:

The width factor, as defined in the Eq. (13), particularly 
depends on the ratio between FRP plate width and 

(10)GCV =
1

N

N∑

i=1

[
yi − f̂

(
xi
)]2

∕

[
1 −

C(B)

N

]2

(11)C(B) = (B + 1) + dB

(12)Fmax = f
(
fmt , Eptp, bb, Lb, kb

)

(13)kb =

√(
3 − bp∕bm

)
∕
(
1 + bp∕bm

)

masonry substrate width (bp/bm). Recent studies con-
firmed that the failure mechanisms leading to debonding 
are three dimensional when the FRP reinforcement width 
is smaller than the substrate width [16, 22]. In particular, 
when the bond length is comparable with the width, the 
bond stresses can spread laterally over the actual bonded 
width and, thus a volume of material is involved in the 
debonding mechanism. In order to take this three-dimen-
sional effects into account in the final models, kb is consid-
ered as an input variable.

5.2  Dataset description

In this study, for the first time, a comprehensive collec-
tion of 575 test series obtained from published literature 
[4, 23–42] are used to model maximum bond strength 
between FRP reinforcement and masonry units. It should 
be noted that some tests were conducted several times 
on a particular specimen for the same conditions. In this 
regard, the average of maximum bond strength recorded 
in identical tests is used to develop models. Therefore, 
230 distinctive data points are derived from 575 test 
series. Details of datasets used and the range of input 
and output variables are presented in Table 1. Test results 
obtained from single or double lap shear test have been 
only employed to ensure that the results are more homo-
geneous. The Database consists of different types of FRP 
materials including carbon (C), glass (G), basalt (B) and 
steel (S). Different types of masonry units including clay 
brick units (CB); ancient and recent brick units (B-old and 
B-new, respectively); tuff natural stones (NS-tuff ); Yellow 
and Gray tuff (YT and GT); lime stones (LS); lime natural 
stones (NS-Limes); calcareous stones (CS) were considered. 
The models are developed for all type of FRP materials and 
mentioned masonry units. For more visualization, matrix-
plot of input and output parameters is represented in 
Fig. 4. This figure considers all possible scatter plots that 
can be plotted between input and output parameters. In 
fact, the matrix-plot is used to assess the existing relation-
ships between pairs of input and output variables at once. 
This type of plot is effective when you have many variables 
and you would like to see relationships between pairs of 
variables. For example, all possible scatterplots between kb 
parameter and other input and output variables are dem-
onstrated in the first column of this matrix-plot. The histo-
grams of input and output parameters for the whole data 
points are also illustrated in the diagonal of this matrix. It 
should be noted that the results of developed models are 
more reliable in ranges of input variables in which data 
points are more concentrated.

To develop new models based on M5′ and MARS algo-
rithms, the whole dataset is randomly divided into two 



Vol.:(0123456789)

SN Applied Sciences (2019) 1:199 | https://doi.org/10.1007/s42452-019-0180-6 Research Article

Ta
bl

e 
1 

 D
et

ai
ls

 o
f d

at
ab

as
e 

an
d 

ra
ng

e 
of

 in
pu

t a
nd

 o
ut

pu
t v

ar
ia

bl
es

Ex
pe

rim
en

-
ta

l p
ro

gr
am

N
o.

 o
f t

es
ts

M
as

on
ry

FR
P

L b (
m

m
)

b p (
m

m
)

E p (
G

Pa
)

T p (
m

m
)

F cm
 (M

Pa
)

F m
t (

M
Pa

)
B m

 (m
m

)
B p/

b m
F m

ax
,e

xp
 (K

N
)

[2
3]

2
N

S-
tu

ff
C

20
0

10
0

23
0

0.
16

5
2

–
20

6
0.

48
54

3
12

.5
[2

4]
17

N
S_

lim
es

.
C

10
0–

15
0

50
23

0
0.

13
2.

2–
4.

4
0.

2
10

0
0.

5
3.

3–
4.

9
[2

5]
5

N
S_

lim
es

. &
 N

S-
tu

ff
C

15
0

80
23

4–
24

6
0.

16
5–

0.
18

5
5_

26
1–

2
10

0
0.

8
8.

1–
9.

25
[2

6]
7

YT
C

15
0–

20
0

10
0

23
0

0.
16

5
3.

2–
3.

7
0.

3–
0.

4
20

0–
25

0
0.

4–
0.

5
7.

96
–2

0
[2

5,
 2

7]
27

LS
C&

G
15

0
80

81
.4

–2
46

0.
16

5–
0.

23
24

2.
4

10
0–

20
0

0.
33

3–
0.

8
6.

22
–1

2.
85

[2
5,

 2
7]

8
YT

C&
G

15
0

80
81

.4
–2

46
0.

16
5–

0.
23

5–
5.

5
0.

5–
0.

6
10

0–
20

0
0.

4–
0.

8
7.

8–
9.

84
[2

5,
 2

7]
4

G
T

C&
G

15
0

80
81

.4
–2

34
0.

16
5–

0.
23

4.
1

0.
4

20
0

0.
4

10
.9

8–
12

.7
6

[2
8]

25
CS

C
15

0
50

23
0

0.
35

2.
2–

11
.3

0.
2–

1.
1

10
0

0.
5

3.
58

–5
.6

5
[2

8]
11

CS
C

10
0–

15
0

50
23

0
0.

35
2.

9–
4.

2
0.

3–
0.

4
10

0
0.

5
3.

28
–4

.9
3

[2
9]

14
B-

ol
d 

&
 B

-n
ew

C
12

0–
29

0
50

24
0

0.
17

17
.4

–4
0.

2
1.

9
12

0–
14

0
0.

35
7–

0.
41

6
7.

4–
10

.2
[2

9]
10

CB
C

15
0–

29
0

50
24

0
0.

17
24

.9
–4

0.
2

2.
5–

4
12

0–
14

0
0.

35
7–

0.
41

7
14

.8
–2

0.
4

[2
7]

9
N

S_
lim

es
. &

 N
S-

tu
ff

C&
G

15
0

80
81

–2
34

0.
16

5–
0.

37
5.

5–
24

0.
4–

3.
3

10
0

0.
8

6.
2–

12
.8

[3
0]

10
CB

C&
G

20
0

50
65

–2
30

0.
16

5–
0.

