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Abstract
In this manuscript, a new expansion technique namely residual power series method is used for finding the analytical 
solution of the Fractional Black–Scholes equation with an initial condition for European option pricing problem. The 
Black–Scholes formula is important for estimating European call and put option on a non-dividend paying stock in par-
ticular when it contains time-fractional derivatives. The fractional derivative is defined in Caputo sense. This technique is 
based on fractional power series expansion. The convergence analysis of the present method is also deliberated. Example 
problems are given to examine the efficacy of the proposed method. Obtained solutions are compared with exact solu-
tions solved by other techniques which demonstrate that the present method is robust and easy to implement for other 
fractional problems arising in science and engineering.
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1  Introduction

Pricing of options is a critical element of mathematical 
finance problems. The important thought of their exami-
nations is that one did not have to evaluate the regular 
return of a stock with a specific end goal to value an option 
written on that stock. In 1973, the familiar theoretical wide-
spread valuation formula for options was derived with the 
aid of Fischer Black and Myron Scholes [1] which received 
them the 1997 Nobel Prize in Economics. The FBSE which is 
a second-order parabolic equation deals with the estima-
tion of financial derivatives. Such equations support the 
usage of the no-arbitrage principle also. Hence, the BS 
equation is utilized for estimating call and put options on 
a paying stock [2]. In this association, various researchers 
have performed innovative work which includes Hilfer [3], 
Podlubny [4], Caputo [5], Miller and Ross [6], Kilbas et al. 
[7], Heydari et al. [8, 9] and others.

As such in this article, fractional BSOPE is considered as

where w(x, t), s(t), �(x, t), T and t denote the European 
call option price, interest rate, volatility function, maturity 
and time respectively. The payoff functions are

where wcall(x, t) and wput(x, t) signify the values of Euro-
pean call and put option respectively. E represents the 
expiration price of the option. The fractional BSOPE has 
been examined with the help of various techniques such 
as Laplace Transform Method (LTM) [10], Homotopy Per-
turbation Method (HPM) [11], Homotopy Analysis Method 
(HAM) [11], Sumudu Transform Method (STM) [12], Pro-
jected Differential Transformation Method (PDTM) [13], 

(1)

��w

�t�
+

�2x2
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�2w

�x2
+ s(t) x

�w

�x
− s(t)w = 0, (x, t) ∈ R+ × (0, T ),

(2)

wcall(x, t) = max(0, x − E), wput(x, t) = max(0, E − x),
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Adomian Decomposition Method (ADM) with conformal 
derivative and Modified Homotopy Perturbation Method 
(MHPM) [14], Multivariate Padé Approximation [15] and 
ADM [16]. Recently fractional order European Vanilla 
option pricing model has also been studied by Yavuz and 
Özdemir [17]. These methods have their particular limits 
and inadequacies. Also, these methods require tremen-
dous computational work and take high running time. 
As regards, RPSM is found to be an efficient and effective 
method initially recommended by the mathematician Abu 
Arqub [18]. The RPSM has been implemented in the gener-
alized Lane-Emden equation [19], fractional KdV-Burgers 
equation [20] and fractional foam drainage equation [21]. 
Moreover, RPSM has also been effectively applied to the 
time–space-fractional Benny-Lin equation [22].

In this article, RPSM has been implemented for solving 
the fractional BS European option pricing equation. The 
performance and precision of the present method are 
studied by comparing the solution of the titled problem 
solved by RPSM and other analytical methods. However, 
to the best of the authors’ information, the time-fractional 
BS equation has not yet been solved by RPSM.

2 � Preliminaries of fractional calculus 
and RPSM

Definition 2.1 [4, 6]  The Abel–Riemann (A–R) fractional 
derivative operator D� of order � is defined as

where m ∈ Z+, � ∈ R+.

Definition 2.2 [4, 6]  The integral operator J� in A–R sense 
is defined as

Following Podlubny [4] we may have

(3)D𝛼u(x) =

⎧⎪⎨⎪⎩

dm

dxm
u(x), 𝛼 = m,

1

𝛤 (m−𝛼)

d

dxm

x∫
0

u(t)

(x−t)𝛼−m+1
dt, m − 1 < 𝛼 < m.

(4)J𝛼u(x) =
1

𝛤 (𝛼)

x

∫
0

(x − t)𝛼−1u(t) dt, t > 0, 𝛼 > 0.

