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Abstract
If a helical network of fibers is embedded in a swellable matrix, and if the fibers themselves resist swelling, then a change
in the amount of swelling agent will cause a corresponding twisting motion in the material. This effect has recently been
analyzed in highly deformable soft material tubes using the theory of hyperelasticity, suitably modified to incorporate the
swelling effect. Those studies examined the effect of spiral angle and fiber-to-matrix inherent stiffness in the context of a
ground state matrix material that exhibited classical neo-Hookean behavior in the absence of swelling. While such a ground
state material is nonlinear in general, its shear response is linear. As we describe here, it is this shear response that governs
the matrix contribution to the twist-swelling interaction. Because gels, elastomers, and even biological tissue can exhibit
complex ground state behavior in shear—behavior that may depart significantly from a linear response—we then examine
the effect of alternative ground state behaviors on the twist-swelling interaction. The range of behaviors considered includes
materials that harden in shear, materials that soften in shear, materials that have an ultimate shear stress bound, and materials
that collapse in shear. Matrix materials that either soften or collapse in shear are found to amplify the twisting effect.

1 Introduction

By embedding biassing fibers in a matrix material that
is highly absorbant, it is possible to generate specialized
deformation modes as the material swells. This is because
the fibers naturally guide the deformation in what is
essentially a prearranged way. In a previous paper [3],
we analyzed this effect in tubes containing spiral patterns
of fibers that lie in the plane of the tube’s cross-section.
Swelling of the matrix then cause an overall tube twist
to take place even though no external forces are applied.
Effectively, the internal swelling acts as a body force to
induce the twist.

In conjunction with other modes of deformation that can
be induced by swelling, such as bending [8] and torsion [1],
this suggests that a wide variety of deformation modes could
be engendered by intelligent pattern design for fiber biasing
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[2, 4]. While fiber pattern biassing is inherently a design
freedom that could be exploited, other design freedoms
should not be overlooked. One of these is the qualitative
mechanical behavior of the swellable base material, i.e., the
matrix in which the fibers are embedded.

Here it is to be noted that previous studies often focus
on matrix behavior that has an essential neo-Hookean type
character and which reduces to neo-Hookean behavior in
the absence of swelling. While such a ground state material
is nonlinear in general, its shear response is linear. As
we describe here, it is this shear response that governs
the matrix contribution to the twist-swelling interaction.
Because gels, elastomers, and even biological tissue can
exhibit complex ground state behavior in shear — behavior
that may depart significantly from a linear response — it is
our purpose here to examine the effect of alternative ground
state behaviors on the twist-swelling interaction. The range
of behaviors considered includes materials that harden in
shear, materials that soften in shear, materials that have an
ultimate shear stress bound, and materials that collapse in
shear.

To this end, we present the overall continuum mechanics
formulation in Section 2 where the focus is on the relevant
constitutive treatment for the mechanical behavior due to
swelling. The overall twisting boundary value problem
of interest is formulated in Section 3. It is in fact a
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swelling version of what is known as the boundary value
problem for azimuthal shear, although for our purposes
we often refer to it as twisting of a tube due to swelling.
Complexities associated with this boundary value problem,
while surmountable numerically as we show in later
sections, then lead us to examine a simpler problem, namely
swelling-induced shearing of a layer. The main advantage is
that the layer problem is one of homogeneous deformation.
This simpler problem has many useful analogies to the
swelling-induced tube twisting problem. This analogy, and
certain basic results, is described in Section 4.

Up to this point in the paper, the matrix material
constitutive relation has concentrated on the neo-Hookean
type response. A far more general constitutive model for
the matrix, which is a swellable version of the Knowles
I1 power law material [6], is introduced in Section 5. The
layer problem for homogeneous deformation under swelling
is examined thoroughly for this class of materials. We
construct curves showing how the layer shears as a function
of swelling. This provides certain important insights into
how best to approach the tube twisting problem for the
case of the power-law matrix material, and a thorough study
of this problem is conducted in Section 6. Now curves
of layer twisting as a function of swelling are obtained.
Both the layer curves and the twisting curves have certain
remarkable features. These are discussed and explained in
the concluding Section 7.

2 Hyperelastic framework for treating
swellable matrices and nonswelling fibers

Our examination is based on swellable hyperelastic materi-
als. We consider materials with a single family of fibers at
each material point, where the direction can vary from point
to point (as in the spiral fiber patterns considered in [3]).