23
42

.3
4.

2
12

0
0.

41
7

13
.3

4–
18

.1
[3

1]
45

CB
C

15
0–

24
0

40
–8

0
23

0
0.

16
5

17
.4

1.
7

12
0

0.
33

3–
0.

66
7

10
.0

3–
19

[3
2]

3
CB

C&
G

25
0

50
73

–2
40

0.
09

7–
0.

17
7.

3
0.

7
12

0
0.

41
7

5.
25

–1
3

[3
2]

3
CB

G
25

0
50

73
0.

12
7.

25
0.

7
12

0
0.

41
7

10
.5

[3
2]

9
B-

ol
d

C&
G

&
S

25
0

50
73

–2
40

0.
09

7–
0.

17
7.

3
–

14
0

0.
35

71
43

5.
26

6–
11

.5
[3

3]
4

B-
ne

w
C

12
0–

16
0

25
16

0
1.

2
38

.5
–

12
0

0.
20

83
33

8.
3–

10
.4

[3
3]

13
B-

ne
w

S
16

0
25

19
0

0.
22

7
27

.3
–3

8.
5

–
12

0
0.

20
83

33
6.

24
–1

2.
04

[3
4]

9
CB

C&
G

15
0–

20
0

25
80

–2
15

0.
11

7–
0.

14
9

8.
8

0.
9

13
0

0.
19

2
4.

34
–4

.9
1

[3
5]

4
B-

ne
w

C
10

0
12

23
0

0.
16

7
35

.6
–

10
0

0.
12

5.
57

5
[3

6]
8

YT
C&

G
30

0
10

0
80

.7
–2

30
0.

16
6–

0.
48

2.
1–

3.
8

0.
2–

0.
4

25
0–

25
2

0.
39

7–
0.

4
14

.2
3–

18
.5

1
[3

6]
5

N
S-

tu
ff

C&
G

30
0

10
0

81
–2

30
0.

16
4–

0.
48

3.
8

0.
4

25
0

0.
4

19
.9

6–
20

.9
5

[3
7]

30
N

S_
lim

es
. &

 N
S-

tu
ff 

&
 B

-n
ew

C&
G

23
0–

24
5

51
–1

29
81

–2
30

0.
16

4–
0.

34
2

2.
3–

70
0.

3–
5.

7
11

8–
12

9
0.

42
5–

1
11

.5
–3

6.
4

[3
8]

10
CB

C
20

0
50

24
0

0.
17

9.
9

1
12

0
0.

41
7

6.
28

–8
.9

7
[3

9]
7

B-
ol

d
G

20
0

50
12

4
0.

17
2

16
.3

–3
2.

9
1.

8–
4.

9
11

0–
12

7
0.

39
3–

0.
45

4
4.

45
–7

.2
[3

9]
8

CB
C

20
0

50
13

2
0.

17
2

16
.4

–3
1.

8
1.

6–
3.

2
11

0–
13

0
0.

38
5–

0.
45

5
4.

54
–7

.3
6

[4
0]

1
N

S_
lim

es
.

C
15

0
80

24
5

0.
16

5
31

3.
9

10
0

0.
8

9.
8

[4
1]

6
CB

C&
B&

G
20

0
50

73
–2

40
0.

12
–0

.1
65

19
.2

1
1.

9
12

0
0.

41
7

4.
93

–6
.8

1
[4

1]
23

CB
G

16
0

50
84

0.
12

19
.8

2
12

0
0.

41
7

3.
88

–5
.0

9
[4

1]
62

CB
C&

B
16

0
50

88
.3

97
–2

33
0.

14
–0

.1
7

19
.8

–2
0.

8
2–

2.
1

12
0–

12
1

0.
41

3–
0.

41
7

4.
61

–9
.0

7
[4

1]
16

3
B-

ne
w

C&
B&

G
&

S
16

0
50

84
–2

34
0.

12
–0

.2
31

19
.8

1.
8

12
0

0.
41

66
67

4.
04

–1
2.

24
[4

2]
5

B-
ol

d
G

25
0

50
70

0.
12

15
.4

1.
6

12
0

0.
41

66
67

5.
98

[4
2]

8
B-

ol
d

C
15

0
35

39
0

0.
23

11
.4

–1
7.

2
1.

6–
1.

9
13

1–
14

7
0.

23
8–

0.
26

7
5.

6–
10

.4
33



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:199 | https://doi.org/10.1007/s42452-019-0180-6

parts such that 70% (161 data vectors) were used for the 
learning process and 30% (69 data vectors) were employed 
to test the developed models. The training and testing 
databases are presented in Tables 8 and 9, respectively, in 
the “Appendix” section.

5.3  The M5′ model

M5′ algorithm divides data spaces into smaller subspaces 
and it builds a local multivariate linear regression (MLR) in 
each subspace. In fact, creating only a local MLR to predict 
response values is one of the disadvantages of the M5´ 
algorithm. To mitigate this limitation, all input and output 
parameters are transformed to logarithmic space and the 
M5´ algorithm is developed in this space. Then, the devel-
oped local MLR model in each subspace is rewritten as:

where a1, a2,…, a6 are constants. The M5′ algorithm pro-
vides its predictive model in the form of rules. These rules 
are quite simple and user-friendly that can be easily used 
to develop a practical model for predicting the bond 
strength. The developed model tree is shown in Fig. 5. The 
developed rules are as follows:

(14)Fmax = a1f
a2
mt

(
Eptp

)a3ba4
f
L
a5
b

(
bp

bm

)a6

(15a)

LM1 ∶ Fmax = 0.0166f 0.2072
mt

(
Eptp

)0.2785
b0.088
p

L0.9004
b

(
bp

bm

)−0.0407

Fig. 4  Box-plots of input and output variables
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Fig. 5  The M5′ data splitting diagrams
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It is seen that bp and bp/bm parameters were selected as 
the major classification parameters and the equations 
were separated at bp= 50.5 mm and bp/bm= 0.47. According 
to the selected splitting parameters, it can be interpreted 
that the width of reinforcement and its ratio with substrate 
width are very important parameters in the prediction of 
maximum bond strength. This is in line with the obtained 
results in the previous subsection, where the correlation 
coefficient (R) between the bp and Fmax was one of the 
highest among other parameters (see Fig. 4). It should be 
noted that the splitting value should not necessarily have 
a specific physical interpretation because it is determined 
based on minimizing the prediction error [43]. However, 

(15b)
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mt
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L0.2015
b
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most of the underlying physical interpretations of derived 
equations are in line with structural engineering sense.