(5)J�tm =
� (m + 1)

� (m + � + 1)
tm+� .

(6)D�tm =
� (m + 1)

� (m − � + 1)
tm−� .

Definition 2.3 [4, 5]  The Caputo fractional derivative 
operator D� is well-defined as

Definition 2.4 [4–6] 

(a)	

(b)	

Definition 2.5  A series of the form

is called FPSE at t = t0, where ak is the coefficient of series.

Theorem 2.1  If f (t) =
∑∞

k=0
ak
�
t − t0

�k�
 and Dk�f (t) ∈ C(

t0, t0 + R
)
 for k = 0, 1, 2,… then the value of ak in Eq. (10) 

is given by ak =
Dk� f (t0)
� (k�+1)

.

Definition 2.6  An FPSE about t = t0 of the form ∑∞

k=0
bk(x)

�
t − t0

�k�
 is called multiple FPSE about t = t0 , 

where bk ’s are coefficients of the series.

3 � RPS solution for FBSE

Let us consider the FBSE as [23] 

with IC

3.1 � Procedure of RPS solution

Step 1 Let us assume that FPSE of Eq. (11) with IC Eq. (12) 
about the point t = t0 is written as

(7)CD𝛼u(x) =

⎧
⎪⎨⎪⎩

1

𝛤 (m−𝛼)

x∫
0

um(t)

(x−t)𝛼−m+1
dt, m − 1 < 𝛼 < m,

dm

dtm
u(x), 𝛼 = m.

(8)
D�

t
J�
t
g(t) = g(t),

(9)

J𝛼
t
D𝛼

t
g(t) = g(t) −

m∑
k=0

g(k)
(
0+

) tk
k!
,

for m − 1 < 𝛼 ≤ m , and t > 0.

(10)

∞∑
k=0

ak

(
t − t0

)k𝛼
= a0 + a1

(
t − t0

)𝛼
+a2

(
t − t0

)2𝛼
+⋯

for 0 ≤ n − 1 < 𝛼 ≤ n, t ≥ t0,

(11)D𝛼

t
w = D2

x
w + (k − 1)Dxw − kw, 0 < 𝛼 ≤ 1,

(12)w(x, 0) = max
(
ex − 1, 0

)
.

(13)w(x, t) =

∞∑
k=0

bk(x)
t𝛼k

𝛤 (𝛼k + 1)
, 0 < 𝛼 ≤ 1, 0 ≤ t.
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In order to evaluate the value of w(x, t) , let wm(x, t) signifies 
the mth truncated series of w(x, t) as

For m = 0 , the 0th RPS solution of w(x, t) may be written as

Using Eqs. (15) and (14) can be modified as

So mth RPS solution can be evaluated after obtaining all 
bk(x) , k = 1, 2,… ,m.

Step 2 Let us consider the residual function (RF) of 
Eq. (11) as

and mth RF may be written as

Some useful results about resm(x, t) have been included in 
[21, 22] which are given below

	 i.	

	 ii.	

	 iii.	

Step 3 Putting Eq.  (16) into Eq.  (18) and calculating 
D
(k−1)�

t resm(x, t), k = 1, 2,… at t = 0 , together with the 
above three results, we have the following algebraic 
systems

Step 4 By solving Eq. (20), we can get the coefficients 
bk(x), k = 1, 2,… ,m . Thus mth RPS approximate solu-
tion is derived.

4 � Convergence analysis

Lemma 1 [4]  If f (x) is a continuous function and 𝛼, 𝛽 > 0 
then

(14)wm(x, t) =

m∑
k=0

bk(x)
t𝛼k

𝛤 (𝛼k + 1)
, 0 < 𝛼 ≤ 1, 0 ≤ t.

(15)w0(x, t) = b0(x) = max
(
0, ex − 1

)
.

(16)

wm(x, t) = b0(x) +

m∑
k=1

bk(x)
t𝛼k

𝛤 (𝛼k + 1)
, 0 < 𝛼 ≤ 1,

0 ≤ t, m = 1, 2, 3,…

(17)res(x, t) = D�

t
w − D2

x
w − (k − 1)Dxw + kw,

(18)

resm(x, t) =
��wm(x, t)

�t�
−

�2wm(x, t)

�x2

− (k − 1)
�wm(x, t)

�x
+ kwm(x, t), m = 1, 2, 3,…

res(x, t) = 0.

Lim
m→∞

resm(x, t) = res(x, t).