The swellable hyperelastic materials are treated in terms
of the swelling volume constraint detF = v where F is
the gradient of the deformation mapping from reference
locations X to deformed locations x and v is the local
swelling value. If v is equal to one everywhere, then this
describes an incompressible material. Locations where v >

1 are swollen locations. For a variety of physical processes
in soft materials, swelling is determined by chemical
or electro-chemical influences that largely decouple from
mechanical considerations. In such a case, v can be regarded
as a specified field. Moreover, because detF = v is
a pointwise constraint, the Cauchy stress will contain a
constraint reaction pressure −pI where I is the identity
tensor and p is the scalar hydrostatic pressure. The value of
p is determined directly from the equations of equilibrium
in conjunction with the boundary conditions. In particular,

as is true for constraint reactions in general, p is not subject
to a constitutive prescription.

Once transient effects associated with possible swelling
agent diffusion have abated, it is presumed that the equilib-
rium mechanical response is elastically dominated. The
elastic energy density associated with this response is W =
W(C, v,X) where C = FT F is the right Cauchy-Green
deformation tensor. The Cauchy stress is then given by

T = 2

v
F

∂W

∂C
FT − pI. (2.1)

In conjunction with the equilibrium equation

divT = 0, (2.2)

this generates partial differential equations that govern the
deformation and the pressure field p = p(X). These are to
be solved subject to appropriate boundary conditions.

Because we are considering a single direction of fibers
at each material point, even though that direction may vary
within the material due to fiber patterning, the dependence
of W on C is only through the invariants I1, I2, I3, I4, and
I5. The local swelling condition eliminates I3 because I3 =
v2. The fiber direction itself is specified by a unit vector
M in the unswollen reference configuration. The deformed
image of this vector is m = FM. The vector m, which is
generally not a unit vector, gives the fiber direction in the
deformed configuration, and its length gives the local fiber
stretch.

In this paper, we restrict attention to materials in which
the dependence of W upon I1, . . . I5 takes the specific form

W = wm(I1, v) + wf (I4), (2.3)

where wm and wf are energy densities associated with
matrix and fiber parts respectively. This models fibers
that swell very little within a matrix that is able to swell
appreciably. In Eq. 2.3, the invariants I1 and I4 are given by
I1 = I : C and I4 = M · CM = m · m. This makes

T = 2

v
w′

m(I1, v)B + 2

v
w′

f (I4)m ⊗ m − pI, (2.4)

where w′
m := ∂wm/∂I1 and w′

f := ∂wf /∂I4, and B is the

left Cauchy Green deformation tensor B = FFT .
An alternative situation, fibers that swell in a matrix that

does not appreciably swell, can be described by a converse
to Eq. 2.3, W = wm(I1) + wf (I4, v). For example, this
might describe cellulose fibers within a rubbery matrix.
However, here our focus is always on Eq. 2.3.

Standard material models in the form of trusted
mathematical expressions for wm and wf can then be used
for mathematical simulation and design modeling. Among
these are the forms that we used in our previous work [3]
where we considered the well-known neo-Hookean form,
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suitably modified so as to treat swelling, for the matrix
constituent, namely

wm = 1

2
μvq(I1 − 3v1/3). (2.5)

Here μ > 0 and q are material constants. Specifically μ is
the matrix shear modulus for the nonswollen base material.
The parameter q allows for possible modulus variation as a
function of swelling. We henceforth disregard that possible
effect and so take q = 0 in all equations and discussion
going forward.

In [3], we also focussed upon

wf (I4) = 1

2
γ (I4 − 1)2, (2.6)

where γ ≥ 0 is the fiber modulus. The form (2.6) is
often referred to as the standard fiber reinforcing model.
Whatever form for wf is chosen, because

√
I4 is the fiber

stretch, it is reasonable to require that w′
f (1) = 0 and

w′′
f (I4) ≥ 0. These restrictions cause the reference length

of the fiber to also be the natural length of the fiber (the
length at which it bears no load). On the other hand, there
is no similar requirement on the first derivative of wm as
is evidenced by the fact that the neo-Hookean form used
in Eq. 2.5 has a constant nonzero first derivative. When
Eqs. 2.5 and 2.6 are used together, the dimensionless ratio
γ /μ is the essential measure of the relative stiffness of the
fiber constituent with respect to the matrix constituent.