For example, the developed equations show that the 
maximum bond strength decreases as the ratio between 
bp and bm (bp/bm) increases. This can be justified that as 
the bp/bm increases, the effects of three-dimensional shear 
transfer increases. When the bp/bm< 1, the larger failure sur-
face involved in the bond mechanism, and consequently, 
the bond stresses can spread laterally over the bond width 
(bp). On the contrary, when the ratio bp/bm tends to 1 (cor-
responding to plane strain conditions), the fracture energy 
per unit of FRP-width is smaller than in case of bp/bm< 1. 
As seen in Eq. (15), the M5′ algorithm correctly captured 
this underlying physical concept. Furthermore, according 
to the developed tree in Fig. 5, the prediction of maximum 
bond strength for smaller FRP-width (< 50.5 mm) is more 
complex and the algorithm divided the space of problem 
into three subspaces. This is due to this fact that consider-
ing the effects of three-dimensional shear transfer in real 
problems is a quite complex task, which is also addressed 
in [44].

Furthermore, the developed equations show that the 
bond strength increases as bond length (Lb), the mean 
tensile strength of substrate (fmt) and axial strength of 
reinforcement (Eptp) increase in all the rules. Hereinaf-
ter, the maximum bond strength refers to the maximum 
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transmissible force (Fmax). These results are all expected 
cases in the investigation of the debonding process. How-
ever, the nonlinear relationships between these param-
eters and maximum bond strength are different in each 
class. In order to have a better illustration of the maximum 
bond strength behaviors, scatter diagrams of the observed 
maximum bond strength and Lb, Eptp and fmt parameters 
are demonstrated for each class in Fig. 6. According to 
Eq.  (15), the maximum bond strength approximately 
increases linearly as Lb increases in both classes 1 (LM1) 
and 4 (LM4). On the other hand, experimental observations 
confirmed this behavior and the M5′ algorithm correctly 
captured this behavior (see Fig. 6). This figure also shows 
that the maximum bond strength is slightly affected by 
varying the Eptp parameter, especially in LM2, LM3 and 
LM4 classes. The most effect of Eptp on bond strength was 
observed in class 1 in which bond width and the ratio 
between bond width and substrate width were the small-
est. According to Eq. (15), the Eptp parameter has also the 
larger power in LM1 while its power was remarkably smaller 
in other classes. The fmt parameter has also approximately 
similar trends in each class. As seen in Fig. 6 and Eq. (15), 
the most effect of fmt on bond strength was observed in 
classes 1 and 2 while its influence was less in classes 2 and 
3. However, the influence of fmt in class 3 is more than its 
influence in class 2 and this parameter plays as a splitting 
criterion for separating these classes. As a result, it can 
be concluded that the maximum bond strength behav-
ior is more complicated in ranges of bp≤ 50.5 mm and bp/
bm> 0.47 (LM2 and LM3) than other ranges, therefore, more 
experimental investigations could be of interest for future 
work in these ranges.

In general, most results derived from M5′ algorithm are 
based on information inherent in the collected database. 
As stated, the obtained results physically sound but some 
nonlinear relationships between input and output param-
eters may be different in comparison with other existing 
equations. For example, the relationship between Lb (or 
Le, effective length) and Fmax in most equations in litera-
ture are linear while this linear relation was found by M5′ 
algorithm only in two classes. However, it is shown that 
the M5′ results are more compatible with experimental 
observations.

5.4  The MARS model

As stated in the previous section, the MARS algorithm can 
be developed based on either piecewise linear or cubic 
splines. In this study, both segments have been used to 
develop model; but the developed model based on piece-
wise linear segment, which had better performance, is 
only presented. After presenting the training data set to 

the MARS algorithm, the following equation for maximum 
bond strength is derived:

The basis functions (BFs) and their corresponding equa-
tions are listed in Table 2. It should be noted that, from 
Table 2, that of 14 BFs, 12 BFs with interaction terms are 
integrated into this model. This observation confirms that 
the developed MARS model is just not simply based on 
additive splines and interaction terms between different 
spines also play a remarkable role in the developing pro-
cess. According to Eq. (16) and Table 2, the MARS algo-
rithm can capture the nonlinear relationship between 
input and output variables without any additional effort 
for considering a priori assumption about the relationship 
between input and response variables. This feature of the 
MARS algorithm is more practical when the dimension and 
parameters involved in the problem increase.

6  Results and discussions

To statistically measure the performances of the devel-
oped models, four statistical error parameters were 
employed as follows: mean absolute error (MAE), root 
mean square error (RMSE), correlation coefficient (R) and 
coefficient of determination (R2).

(16)

Fmax(kN) = 17 − 0.71 × BF1 − 1.2 × BF2 + 0.25 × BF3

− 0.076 × BF4 + 3.8 × 103 × BF5

− 0.019 × BF6 − 0.94 × BF7 + 0.11BF8

+ 0.067BF9 − 7.5 × 104BF10

+ 3.7 × 103BF11 − 3.8 × 103BF12 − 3BF13

Table 2  The basis functions (BFs) of the developed MARS model

Basis func-
tion number

Equation

BF1 max(0, 60–bp)
BF2 max(0, 3.3–fmt)
BF3 max(0, 160–Lb)
BF4 max(0, 38–Eptp)
BF5 BF1 × max(0, 0.36–bp/bm)
BF6 BF3× max(0, bp–35)
BF7 max(0, bp–60) × max(0, 0.4–fmt)
BF8 max(0, Lb–160) × max(0, fmt–1.9) × max(0, bp/bm–0.45)
BF9 max(0, Lb–160) × max(0, fmt–1.9) × max(0, 0.45–bp/

bm) × max(0, Eptp–21)
BF10 max(0, 0.36–bp/bm)
BF11 BF10 × max(0, bp–40)
BF12 BF10× max(0, 40–bp)
BF13 BF3 × max(0, 0.27–bp/bm)
BF14 max(0, 1.1–fmt) × max(0, bp–50)
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where Oi is the measured value; Pi stands for prediction val-
ues; N is the number of data points; Om is the mean value 
of observations; and Pm is the mean value of predictions.