(19)

Di�
t
res(x, 0) = Di�

t
resm(x, 0) = 0, i = 0, 1, 2,… ,m.

(20)D
(k−1)𝛼

t resm(x, 0), 0 < 𝛼 ≤ 1, k = 1, 2,…

Theorem 4.1 

(a)	 If the FPS of the form 
∑∞

n=0
anx

n� , x ≥ 0 converges 
at x = x1, then it converges absolutely ∀x satisfying 
|x| < ||x1||.

(b)	 If the FPS diverges at x = x1, then it will diverge ∀x such 
that |x| > ||x1||.

Theorem  4.2  [22]   For  0 ≤ n − 1 < 𝛼 ≤ n, suppose 
Dr+k�
t ,D

r+(k+1)�
t ∈ C

[
R, t0

]
×
[
R, t0 + R

]
,

where Dr+k�
t =

(
DtDtDt …

)
r−times

(
D�
t
D�
t
D�
t
…
)

k−times

.

Proof  Using Lemma 1,

	�  □

Theorem  4.3  [22]  Let w(x, t), Dk�
t
w(x, t) ∈ C

[
R, t0

]
×[

R, t0 + R
]
 where  k = 0, 1, 2,… ,N + 1 and  j = 0, 1, 2, 

… , n − 1. Also Dk�
t
w(x, t) may be differentiated n − 1 times 

concerning “ t  ”. Then

where Wj+i�(x) =
D
j+i�

t w(x,t0)
� (j+i�+1)

. Also, ∃ a value �, 0 ≤ � ≤ t , the 

error term has the term as follows,

Proof  From Eq. (23),

(21)
I�
c
I�
c
f (x) = I�+�

c
f (x) = I�

c
I�
c
f (x).

(22)

(
I
r+k�

t
D
r+k�

t
u
)
(x, t) −

(
I
r+(k+1)�

t
D
r+(k+1)�

t
u

)
(x, t)

=

(
t − t0

)r+k�
� (r + k� + 1)

D
r+k�

t
u
(
x, t0

)
,

(23)

(
I
r+k�

t
D
r+k�

t
u
)
(x, t) −

(
I
r+(k+1)�

t
D
r+(k+1)�

t
u

)
(x, t)

= I
r+k�

t

((
D
r+k�

t
u
)
(x, t) −

(
I
�

t
D
r+(k+1)�

t
u

)
(x, t)

)

= I
r+k�

t

((
D
r+k�

t
u
)
(x, t) −

(
I
�

t
D
�

t

)(
D
r+k�

t
u
)
(x, t)

)

= I
r+k�

t

((
D
r+k�

t
u
)(
x, t0

))
=

(
t − t0

)r+k�
� (r + k� + 1)

D
r+k�

t
u
(
x, t0

)
.

(24)w(x, t) ≅

n−1∑
j=0

N∑
i=0

Wj+i�(x)
(
t − t0

)j+i�
,

(25)

‖‖EN(x, t)‖‖ = sup
t∈ [0, T ]

||||||

n−1∑
j=0

[
Dj+(N+1)�w(x, �)

� ((N + 1)� + j + 1)
t(N+1)�+j

]||||||
.
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That is,

Considering the second term of Eq. (27), we have

From Eqs. (27) and (28),

Now the error term is

(26)

n−1∑
j=0

N∑
i=0

((
I
j+i�

t D
j+i�

t w
)
(x, t) −

(
I
j+(i+1)�

t D
j+(i+1)�

t w
)
(x, t)

)

=

n−1∑
j=0

N∑
i=0

(
t − t0

)j+i�
� (j + i� + 1)

D
j+i�

t w
(
x, t0

)

=

n−1∑
j=0

N∑
i=0

Wj+i�(x)
(
t − t0

)j+i�
.

(27)

w(x, t) −

n−1∑
j=0

[(
I
j+(N+1)�

t D
j+(N+1)�

t w
)
(x, t)

]

=

n−1∑
j=0

N∑
i=0

Wj+i�(x)
(
t − t0

)j+i�
.

(28)

n−1�
j=0

��
I
j+(N+1)�

t D
j+(N+1)�

t w
�
(x, t)

�

=

n−1�
j=0

⎡⎢⎢⎣
1

� ((N + 1)� + j)

t

∫
0

Dj+(N+1)�w(x, �)

(t − �)
1−(j+(N+1)�)

d�

⎤⎥⎥⎦
,

=

n−1�
j=0

�
Dj+(N+1)�w(x, �)

� ((N + 1)� + j + 1)
t(j+(N+1)�)

�
.