In this paper, we retain the form used in Eq. 2.6 for
wf but consider alternative forms for wm. Attention is
restricted to the plane problem. This means that all the
displacement and all of the swelling are in an (X, Y )-plane.
Such a situation would arise for example if the domain is
a uniform cylinder with a general cross-section Ω in the
(X, Y )-plane. In the axial direction, say Z, the cylinder is
then confined to be between frictionless plates, say at Z =
± 1

2L. The fiber directionM is similarly presumed to always
lie in the (X, Y )-plane in a manner that is independent
of Z. The material and swelling can then vary in the
(X, Y ) cross-section while being uniform in Z. This readily
realizable state of affairs applies to a potential wide variety
of situations and in particular describes the azimuthal shear
swelling deformation examined in [3].

3 Swelling and azimuthal shear

We recall the azimuthal shear boundary value problem for
tube swelling considered in [3]. The reference domain is
an annulus which is described in polar coordinates Ω =
{(R, Θ) : A ≤ R ≤ B, 0 ≤ Θ < 2π}. Here A and
B are positive numbers representing the inner and outer

radii of the cylinder in the reference configuration. The fiber
orientation is also described using polar coordinates

M = cosα eR + sinα eΘ, (3.1)

where azimuthal symmetry permits α = α(R). The special
case where α is independent ofR describes a fiber pattern in
the form of a geometric spiral [5]. To illustrate, Fig. 1 shows
six equally spaced fiber paths in the unswollen reference
configuration when α is independent of R.

Swelling deforms the geometry. Allowing v = v(R)

preserves the azimuthal symmetry. The inner surface of
the cylinder is presumed to be fixed as would occur, for
example, if it were bonded to a rigid cylinder. The outer
surface R = B is presumed to be able to freely expand
and so traction free boundary conditions are considered
on this surface. The just described set up motivates the
consideration of the azimuthal shear deformation:

r = r(R), θ = Θ + g(R), (3.2)

where (r, θ) are polar coordinate parameters associated with
the deformed configuration. The functions r(R) and g(R)

need to be determined. No deformation takes place in the
third direction, which is formally described by the plane
deformation condition z = Z. The boundary conditions for
the in-plane deformation on the inner surface are that

r(A) = A, g(A) = 0. (3.3)

Boundary conditions due to the traction free outer surface
will be clarified later. Clearly, swelling (when v > 1) away
from the inner surface will make r(R) > R for locations
R > A.
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Fig. 1 The fibers are continuously dispersed in a spiral pattern. Here
6 equally spaced fiber paths in the unswollen reference configuration
are displayed for clarity. A fiber winding angle α that is independent
of R makes the fiber pattern a portion of a logarithmic spiral. Here
α = arctan[1/ log(2)] = 55.3◦ and B = 2A
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The fully 3-D deformation gradient tensor F for the
deformation (3.2) is

F = r ′er ⊗ eR + rg′eθ ⊗ eR + r

R
eθ ⊗ eΘ + ez ⊗ eZ (3.4)

where the prime ′ in r ′ and g′ denotes differentiation
with respect to R. Here er , eθ , ez are unit basis vectors in
cylindrical polar coordinates of the deformed configuration.
Because detF = r ′r/R, the local swelling condition
detF = v gives r ′r/R = v which can be integrated to yield

r(R) =
√

A2 + 2
∫ R

A

v(ζ ) ζ dζ . (3.5)

Thus, r(R) is fully determined by the swelling in a manner
that is independent of the fiber reinforcing.

At this juncture, it is convenient to introduce λ = λ(R)

and k = k(R) via

λ = r/R and k = rg′(R). (3.6)

Here λ is the azimuthal stretch, which is known because of
Eq. 3.5. In contrast, k is still to be determined. Observe also
that the r ′ appearing in Eq. 3.4 can be eliminated by writing
r ′ = v/λ. Direct calculation now gives C, B, m, I1, and I4
in terms of λ, k, and v. In particular,

B = (v2/λ2) er ⊗ er + (kv/λ)(er ⊗ eθ + eθ ⊗ er )

+
(
k2 + λ2

)
eθ ⊗ eθ + ez ⊗ ez, (3.7)

m = (v/λ) cosα er + (k cosα + λ sinα) eθ , (3.8)

I1 = v2/λ2 + k2 + λ2 + 1, (3.9)