6.1  Performance analysis

The number of data used to develop a reliable model 
based on data mining approaches plays a crucial role in 
the modeling process. Frank and Todeschini [45] sug-
gested that the minimum ratio between the number of 
data used and the number of involved variables should 
be 3. A safer value of 5 can be more conservative. In the 
present study, this ratio is remarkably more and is equal 
to 230/7 = 32.85. For evaluation of the developed models, 
the scatter diagrams between measured and predicted 

(17)MAE =

∑N

i=1
��Pi − Oi

��
N

(18)RMSE =

√√√√ 1

N

N∑
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)2
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�
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maximum bond strength based on M5′ and MARS algo-
rithms for testing and training data points are shown in 
Fig. 7. As seen, there are little scatters between predicted 
and measured values of bond strength around the opti-
mal line in both training and testing sets; and data points 
mostly concentrated around this line. For further verifica-
tion of the developed models, analytical analysis of statisti-
cal error parameters for training and testing data sets are 
presented in Table 3.  

Most previous studies applied the correlation coef-
ficient (R) to measure the correlation between observed 
and predicted values. Smith [46] suggested that if |R| > 0.8, 
there is a strong correlation between measured and pre-
dicted values. However, R cannot necessarily be con-
sidered as an indicator for the goodness of correlation 

(a) (b)

Fig. 7  Comparisons between measured and predicted values of Fmax (kN). a M5′ and b MARS

Table 3  The performances of the developed models

Models MAE RMSE SI (%) R R2

M5′
Training 1.8191 3.0476 31.4 0.8606 0.7094
Testing 1.3317 1.9082 32.76 0.8524 0.7137
Total 1.6749 2.7458 31.79 0.8536 0.7133
MARS linear
Training 1.2510 1.7449 19.70 0.9455 0.8934
Testing 1.3658 1.8632 22.94 0.9157 0.8315
Total 1.2854 1.7812 20.62 0.9377 0.8793
MARS cubic
Training 1.4040 1.9887 22.45 0.9283 0.8616
Testing 1.3389 1.9722 24.28 0.9017 0.8112
Total 1.3845 1.9837 22.97 0.9221 0.8503
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between observed and predicted values; particularly, 
when data range is very wide and the data points distrib-
uted about their mean. Therefore, in the present study, 
the R2 parameter is employed as an unbiased estimate 
and also a better measure for evaluating the correlation 
between observed and predicted values. The MAE and 
RMSE are also used to measure the absolute difference 
between predicted and measured values. These values 
must be near to zero for having a close match between 
observed and predicted values. As shown in Table 3, the 
MARS model constructed based on piecewise linear basis 
segments outperformed the models of MARS with cubic 
segments and M5′ in terms of accuracy for both training 
and testing data sets. For example, it decreases the RMSE 
value by 11% and 35%, respectively, and increases the 

R2 values by 3.4% and 23.2% in respect to MARS model 
with cubic segment and M5′ model, respectively. It should 
be noted that the performances of the developed MARS 
with cubic segments and M5′ models are also acceptable 
and MARS with cubic segments also outperforms the M5′ 
model.

The performances of the developed MARS (with lin-
ear segments) and M5′ models are also compared with 
the most common existing equations including Tanaka 
[47], Sato (from [48]), Iso (from [48]), Yang et al. [49], Neu-
bauer and Rostasy [50], Willis et al. [6], Kashyap et al. [5], 
Maeda et al. [51], Khalifa et al. [52], De Lorenzis et al. [53], 
ACI guideline [54], and CNR guideline [55]. The statistical 
error parameters related to these equations are presented 
in Table 4. As shown, the accuracy of these equations is 
remarkably limited. However, the CNR model has the best 
performance among other existing design equations. 
The proposed M5′ and MARS models outperform the CNR 
model by improving the R2 value by 51% and 86%, respec-
tively and the RMSE value by 42% and 55%, respectively. 
Therefore, the proposed models can predict the target val-
ues of the maximum bond strength with an acceptable 
level of accuracy and are remarkably more accurate than 
the available empirical models over a wide range of input 
parameters.

The histograms of discrepancy ratio between measured 
and predicted maximum bond strength (DR = Fmax, meas/
Fmax, pre) by equations of Tanaka [47], Yang et al. [49], Neu-
bauer and Rostasy [50], Khalifa et al. [52], and the proposed 
ones (M5′ and MARS) are illustrated in Fig. 8. The errors of 
a good predictive equation should be close to one and 
also be symmetrical around their mean values. A wider 
distribution generally leads to more uncertainty. As seen in 
Fig. 8, the distribution errors of mentioned empirical equa-
tions are remarkably wide and their predictions generally 

Table 4  Comparison of the developed models with the most com-
mon equations

Model MAE RMSE SI (%) R R2

Tanaka [46] 3.60 4.42 51.27 0.53 0.25
Sato [47] 13.35 17.97 208.17 0.49 − 11.29
Iso [47] 21.82 27.65 320.24 0.79 − 28.09
Yang et al. [48] 2.91 4.25 49.3 0.69 0.31
Neubauer and Rostasy [49] 3.56 4.60 53.27 0.67 0.19
Willis et al. [6] 5.29 6.85 79.33 0.57 − 0.78
Kashyap et al. [5] 8.04 12.70 147.12 0.38 − 5.14
Maeda et al. [50] 5.89 6.98 80.88 0.51 − 0.85
Khalifa et al. [51] 3.10 4.52 0.5242 0.66 0.22
De Lorenzis et al. [52] 10.66 12.40 143.63 0.47 − 4.85
ACI 440.2R-08 8.57 10.82 125.63 0.47 − 3.47
CNR. DT 200/2012 2.88 3.73 43.21 0.80 0.47
M5′ (preset study) 1.67 2.74 31.79 0.85 0.71
MARS (present study) 1.28 1.78 20.62 0.93 0.87

Fig. 8  The histograms of 
discrepancy ratio between 
measured and predicted 
maximum bond strength by 
different models
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underestimate the values of maximum bond strength. 
On the contrary, the distribution errors of the proposed 
M5′ and MARS models concentrate around 1 and they just 
slightly underestimate the bond strength.