(Mean value theorem for integral)

w(x, t) −

n−1∑
j=0

N∑
i=0

Wj+i�(x)
(
t − t0

)j+i�

=

n−1∑
j=0

[
Dj+(N+1)�w(x, �)

� ((N + 1)� + j + 1)
t(j+(N+1)�)

]

‖‖EN(x, t)‖‖ =

‖‖‖‖‖‖
w(x, t) −

n−1∑
j=0

N∑
i=0

Wj+i�(x)
(
t − t0

)j+i�‖‖‖‖‖‖
,

=

‖‖‖‖‖‖

n−1∑
j=0

[
Dj+(N+1)�w(x, �)

� ((N + 1)� + j + 1)
t(j+(N+1)�)

]‖‖‖‖‖‖
⇒ ‖‖EN(x, t)‖‖
= sup

t∈[0,T ]

||||||

n−1∑
j=0

[
Dj+(N+1)�w(x, �)

� ((N + 1)� + j + 1)
t(j+(N+1)�)

]||||||
,

As N → ∞, ‖‖EN(x, t)‖‖ → 0 , thus w(x, t) can be estimated 

as followsw(x, t) ≅
∑n−1

j=0

∑N

i=0
Wj+i�(x)

�
t − t0

�j+i�
 , with the 

error term in Eq. (25).	�  □

5 � Numerical examples

Example 1  Consider Eqs. (12) and (13)
According to the RPSM,w0(x, t) = max(0, ex − 1) and 

the infinite series solution of Eq. (12) can be written as

mth truncated series solution of w(x, t) becomes

For m = 1 , 1st RPS solution for Eq. (11) may be written as

To determine the value of b1(x) ,  we substitute 
Eq.  (31) in the 1st residual function of Eq.  (18) 
res1(x, t) =

��w1(x,t)

�t�
−

�2w1(x,t)

�x2
− (k − 1)

�w1(x,t)

�x
+ kw1(x, t)   , 

this gives

Us i n g  ( i i i )  o f  E q .   ( 1 9 )  fo r  i = 0  t h a t  i s 
res(x, 0) = res1(x, 0) = 0 , we get

For m = 2 , 2nd RPS solution for Eq. (11) can be written 
as

To find the value of b2(x) , Eq.  (34) is substi-
tuted in the 2nd residual function of Eq.  (18) 

res2(x, t) =
��w2(x,t)

�t�
−

�2w2(x,t)

�x2
− (k − 1)

�w2(x,t)

�x
+ kw2(x, t). 

Then we have

(29)w(x, t) = max(0, ex − 1) +

∞∑
k=1

bk(x)
t�k

� (�k + 1)
.

(30)

wm(x, t) = max(0, ex − 1) +

m∑
k=1

bk(x)
t�k

� (�k + 1)
, m = 1, 2, 3,… ,

(31)w1(x, t) = max(0, ex − 1) + b1(x)
t�

� (� + 1)
.

(32)

res1(x, t) = b1(x) − e
x − b

��

1
(x)

t�

� (� + 1)

− (k − 1)

(
e
x + b

�

1
(x)

t�

� (� + 1)

)

+ k

(
max

(
0, ex − 1

)
+ b1(x)

t�

� (� + 1)

)
.

res1(x, 0) = b1(x) − kex + kmax
(
ex − 1, 0

)
= 0.

(33)So b1(x) = kex − kmax
(
ex − 1, 0

)
.

(34)

w2(x, t) = max(ex − 1, 0) +
(
ke

x − kmax
(
e
x − 1, 0

))

×
t�

� (� + 1)
+ b2(x)

t2�

� (2� + 1)
.
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U s i n g  ( i i i )  o f  E q .   ( 1 9 )  fo r  i = 1 t h a t  i s 
D�
t
res(x, 0) = D�

t
res2(x, 0) = 0 , we get

For m = 3 , 3rd RPS solution for the Eq. (11) can be written 
as

P u t t i n g  E q .   ( 3 7 )  i n  t h e  3 r d  r e s i d -
u a l  f u n c t i o n  o f  E q .   ( 1 8 )  w e  o b t a i n 
res3(x, t) =

��w3(x,t)