I4 = (v2/λ2 + k2) cos2 α + 2kλ cosα sinα + λ2 sin2 α. (3.10)

The Cauchy stress tensor (2.4) thus takes the form T =
Trr er ⊗ er +Tθθ eθ ⊗ eθ +Tzz ez ⊗ ez +Trθ (er ⊗ eθ + eθ ⊗
er ). This is consistent with the frictionless confining plate
boundary condition on the fixed Z-surfaces. The in-plane
stress components are

Trr = 2v

λ2
w′

m + 2v

λ2
cos2 α w′

f − p, (3.11)

Tθθ = 2

v
(k2+λ2) w′

m + 2

v
(k cosα + λ sinα)2 w′

f −p, (3.12)

Trθ = 2k

λ
w′

m + 2

λ
cosα (k cosα + λ sinα) w′

f . (3.13)

The equilibrium (2.2) in the z-direction is automatically
satisfied by taking p = p(R). In the r and θ directions, the
equilibrium equations give

∂Trr

∂r
+ 1

r
(Trr − Tθθ ) = 0, (3.14)

∂Trθ

∂r
+ 2

r
Trθ = 0. (3.15)

These are to be solved subject to the free surface condition
on R = B, which is simply

Trr (B) = 0, Trθ (B) = 0. (3.16)

The first of these serves as a boundary condition for Eq. 3.14
which in turn serves to determine the pressure field p(R).
Because we do not here choose to examine the normal
stresses in detail, we need not consider those equations in
what follows. Our interest thus focuses on Eq. 3.15, which
integrates to Trθ = c1r

2 where c1 is the integration constant.
In view of the second of Eq. 3.16, it then follows that c1 = 0
and hence that

Trθ = 0, (3.17)

for all R. Consequently, the Eqs. 3.17 and 3.13 together give

k w′
m(I1, v) +

(
k cos2 α + λ sinα cosα

)
w′

f (I4) = 0, (3.18)

where I1 is given by Eq. 3.9 and I4 is given by Eq. 3.10. In
particular, both I1 and I4 are quadratic in the unknown k =
k(R). On the presumption that Eq. 3.18 is solvable at each
location R then, because k(R) = rg′(R), one can integrate
to obtain the azimuthal shear field g(R) on A ≤ R ≤ B.
This in turn gives the overall twist at the outer periphery as
φo = |g(B)|.

Note that if there is no swelling at all (i.e., if v = 1 for
all R) then Eq. 3.5 gives r = R making λ = 1 and hence
I4 = k2 cos2 α + 2k cosα sinα + 1. In this case, k = 0
makes I4 = 1 which causes w′

f (I4) = 0. Thus, k = 0 solves
Eq. 3.5 if v = 1 for all R. In other words, if there is no
swelling, then there is no shearing.

Equation 3.18 allows for v = v(R) and α = α(R). It is
also useful to note that k = 0 solves Eq. 3.18 if either α = 0
or α = π/2. Thus, locations R where the fibers are oriented
purely radially or purely azimuthally are not locally sheared.

However, if 0 < α < π/2, then the possible nonlinear
nature of w′

m as a function I1, and w′
f as a function of I4,

can cause Eq. 3.18 to become a highly nonlinear equation
for k = k(R). For the case where wm and wf are given
by Eqs. 2.5 and 2.6, certain analytical simplifications result,
and this was exploited in the methodology of [3].

4 Local analogue: combined biaxial stretch
and simple shear with swelling (a simple
layer)

The deformation (3.2) described in the previous section is
locally one of plane biaxial stretch accompanied by simple
shear. We can write such a deformation in a local (X, Y )

coordinate system as

x = λxX + KY, y = λyY . (4.1)
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Here λx , λy and K are each fixed constants. The local
(X, Y )-system identifies X with Θ and Y with R. Because
M as given by Eq. 3.1 makes angle α with respect to the
R direction, it follows that the locally defined version of M
takes the form

M = sinα eX + cosα eY . (4.2)

The deformation gradient tensor F for the deformation
(4.1) is given by

F = λxex ⊗ eX + Kex ⊗ eY + λyey ⊗ eY + ez ⊗ eZ . (4.3)

Because detF = λxλy , the local swelling condition
detF = v gives λy = v/λx and we use this to eliminate λy

in what follows. Using this, we may calculate C, B, and m,
the latter two of which become

B = (λ2x + K2) ex ⊗ ex + Kv/λx (ex ⊗ ey + ey ⊗ ex)

+v2/λ2x ey ⊗ ey + ez ⊗ ez, (4.4)

and

m = FM = (K cosα+λx sinα) ex +(v/λx) cosα ey . (4.5)

Comparing Eqs. 4.3, 4.4, and 4.5 with Eqs. 3.4, 3.7,
and 3.8, we note the complete correspondence under the
replacements:

(X, Y, Z) ↔ (Θ, R, Z), (x, y, z) ↔ (θ, r, z), λx ↔ λ, K ↔ k.