The variations of DR values of different empirical equa-
tions and the proposed ones as a function of axial rigidity 

(Eptp) are shown in Fig. 9. A good model has errors that are 
independent of the input parameters [56]. The errors of 
Tanaka [47], Yang et al. [49], Neubauer and Rostasy [50], 
and Khalifa et al. [52] formulas are very sensitive to the var-
iation of Eptp. However, according to Fig. 9, the model trees 
had a better performance than the others in this aspect. In 
addition, this figure shows that Eptp is included in a better 
way in the developed models. A similar process has also 
been observed (not shown) for other input parameters, 
such as bond length, the width of reinforcement, the ratio 
between the width of reinforcement and substrate, and 
the tensile strength.

6.2  Sensitivity analysis

In this study, a sensitivity analysis based on the distinctive 
features of MARS algorithm is done to specify the impor-
tance of each input parameter in the developing process 
of the final predictive model. To achieve this, the Analysis 
of Variances (ANOVA) decomposition of the developed 
MARS models based on both with piecewise linear and 
cubic segments is presented in Table 5. In the first column, 
the number of each ANOVA function is presented. The 
second column gives the standard deviation of the cor-
responding ANOVA functions. In fact, the standard devia-
tion can be interpreted as an indicator for measuring the 
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Fig. 9  The variations of DR values of different models as a function of axial rigidity (Eptp)

Table 5  The analysis of variances (ANOVA) decomposition of the 
developed MARS models

Func-
tion

STD GCV Variable(s)

Linear Cubic Linear Cubic

1 2812.925 49.643 11,572,307.35 3607.591 bp/bm

2 1.242 2.122 12.99 33.324 fmt

3 0.759 0.961 5.415 8.992 Eptp

4 5.647 5.213 105.579 87.188 bp

5 4.032 3.169 32.75 29.965 Lb

6 2817.19 52.778 11,038,785.57 3922.107 bp/bm, bp

7 1.904 1.454 9.351 14.589 bp/bm, Lb

8 1.111 1.505 6.018 10.967 fmt, bp

9 4.832 4.555 47.506 54.292 fmt, Lb

10 2.038 1.848 10.11 12.049 fmt, bp/bm, 
Lb

11 1.35 0.384 6.929 7.618 fmt, bp/bm, 
Lb, Eptp



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:199 | https://doi.org/10.1007/s42452-019-0180-6

relative contribution of each ANOVA function in develop-
ing process of the final predictive model. The most impor-
tant indicator is the GCV score which is given in the third 
column of Table 5. The GCV score for each ANOVA function 
is calculated based on this assumption that the mentioned 
ANOVA function is removed from the final developed 
model. The more GCV score indicates that the importance 
of the mentioned ANOVA function is more significant in 
comparison with other functions for developing the final 
predictive model. According to Eq. (10), the GCV score is 
a criterion for both accuracy and complexity of the devel-
oped model. In other words, the GCV scores reported in 
Table 5 indicate how much the accuracy and complexity 
of the developed model can change by removing an input 
variable from the model development process The input 
variables associated with each ANOVA function are also 
presented in the last column of Table 5 [15]. This ability 
of MARS can be employed to specify the most influential 
parameters in the prediction of bond strength of EBR FRP 
systems.

In Fig. 10, the relative importance of the input param-
eters for the developed MARS models based on ANOVA 
analysis is depicted. The relative importance of each input 
parameter was determined based on the increase of GCV 
value that caused by removing the considered variables 

from the developed MARS model. For example, accord-
ing to Table 5, bp parameter was involved in the ANOVA 
functions of 4, 6, and 8. In order to calculate the impor-
tance of this variable, the summation of GCV scores of 
the mentioned ANOVA functions are calculated, and then 
it was divided to the global GCV value, i.e., the summa-
tion of all GCV values in Table 5. Therefore, according to 
Table 5, the ANOVA functions with parameters of bp and 
bp/bm remarkably improved the GCV values. Therefore, it 
can be expected that these parameters have remarkable 
contributions in developing prediction models for bond 
strength. As graphically shown in Fig. 10, bp/bm and bp 
were the most important parameters in the developed 
MARS models and Lb, fmt, and Eptp were the other impor-
tant parameters, respectively.

6.3  Safety analysis

To have a safe and economical design of EBR FRP systems, 
the reliability of developed models for prediction of max-
imum bond strength between FRP reinforcements and 
masonry units must be investigated. To achieve this, the 
box plot of discrepancy ratio between observed and pre-
dicted maximum bond strength (DR) is used to measure 
the reliability and uncertainty of the existing and devel-
oped models. Box plot is a convenient graphical way to 
illustrate data points through their quartiles. The varia-
tions in samples of a statistical population are monitored 
without making any prior assumptions about the under-
lying distribution. The space between the different parts 
of the box can be assumed as an indicator for the degree 
of dispersion (spread) or skewness of data points. Accord-
ing to the statistical analysis of previous sections, it can 
be expected that the developed M5′ and MARS models 
are more reliable than other existing equations. However, 
the uncertainty/safety factor of existing models and the 
developed ones cannot be determined. To mitigate this 
limitation, a safety factor can be attributed to different 
models based on the acceptable level of risk.

Figure 11 illustrates the box plots of different mod-
els including the proposed ones and the most accurate 
empirical equations according to the previous results. It is 
clear that Yang et al. [49] and Khalifa et al. [52] equations 
generally overestimate the bond strength while Tanaka 
[47] and Neubauer and Rostasy [50] equations underes-
timate the maximum bond strength. Among the men-
tioned equations, the Khalifa et al. [52] formula is more 
conservative and has the highest uncertainty (wider box 
plot). The Tanaka [47] formula has the lowest uncertainty 
among existing empirical equations. Figure 11 also shows 

Fig. 10  The relative importance of input variables in developing 
MARS models
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that the box plots of M5′ and MARS models developed in 
this study are narrower than those of others, which is an 
indicator of a higher level of confidence. Furthermore, the 
error distribution of DR values for a precise and accurate 
formula should be symmetrical around its mean value and 
close to 1. As it is shown, the error distributions of devel-
oped M5′ and MARS models are nearly symmetrical and 
their averages are very close to 1. In addition, the safety 
factors of M5′ and MARS models are generally smaller than 