�t�
−

�2w3(x,t)

�x2
− (k − 1)

�w3(x,t)

�x
+ kw3(x, t)   , 

we have

U s i n g  E q .   ( 1 9 )  f o r  i = 2  t h a t  i s 
D2�
t
res(x, 0) = D2�

t
res3(x, 0) = 0 , it follows that

Continuing this way, one may find the values of b4(x) , 
b5(x),……So the solution of Eq. (11) may be written as

(35)

res2(x, t) = ke
x − kmax

(
0, ex − 1

)
+ b2(x)

t�

� (� + 1)
− e

x

− b
��

2
(x)

t2�

� (2� + 1)
− (k − 1)

[
e
x + b

�

2
(x)

t2�

� (2� + 1)

]

+ k

[
max(ex − 1, 0) +

(
ke

x − kmax
(
e
x − 1, 0

)) t�

� (� + 1)

+b2(x)
t2�

� (2� + 1)

]

(36)b2(x) = k2max
(
0, ex − 1

)
− k2ex .

(37)

w3(x, t) = max(0, ex − 1) +
(
ke

x − kmax
(
0, ex − 1

))

×
t�

� (� + 1)
+
(
k
2max

(
e
x − 1, 0

)
− k

2
e
x
)

×
t2�

� (2� + 1)
+ b3(x)

t3�

� (3� + 1)
.

(38)

res3(x, t) = ke
x − kmax

�
e
x − 1, 0

�
+
�
k
2max

�
e
x − 1, 0

�
− k

2
e
x
� t�

� (� + 1)

+ b3(x)
t2�

� (2� + 1)
− e

x − b
��

3
(x)

t3�

� (3� + 1)
− (k − 1)

�
e
x + b

�

3
(x)

t3�

� (3� + 1)

�

+ k

⎡⎢⎢⎢⎣

max(0, ex − 1) +
�
ke

x − kmax
�
0, ex − 1

�� t�

� (� + 1)

+
�
k
2max

�
0, ex − 1

�
− k

2
e
x
� t2�

� (2� + 1)
+ b3(x)

t3�

� (3� + 1)

⎤⎥⎥⎥⎦
.

(39)b3(x) = k3ex − k3max
(
ex − 1, 0

)
.

(40)

w(x, t) = max(0, ex − 1) + (kex − kmax(0, ex − 1))
t�

� (� + 1)

+
(
k
2max(0, ex − 1) − k

2
e
x
) t2�

� (2� + 1)

+
(
k
3
e
x − k

3max(0, ex − 1)
) t3�

� (3� + 1)
+⋯ ,

where E�(t) =
∑∞

n=0

tn

� (1+n�)
, is Mittag–Leffler function. 

Equation (42) is the analytical solution of Eq. (11) which is 
same as [10–13].

Case 1  Considering the vanilla call option [25] 
f o r  � = 1 ,  � = 0.2, r = 0.04, � = 0.5.  y e a r s  t h e n 
k = 2. The solution of Eq.  (11) for this case is 
w(x, t) = max(0, ex − 1) e−2t + ex

(
1 − e−2t

)
.

Case 2  For vanilla call option [25] with param-
eter � = 0.2, r = 0.01, � = 1, � = 1 year then k = 5.
In this example, we obtain the solution of Eq.  (11) as 
w(x, t) = max(0, ex − 1) e−5t + ex

(
1 − e−5t

)
.

Example 2  Let us consider the generalized BS equation [24] 

(41)

= max
(
e
x − 1, 0

)[
1 −

kt�

� (1 + �)
+

k2t2�

� (1 + 2�)
−

k3t3�

� (1 + 3�)
+⋯

]

+ e
x

[
kt�

� (1 + �)
−

k2t2�

� (1 + 2�)
+

k3t3�

� (1 + 3�)
−⋯

]
,

(42)= max
(
ex − 1, 0

)
E�(−kt

�) + ex
(
1 − E�(−kt

�)
)
.

with IC

According to the RPSM, w0(x, t) = max
(
0, x − 25e−0.06

)
 , 

and the FPS solution of Eq. (43) can be written as

(43)

𝜕𝛼w

𝜕t𝛼
+ 0.08(2 + sin x)

2
x
2 𝜕

2w

𝜕x2

+ 0.06x
𝜕w

𝜕x
− 0.06w = 0, 0 < 𝛼 ≤ 1,

(44)w(x, 0) = max
(
0, x − 25e−0.06

)
.