(4.6)

Similar correspondences hold for I1, I4, and the stress
quantities.

This motivates the consideration of plane-strain shearing
of a semi-infinite layer that is also subject to swelling. The
reference cross-section in the 2-D plane of interest is now
Ω = {(X, Y ) : −∞ < X < ∞, 0 ≤ Y ≤ H } and the
fibers are oriented as in Eq. 4.2. As in the azimuthal shear
problem, the third Z-direction is constrained, thus rendering
the problem planar in the same way. Symmetry with respect
to X requires that both v and α must be independent of X.

Boundary conditions must be specified on Y = 0 and
Y = H . To put Y = 0 in correspondence with the inner
circle R = A in the azimuthal shear problem, we stipulate
x = X on Y = 0. For the deformation (4.1), this causes
λx = 1. The upper surface Y = H is the analogue of the
outer circle. However, here we temporarily allow not only
expansion in this direction, but also the possibility of a shear
traction τ . It is to be noted that dependence of either v or α

upon Y is consistent with this scenario. This is analogous to
the fact that the azimuthal shear development of the previous
section allowed for the possibility of either v or α to depend
upon R. For the present layer problem, if either v or α

depend upon Y , then λy = v/λx = v would generally vary
as well. All of these conditions would then generally make it
necessary to let K = K(Y) in order to satisfy the equations
of equilibrium.

For our purposes here, it is sufficient to restrict attention
to v and α that are uniform throughout the layer. Then the
homogeneous deformation where K is constant satisfies the
equilibrium equations provided that p is also constant. Both
the amount of swelling v and the applied shear traction τ

enter into the determination of K . The deformation itself is
thus specialized from Eq. 4.1 to

x = X + KY, y = vY . (4.7)

The unit vectorM in the fiber direction is deformed into

m = FM = (sinα + K cosα)︸ ︷︷ ︸
mx

ex + (v cosα)︸ ︷︷ ︸
my

ey . (4.8)

The value of K is found by requiring that the shear stress
Txy (which is a function of K and v even though it is constant
within layer) must match the loading value τ . This condition is

2K w′
m(I1, v) + 2

(
K cos2 α + sinα cosα

)
w′

f (I4) = τ

(4.9)

with

I1 = K2 + v2 + 2, (4.10)

and

I4 = (K2 + v2) cos2 α + 2K cosα sinα + sin2 α. (4.11)

We have thus arrived at the local analogue problem that is
summarized in Fig. 2 as a plane strain swelling deformation
of a layer. Both the swelling v and the shear traction τ drive
the deformation and so determine K . If there is no shearing
(i.e., if K = 0), then swelling (v > 1) expands the layer and
elongates the fibers. Shearing (K 
= 0) can counteract this
elongation by rotating the fibers. The amount of shear K is
determined by the combined action of τ (which acts to shear
the matrix) and the fiber rotational tendency (to relieve the
fiber elongation). The solution to Eq. 4.9 determines K on
the basis of the trade-offs associated with those two effects.

If τ = 0 then v is the sole driving agent for the amount
of shear K . Increasing v in the absence of shearing then
elongates the fiber. The direction of shearing that reduces
this elongation is one that rotates the fibers toward the
vertical. Then K > 0 gives clockwise rotation and K <

0 gives counterclockwise rotation. In order to work with
K > 0 (clockwise rotation), we shall take −π/2 < α < 0,
and this is the situation shown in Fig. 2. For sufficiently
small swelling, this rotation can completely eliminate the
fiber elongation, however that is energetically costly with
respect to the matrix deformation. The optimum value of K

as determined by Eq. 4.9 is one that minimizes the combined
energetic cost of matrix shearing and fiber elongation.