Fig. 11  Box plot of different equations

Table 6  Classification by demerit points

Fmax,exp/Fmax,predicted Classification Demerit 
points

< 0.50 Extremely dangerous 10
[0.50–0.85) Dangerous 5
[0.85–1.15) Appropriate and safe 0
[1.15–2.00) Conservative 1
≥ 2.00 Extremely conservative 2

Table 7  Classification of 
developed and design 
equations according to the 
criteria of collins

Models DR < 0.5 0.5 < DR < 0.85 0.85 < DR < 1.15 1.15 < DR < 2 DR > 2 Total

Tanaka [46] 20 115 41 39 15 844
20 × 10 115 × 5 41 × 0 39 × 1 15 × 2

Yang et al. [48] 4 46 81 57 42 411
4 × 10 46 × 5 81 × 0 57 × 1 42 × 2

Neubauer and Rostasy [49] 19 102 44 50 16 782
19 × 10 102 × 5 44 × 0 50 × 1 16 × 2

Khalifa et al. [51] 1 24 74 77 54 315
1 × 10 24 × 5 74 × 0 77 × 1 54 × 2

ACI 440.2R-08 123 74 20 12 1 1614
123 × 10 74 × 5 20 × 0 12 × 1 1 × 2

CNR. DT 200/2012 7 90 63 49 21 611
7 × 10 90 × 5 63 × 0 49 × 1 21 × 2

MARS (present study) – 47 136 47 – 282
– 47 × 5 136 × 0 47 × 1 –

M5′ (present study) – 47 136 45 2 284
– 47 × 5 136 × 0 45 × 1 2 × 2
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other equations. For example, according to Fig. 11, if 10% 
risk is acceptable, the prediction of MARS and M5′ mod-
els should be divided by 1.40 and 1.45, respectively, while 
these factors for Tanaka [47], Yang et al. [49], Neubauer 
and Rostasy [50], Khalifa et al. [52] equations are 1.8, 2.7, 
2.1 and 3.1, respectively.

To quantitatively evaluate the safety of the proposed 
models and also existing design equations, a new scale 
introduced by Collins [57] has been employed in this study. 
This scale is also known as Demerit Points Classification 
(DPC). The DPC tries to involve the safety, accuracy, and 
scattering of design codes as a function of the discrep-
ancy ratio between the ultimate resistances of materials 
reported in experimental test and the estimated ones 
based on theoretical analysis. In this study, the meas-
ured maximum bond strength (Fmax,exp) and predicted 
bond strength by existing formulae and proposed mod-
els (Fmax,predicted) are the ultimate resistances of materials 
reported in experimental test and the estimated ones 
based on theoretical analysis, respectively. Table 6 pre-
sents an adaption made in the present study to the origi-
nal values proposed by Collins [57]. According to the bond 
strength predicted by each formula, a demerit point to 
each prediction for 230 data points is attributed to that for-
mula based on Table 6. Then, the general value of demerit 
of each formula is calculated by the sum of the products 
of the number of specimens in each interval and their cor-
responding demerit penalty. The lower the value of total 
sum, the more reliable the formula considered.

Table  7 presents the evaluation of M5′, MARS and 
some existing equations as a function of the adapted 
criteria from Collins [57]. According to this criteria, ACI 
[47] model presents higher total demerit points (1614 
total points) than other models, with 85% of the values 
in the first and second classification ranges (smaller than 
0.85), which is unfavorable in terms of safety. Khalifa 
et al. [52] model presents the lowest total demerit points 
amongst the other design equations. However, 57% of 
its prediction values are in the fourth and fifth classifica-
tion ranges (larger than 1.15), which are classified as con-
servative and extremely conservative in terms of safety. 
In general, the existing equations usually suffer from 
either having limited accuracy or being too conserva-
tive or both problems. However, the developed M5′ and 
MARS models in this study with the lowest total demerit 
points (281 and 282, respectively) and having 60% and 
59% of their predictions in the range of the third classifi-
cation (appropriate and safe) had the best performance 
amongst the other equations in terms of safety.

7  Conclusions

In this study, a comprehensive database of 575 meas-
urements of bond strength between FRP reinforcements 
externally glued on masonry units was compiled for the 
first time from datasets published in the literature. New 
equations for predicting maximum bond strength based 
on M5′ and MARS algorithms were proposed. The final 
models were established using the reinforcement width 
(bp), the ratio between FRP reinforcement and masonry 
width (bp/bm), the tensile strength of substrate (fmt), 
the axial strength of reinforcement (Eptp) and the bond 
length (Lb) as input variables. The M5′ model as a rule-
based method was employed to provide understandable 
formulas that allow users to have more insight into the 
physics of the phenomenon. The MARS algorithm was 
also used as a reliable predictive model to determine 
the most important parameters in predicting the bond 
strength.

The performances of some common empirical mod-
els and the proposed ones were evaluated based on the 
size of the errors and uncertainty. The prediction errors 
and uncertainties associated with the developed M5′ 
and MARS models were remarkably smaller than those 
associated with the most common existing models. The 
proposed M5′ and MARS models outperformed the CNR 
model as the best empirical model by improving the R2 
value by 51% and 86%, respectively and the RMSE value 
by 42% and 55%, respectively. The results of sensitivity 
analysis based on MARS models showed that the width 
ratio between FRP reinforcement and masonry substrate 
(bp/bm) was the most important and the axial strength of 
FRP reinforcement (Eptp) was the least important param-
eter in predicting the bond strength. Furthermore, the 
safety analysis based on Collins criteria indicated that the 
developed MARS and M5′ models also remarkably outper-
formed the existing equations in terms of safety.
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The training and testing databases were considered as fol-
lows: see Tables 8 and 9.
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Table 8  The training database bp/bm (−) Kb (−) Fmt (MPa) Eptp (GPa mm) Bp (mm) Lb (mm) Fmax,exp (KN)