(45)w(x, t) = max(x − 25e−0.06, 0) +

∞∑
k=1

bk(x)
t�k

� (�k + 1)
.
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In consideration of the present method, mth truncated 
series solution of w(x, t) becomes

and mth residual function of Eq. (43) may be written as

For m = 1 , 1st RPS solution for the Eq. (43) can be writ-
ten as

By substituting Eq. (48) into the 1st residual function of 
Eq. (47) as

We get

Us i n g  ( i i i )  o f  E q .   ( 1 9 )  fo r  i = 0  t h a t  i s 
res(x, 0) = res1(x, 0) = 0 , we get

(46)

wm(x, t) = max(0, x − 25e−0.06)

+

m∑
k=1

bk(x)
t�k

� (�k + 1)
, m = 1, 2, 3,… ,

(47)

resm(x, t) =
��wm(x, t)

�t�
+ 0.08(2 + sin x)

2
x
2
�2wm(x, t)

�x2

+ 0.06x
�wm(x, t)

�x
− 0.06wm(x, t), m = 1, 2, 3,… ,

(48)w1(x, t) = max(x − 25e−0.06, 0) + b1(x)
t�

� (� + 1)
.

(49)

res1(x, t) =
��w1(x, t)

�t�
+ 0.08(2 + sin x)

2
x
2
�2w1(x, t)

�x2

+ 0.06x
�w1(x, t)

�x
− 0.06w1(x, t),

(50)

res1(x, t) = b1(x) + 0.08(2 + sin x)
2
x
2
b
��

1
(x)

t�

� (1 + �)

+ 0.06x

(
1 + b

�

1
(x)

t�

� (1 + �)

)

− 0.06

(
max(x − 25e−0.06, 0) + b1(x)

t�

� (� + 1)

)
.

b1(x) + 0.06x − 0.06max
(
x − 25e−0.06, 0

)
= 0.

(51)b1(x) = 0.06max
(
x − 25e−0.06, 0

)
− 0.06x.

For m = 2 , 2nd RPS solution for the Eq. (43) is written as

To find out the value of b2(x) , substitute Eq.  (52) 
into the 2nd residual function of Eq.  (47) as 
res2(x, t) =

��w2(x,t)

�t�
+ 0.08(2 + sin x)

2
x2

�2w2(x,t)

�x2
+ 0.06x

�w2(x,t)

�x
− 0.06w2(x, t), we get

Using (iii) of Eq.  (19) for i = 1 that is D�
t
res(x, 0) =

D�
t
res2(x, 0) = 0 , we get

For m = 3 , 3rd RPS solution for the Eq. (43) is reduced as

To determine the value of  b3(x) ,  putt ing 
Eq.  (55) into the 3rd residual function of Eq.  (47) as 

res3(x, t) =
��w3(x,t)

�t�
+ (2 + sin x)

2
x20.08

�2w3(x,t)

�x2
+ 0.06x

�w3(x,t)

�x
− 0.06w3(x, t), one may get

(52)

w2(x, t) = max(0, x − 25e−0.06)

+
(
0.06max

(
0, x − 25e−0.06

)
− 0.06x

)

×
t�

� (� + 1)
+ b2(x)

t2�

� (2� + 1)
,

(53)

res2(x, t) = 0.06max
�
x − 25e−0.06, 0

�
− 0.06x + b2(x)

t�

Γ(1 + �)

+ 0.08(2 + sin x)
2
x
2

�
b
��

2
(x)

t2�

Γ(1 + 2�)

�

+ 0.06x

�
1 + b

�

2
(x)

t2�

Γ(2� + 1)

�

− 0.06

⎛
⎜⎜⎜⎜⎝

max(x − 25e−0.06, 0)

+
�
0.06max

�
x − 25e−0.06, 0

�
− 0.06x

�

×
t�

Γ(� + 1)
+ b2(x)

t2�

Γ(2� + 1)

⎞
⎟⎟⎟⎟⎠
.

b2(x) − 0.06
(
0.06max

(
x − 25e−0.06, 0

)
− 0.06x

)
= 0.

(54)
b2(x) = 0.06

(
0.06max

(
0, x − 25e−0.06

)
− 0.06x

)

= (0.06)
2
max

(
0, x − 25e−0.06

)
− (0.06)

2
x.