For −π/2 < α < 0 in the layer problem, the
analogous α in the azimuthal shear deformation (3.2) is
the positive counterpart, i.e., 0 < α < π/2. This α ↔
−α correspondence is due to the fact that (x, y, z) ↔
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Fig. 2 Combined shearing and stretching of a layer due to applied
shear traction τ and overall swelling v. Fibers with original orientation
angle α are deformed; this both rotates and stretches them. The
deformed orientation angle is α∗ and the elongational stretch is

√
I4

where I4 is given by Eq. 4.11

(θ, r, z) as indicated in Eq. 4.6, with (θ, r, z) in that order,
has effectively changed the handedness of the coordinate
system.

For the layer deformation (4.7), the effective shear-
induced rotation of the fibers causes them to make an angle
of α∗ with respect to the vertical (y-direction), where

tanα∗ = mx

my

= sinα + K cosα

v cosα
, (4.12)

and we note that the combination K = 0 and v = 1 gives
α∗ = α. In other words, as one would expect, absence of
both shearing and swelling preserves the fiber orientation.
Also, even without shearing (K = 0), a large swelling can

cause α∗ to formally approach zero because of the v in the
denominator of Eq. 4.12.

We now focus on the mechanics of how swelling (v > 1)
induces a nonzero amount of shear K without any applied
shear traction (τ = 0).

As a first example consider the case where wm and wf

are given by Eqs. 2.5 and 2.6. These stipulations, along with
τ = 0, cause the Eq. 4.9 for K as a function of v to become

μK + 2γ
(
K cos2 α + sinα cosα

)
(I4 − 1) = 0 (4.13)

or, in view of Eq. 4.11,

A3K
3 + A2K

2 + A1K + A0 = 0, (4.14)

with

A3 = 2γ cos4 α, A2 = 6γ cos3 α sinα,

A1 = μ − 2γ cos2 α + 2γ v2 cos4 α + 6γ cos2 α sin2 α,

A0 = −2γ cosα sinα + 2γ v2 cos3 α sinα + 2γ cosα sin3 α.

If v = 1 this reduces to

μK+γ
(
2K cos2 α(K cosα + sinα)(K cosα + 2 sinα)

)
= 0 (4.15)

and the solution is simplyK = 0. More generally for v > 1,
this cubic also has one real root K . Beginning with K = 0
when v = 1 the response curve of K vs. v has initial slope

dK

dv

∣∣∣∣
v=1

= −
(

1

A1

∂A0

∂v

)∣∣∣∣
v=1

> 0 (4.16)

where the sign is based upon taking −π/2 ≤ α ≤ 0. The
curves are then monotonically increasing. For very large
v, the O(v2) terms in Eq. 4.14 become dominant and one

Fig. 3 Response curves of K vs. v as given by the roots of Eq. 4.14.
Increase in swelling v generates an increased shearing K although
there is an upper bounding limit associated with the fully vertical
deformed fiber orientation. Panels display different scales for the hor-
izontal axis. Here α = −π/6 and curves are shown for different

fiber-to-matrix stiffness ratios γ /μ. The dashed line shows the asymp-
tote as v → ∞ which is given by K = − tanα = 0.577, a value that is
common for all of the curves. The approach to this asymptote is more
rapid as γ /μ increases
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obtains K → − tanα as v → ∞. Additional large v

analysis of Eq. 4.14 further yields

K = −tanα+μ sec4 α tanα

2γ

1

v2
+o(v−2) as v → ∞.

(4.17)

Using this result in Eq. 4.8 gives

m ∼ μ

2γ v2

sinα

cos4 α
ex+v cosα ey, as v → ∞. (4.18)

As the swelling becomes large, not only do the fibers
approach a vertical orientation, but they do so in a manner
such that mx = m · ex → 0.

Figure 3 displays a number of such response curves, all
for α = −π/6, showing the effect of the stiffness ratio
γ /μ. Each individual response curve approaches the dashed
line asymptote K = − tanα as v → ∞. This approach is
more rapid for the graphs with larger γ /μ. As γ /μ → ∞
the associated limiting response is the inextensible fiber
limit. In this limit, the response curve is found as the root
of the equation I4 = 1. This causes the cubic equation
to degenerate into a quadratic, and K actually attains the
value − tanα when v = secα (not as v → ∞). In this
inextensible fiber limit, the fibers have become aligned with
the y-direction when v = secα. For the inextensible fiber
case, there are no solutions if v > secα because then the
two conditions of detF = v and I4 = 1 are incompatible.