0.5 1.290994 0.4 80.5 50 150 4.5
0.5 1.290994 0.2 80.5 50 150 4.45
0.5 1.290994 0.3 80.5 50 150 3.69
0.5 1.290994 0.7 80.5 50 150 5.41
0.5 1.290994 1.1 80.5 50 150 5.55
0.5 1.290994 0.6 80.5 50 150 4.25
0.5 1.290994 0.4 80.5 50 150 4.28
0.5 1.290994 0.5 80.5 50 150 4.98
0.5 1.290994 0.6 80.5 50 150 5.43
0.5 1.290994 1.1 80.5 50 150 5.65
0.5 1.290994 0.7 80.5 50 150 5.4
0.5 1.290994 0.2 80.5 50 150 3.92
0.5 1.290994 0.3 80.5 50 150 4.28
0.5 1.290994 0.4 80.5 50 150 4.73
0.5 1.290994 0.3 80.5 50 150 4.2
0.5 1.290994 0.4 80.5 50 100 4.93
0.5 1.290994 0.3 80.5 50 100 4.25
0.5 1.290994 0.4 80.5 50 100 4.61
0.5 1.290994 0.3 80.5 50 100 4.07
0.5 1.290994 0.4 80.5 50 100 3.28
0.5 1.290994 0.2 29.9 50 150 5
0.5 1.290994 0.2 29.9 50 150 3.9
0.5 1.290994 0.2 29.9 50 150 4.7
0.5 1.290994 0.2 29.9 50 150 4.8
0.5 1.290994 0.2 29.9 50 150 3.9
0.5 1.290994 0.2 29.9 50 100 4.4
0.5 1.290994 0.2 29.9 50 100 4.6
0.5 1.290994 0.2 29.9 50 100 4.1
0.5 1.290994 0.2 29.9 50 100 4.7
0.5 1.290994 0.2 29.9 50 100 3.4
0.455 1.322551 3.2 22.7384 50 200 7.36
0.454545 1.322876 3.6 21.328 50 200 7.2
0.417 1.350135 0.7 40.8 50 250 13
0.417 1.350135 0.7 8.76 50 250 5.25
0.417 1.350135 4.2 14.95 50 200 13.34
0.417 1.350135 1.6 22.7384 50 200 4.54
0.417 1.350135 1.8 22.7384 50 200 5.78
0.417 1.350135 2 10.11012 50 160 4.36
0.417 1.350135 2 10.11012 50 160 4.57
0.417 1.350135 2 10.11012 50 160 5.09
0.417 1.350135 2 10.11012 50 160 5.03
0.417 1.350135 2 39.61 50 160 7.99
0.417 1.350135 2 39.61 50 160 5.87
0.417 1.350135 2 39.61 50 160 7.54
0.417 1.350135 2 39.61 50 160 6.6
0.417 1.350135 1.9 12.37558 50 200 4.93
0.417 1.350135 1 40.8 50 200 6.28
0.417 1.350135 1 40.8 50 200 8.97
0.417 1.350135 4 40.8 50 230 16.5
0.417 1.350135 4 40.8 50 235 19.4
0.417 1.350135 4 40.8 50 240 17.04
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Table 8  (continued) bp/bm (−) Kb (−) Fmt (MPa) Eptp (GPa mm) Bp (mm) Lb (mm) Fmax,exp (KN)

0.417 1.350135 4 40.8 50 250 20.4
0.416667 1.350381 1.8 10.08 50 160 4.04
0.416667 1.350381 1.8 10.08 50 160 5.925
0.416667 1.350381 1.8 10.08 50 160 5.15
0.416667 1.350381 1.8 10.08 50 160 4.52
0.416667 1.350381 1.8 10.08 50 160 4.75
0.416667 1.350381 1.8 10.08 50 160 4.94
0.416667 1.350381 1.8 12.32 50 160 5.2
0.416667 1.350381 1.8 12.32 50 160 5.325
0.416667 1.350381 1.8 12.32 50 160 5.96
0.416667 1.350381 1.8 39.78 50 160 6.3
0.416667 1.350381 1.8 39.78 50 160 7
0.416667 1.350381 1.8 39.78 50 160 7.94
0.416667 1.350381 1.8 39.78 50 160 6.3
0.416667 1.350381 1.8 39.78 50 160 6.76
0.416667 1.350381 1.8 45.045 50 160 7.84
0.416667 1.350381 1.8 45.045 50 160 7.45
0.416667 1.350381 1.8 45.045 50 160 8.32
0.416667 1.350381 1.8 45.045 50 160 8.1333
0.416667 1.350381 1.8 45.045 50 160 8.76
0.416667 1.350381 1.8 45.045 50 160 6.92
0.416667 1.350381 1.8 45.045 50 160 12.24
0.416667 1.350381 1.8 45.045 50 160 7.06
0.416667 1.350381 1.8 45.045 50 160 8
0.416667 1.350381 1.8 45.045 50 160 8.04
0.416667 1.350381 1.8 45.045 50 160 7.66
0.416667 1.350381 1.8 45.045 50 160 5.96
0.416667 1.350381 1.9 40.8 50 150 7.6
0.416667 1.350381 1.9 40.8 50 215 8.5
0.416667 1.350381 1.9 40.8 50 240 8.6
0.416667 1.350381 1.9 40.8 50 215 7.4
0.416667 1.350381 1.9 40.8 50 230 8.3
0.416667 1.350381 1.9 40.8 50 235 9.7
0.416667 1.350381 1.9 40.8 50 240 8.5
0.416667 1.350381 1.9 40.8 50 250 10.2
0.413 1.353091 2.1 12.37558 50 160 5.72
0.413 1.353091 2.1 12.37558 50 160 6.09
0.413 1.353091 2.1 12.37558 50 160 4.67
0.413 1.353091 2.1 12.37558 50 160 5.52
0.413 1.353091 2.1 12.37558 50 160 5.22
0.393701 1.3675 4.9 21.328 50 200 6
0.385 1.374077 3 22.7384 50 200 6.85
0.357143 1.395481 0.73 8.76 50 250 5.266
0.357143 1.395481 0.73 40.8 50 250 10
0.357143 1.395481 0.73 11.446 50 250 11.5
0.357143 1.395481 1.9 40.8 50 120 8.4
0.357143 1.395481 1.9 40.8 50 150 8.5
0.357143 1.395481 1.9 40.8 50 180 9
0.357143 1.395481 1.9 40.8 50 210 9
0.357143 1.395481 1.9 40.8 50 290 9
0.357 1.395593 2.5 40.8 50 210 18.04
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Table 8  (continued) bp/bm (−) Kb (−) Fmt (MPa) Eptp (GPa mm) Bp (mm) Lb (mm) Fmax,exp (KN)