(55)

w3(x, t) = max(x − 25e−0.06, 0)

+
(
0.06max

(
0, x − 25e−0.06

)
− 0.06x

)
t�

� (� + 1)
+
(
(0.06)

2
max

(
0, x − 25e−0.06

)

−(0.06)
2
x
) t2�

� (2� + 1)
+ b3(x)

t3�

� (3� + 1)
.

(56)

res3(x, t) = 0.06max
(
0, x − 25e−0.06

)
− 0.06x +

(
(0.06)2 max

(
0, x − 25e−0.06

)
− (0.06)2x

) t�

Γ(1 + �)

+ b3(x)
t2�

Γ(1 + 2�)
+ (2 + sin x)20.08x2

(
b��
3
(x)

t3�

Γ(1 + 3�)

)
+ 0.06x

(
1 + b�

3
(x)

t3�

Γ(3� + 1)

)

− 0.06

(
max(0, x − 25e−0.06) +

(
0.06max

(
0, x − 25e−0.06

)
− 0.06x

) t�

Γ(�+1)

+
(
(0.06)2 max

(
0, x − 25e−0.06

)
− (0.06)2x

) t2�

Γ(2�+1)
+ b3(x)

t3�

Γ(3�+1)

)
.
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By Eq. (19) for i = 2 that is D2�
t
res(x, 0) = D2�

t
res3(x, 0) = 0 , 

it follows that
b3(x) − 0.06

(
(0.06)2max

(
0, x − 25e−0.06

)
− (0.06)2x

)
= 0.

(57)
b3(x) = (0.06)3max

(
0, x − 25e−0.06

)
− (0.06)3x.

Fig. 1   The plot of Eq. (42) represents the surface w(x, t) at a � = 1 , b � = 0.2 , c � = 0.5 , d � = 0.6 and e � = 0.8
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Continuing as above, one may obtain the values of b4(x) , 
b5(x),……,So the solution of Eq. (43) may be written as

(58)

w(x, t) = max
(
0, x − 25e−0.06

)
+
(
0.06max

(
0, x − 25e−0.06

)
− 0.06x

) t�

� (� + 1)

+
(
(0.06)

2
max

(
0, x − 25e−0.06

)
− (0.06)

2
x
) t2�

� (2� + 1)

+

(
(0.06)

3
max

(
0, x − 25e−0.06

)
−

(0.06)
3
x

)
t3�

� (3� + 1)
+⋯ ,

= max
(
0, x − 25e−0.06

) [
1 +

0.06t�

� (1 + �)
+

(0.06)
2
t2�

� (1 + 2�)
+

(0.06)
3
t3�

� (1 + 3�)
+⋯

]

+ x

[
−

0.06t�

� (1 + �)
−

(0.06)
2
t2�

� (1 + 2�)
−

(0.06)
3
t3�

� (1 + 3�)
−⋯

]

= max
(
0, x − 25e−0.06

)
E�(0.06 t

�) + x
(
1 − E�(0.06 t

�)
)
.

Fig. 2   The solution plots of Eq. (42) for different values of � at a x = 0.2 , b x = 0.5

Fig. 3   The plot represents the surface w(x, t) at � = 1 and k = 2

Fig. 4   The plot represents the surface w(x, t) at � = 1 and k = 5
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Equation  (58) is the exact solution of Eq.  (43) which 
is the same as given in [11]. For � = 1 , we have 
w(x, t) = max

(
x − 25e−0.06, 0

)
e0.06t + x

(
1 − e0.06 t

)
 . This is 

an analytical solution of fractional BS Eq. (43).

6 � Conclusion

In this study, a new iterative technique namely RPSM is 
effectively applied for finding the exact solution of FBSE 
with high accuracy. The convergence analysis is also 

Fig. 5   The plot of Eq. (58) represents the surface w(x, t) at a � = 1 , b � = 0.2 , c � = 0.4 , d � = 0.6 and e � = 0.8
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described to validate the efficacy and powerfulness of 
the present technique. Solution plots of Eqs. (42) and (58) 
have been illustrated in Figs. 1, 2, 3, 4, 5 and 6 for different 
values of � . It is clear from the figures that the European 
option prices increase with the decrease of � . Moreover at 
� = 0.2 it is seen that option is overpriced. The solutions 
in special cases achieved from the proposed method are 
in good agreement with the other methods described in 
[10–13] which shows that the method is effective, conveni-
ent and gives closed form solution in the series form.
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