0.357 1.395593 2.5 40.8 50 290 17.95
0.333 1.414479 1.7 37.95 40 150 10.96
0.25 1.48324 1.7 89.7 35 150 5.6
0.238095 1.493576 1.6 89.7 35 150 9.1
0.238095 1.493576 1.6 89.7 35 150 8.5
0.208333 1.519982 3.85 192 25 120 10.3
0.208333 1.519982 3.85 192 25 160 8.3
0.208333 1.519982 3.85 192 25 120 10.4
0.208333 1.519982 3.85 192 25 160 9.6
0.208333 1.519982 3.85 43.13 25 160 12.04
0.208333 1.519982 3.47 43.13 25 160 9.633
0.208333 1.519982 2.73 43.13 25 160 6.24
0.192 1.534831 0.9 11.92 25 150 4.75
0.192 1.534831 0.9 25.155 25 150 4.34
0.192 1.534831 0.9 11.92 25 200 4.91
0.12 1.603567 3.56 38.41 12 100 5.575
0.425 1.344254 5 27.702 51 238 15.6
0.5 1.290994 1.7 37.95 60 180 12.22
0.5 1.290994 1.7 37.95 60 200 13.48
0.5 1.290994 1.7 37.95 60 220 12.66
0.667 1.183013 1.7 37.95 80 220 14.63
0.667 1.183013 1.7 37.95 80 240 15.8
0.8 1.105542 2.4 38.61 80 150 9.83
0.8 1.105542 2.4 38.61 80 150 9.25
0.8 1.105542 2.4 40.59 80 150 9.31
0.4 1.36277 2.4 38.61 80 150 9.46
0.8 1.105542 2.4 38.61 80 150 8.47
0.8 1.105542 2.4 38.61 80 150 6.49
0.8 1.105542 2.4 40.59 80 150 12.85
0.4 1.36277 2.4 38.61 80 150 9.46
0.8 1.105542 0.5 40.59 80 150 8.07
0.4 1.36277 0.6 38.61 80 150 9.84
0.4 1.36277 0.6 18.722 80 150 7.8
0.4 1.36277 0.4 38.61 80 150 12.76
0.4 1.36277 0.4 18.722 80 150 10.98
0.8 1.105542 2 38.61 80 150 8.9
0.8 1.105542 2 45.51 80 150 9.25
0.8 1.105542 1 45.51 80 150 8.1
0.8 1.105542 3.3 38.61 80 150 11.6
0.8 1.105542 3.3 38.61 80 150 11
0.8 1.105542 3.3 29.97 80 150 6.2
0.8 1.105542 0.8 38.61 80 150 9.8
0.8 1.105542 0.8 29.97 80 150 7.8
0.8 1.105542 0.4 38.61 80 150 12.8
0.8 1.105542 0.4 29.97 80 150 11
0.4 1.36277 0.4 37.95 100 150 7.96
0.5 1.290994 0.3 37.95 100 200 13.5
0.417 1.350135 0.3 37.95 100 200 20
0.4 1.36277 0.4 37.72 100 300 20.95
0.4 1.36277 0.4 38.88 100 300 19.966
0.485437 1.30108 0.2 37.95 100 200 12.5
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Table 8  (continued) bp/bm (−) Kb (−) Fmt (MPa) Eptp (GPa mm) Bp (mm) Lb (mm) Fmax,exp (KN)

0.958333 1.021055 5 37.72 115 244 31.933
0.966667 1.016808 5 27.702 116 230 24.4
1 1 0.3 37.72 118 242 14.3
1 1 0.3 37.72 120 244 17.766
1 1 0.3 27.702 121 245 12.233
1 1 5.7 37.72 121 239 32.466
1 1 5.7 27.702 122 243 36.4
1 1 0.23 27.702 129 243 11.5

Table 9  The testing database bp/bm (−) Kb (−) Fmt (MPa) Eptp (GPa mm) Bp (mm) Lb (mm) Fmax,exp (KN)

0.5 1.29099 0.3 80.5 50 150 3.95
0.5 1.29099 0.4 80.5 50 150 3.58
0.5 1.29099 1.1 80.5 50 150 5.28
0.5 1.29099 1 80.5 50 150 5.3
0.5 1.29099 0.4 80.5 50 150 4.83
0.5 1.29099 0.4 80.5 50 150 3.89
0.5 1.29099 0.4 80.5 50 150 4.01
0.5 1.29099 0.2 29.9 50 150 4
0.5 1.29099 0.2 29.9 50 150 4.2
0.5 1.29099 0.2 29.9 50 100 4.9
0.5 1.29099 0.2 29.9 50 100 4.3
0.5 1.29099 0.2 29.9 50 100 3.3
0.5 1.29099 0.4 80.5 50 150 5.04
0.5 1.29099 0.7 80.5 50 150 4.95
0.5 1.29099 0.8 80.5 50 150 4.8
0.5 1.29099 0.4 80.5 50 150 3.7
0.5 1.29099 0.4 80.5 50 100 4.65
0.5 1.29099 0.3 80.5 50 100 3.35
0.5 1.29099 0.3 80.5 50 100 4.43
0.5 1.29099 0.7 80.5 50 150 4.75
0.5 1.29099 0.2 29.9 50 150 4.3
0.5 1.29099 0.2 29.9 50 150 4.7
0.5 1.29099 0.2 80.5 50 150 4.66
0.417 1.35013 2 10.11 50 160 3.88
0.417 1.35013 2 10.11 50 160 4.75
0.417 1.35013 2 39.61 50 160 6.28
0.417 1.35013 2 39.61 50 160 7.15
0.417 1.35013 0.7 19.4 50 250 11.5
0.417 1.35013 4.2 37.95 50 200 18.1
0.417 1.35013 0.7 8.76 50 250 10.5
0.417 1.35013 4 40.8 50 215 14.8
0.4166 1.35038 1.8 39.78 50 160 6.76
0.4166 1.35038 1.8 39.78 50 160 6.9
0.4166 1.35038 1.8 45.04 50 160 6.72
0.4166 1.35038 1.8 45.04 50 160 7.7
0.333 1.41447 1.7 37.95 40 160 10.03
0.333 1.41447 1.7 37.95 40 200 10.46
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