The qualitative nature of the curves shown in Fig. 3 is
similar to the response curves shown in Fig. 7 of [3] for the
azimuthal shear problem (the twist-swelling problem). This
is the anticipated result since a motivation for considering
the layer problem is as a simple analogue to the twist-
swelling problem. Here it is to be noted that the present
X-stretch condition λx = 1 is the analogue of a condition
that would take λ = r/R = 1 in the twist-swelling
problem. For the twist-swelling boundary value problem,
the condition λ = 1 holds on the inner radius R = A,
however λ > 1 for A < R ≤ B. Thus, the layer problem is
most representative of the twist-swelling problem near the
inner surface.

5 Power lawmatrix material
and the associated swelling response
for the layer

We now examine the effect of the base matrix mechanical
behavior on the swelling-shear interaction. In this section,
we do this for the layer problem that was just presented in
the previous Section 4. Then in the next section, we examine
the full azimuthal shear boundary value problem based on

an analysis of Eq. 3.18. For these purposes, we continue to
consider wf in the form Eq. 2.6. For wm we take

wm(I1, v) = μvq

2b

[(
1 + b

n
(I1 − 3v2/3)

)n

− 1

]
(5.1)

where μ > 0, b > 0, n > 0 and q are material constants. This
is a swellable version of the Knowles power law incom-
pressible hyperelastic model presented in [6]. In particular, μ

is the infinitesimal shear modulus for the unswollen material.
For n = 1 and v = 1, this model reduces to the conventional
neo-Hookean material. For n = 1 and general v, it reduces
to Eq. 2.5. As was the case with Eq. 2.5, we henceforth take
q = 0 in all discussion going forward.

The incompressible (v = 1) version of Eq. 5.1 allows
for the consideration of a wide variety of different material
qualitative behavior by simply varying the power law
parameter n. To see this, consider the layer with no fibers
and no swelling. Then the relation between shear stress τ

and the amount of shear K is given by Eq. 4.9 upon taking
w′

f = 0 (no fibers) and v = 1 (no swelling) with wm given
by Eq. 5.1. This results in

τ = μ

(
1 + b

n
K2

)n−1

K, (5.2)

thus retrieving the original result as given in Eq. 4.3 of [6].
The response behavior given by Eq. 5.2 is indicated in

Fig. 4. For n = 1, it gives the well-known linear shear
stress response associated with the neo-Hookean form. For
n > 1, the result is hardening (the curve steepens). For
n < 1, it is softening. For 1/2 < n < 1, this softening
still results in τ → ∞ as K → ∞. For n = 1/2, the
shear stress becomes bounded by a finite ultimate stress. For
0 < n < 1/2, the now more exaggerated softening response
leads to a collapse in shear wherein the stress response rises
to a maximum and then subsequently tends to zero.

Fig. 4 Unswollen shear stress response curves of τ vs. K as given by
Eq. 5.2 for the Knowles power law material (μ = 1, b = 1) showing
the effect of the power law exponent n
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We now consider the swelling layer response, again with
a traction free top surface, where wm and wf are given by
Eqs. 5.1 and 2.6. This provides a generalization of Eq. 4.13
in the form

μK

(
1 + b

n
(I1 − 3v2/3)

)n−1

+2γ
(
K cos2 α + sinα cosα

)
(I4−1) = 0,

(5.3)

where I1 and I4 continue to be given respectively by
Eqs. 4.10 and 4.11. For n = 1, the Eq. 5.3 reduces to
Eq. 4.13.

As before, v = 1 implies K = 0 and we again seek to
determine the response curves for K as a function of v. The
general case for n 
= 1 leads to a highly nonlinear equation
for K as a function of v. There is however one value of
n 
= 1 that permits similar analytical progress and that is
the case n = 2. For n = 2, the Eq. 5.3 is again cubic in K

and so of the general form Eq. 4.14, but now with different
coefficients that are given by

A3 = 1

4
bμ + 2γ cos4 α, A2 = 6γ cos3 α sinα,

A1 = 1

4
μ

(
2 + b(2 − v2/3 + v2)

)
+ γ

(
2(v2 − 1) cos4 α + sin2(2α)

)
,

A0 = γ (v2 − 1) cos3 α sinα.

The initial slope of the response curve is again given by
Eq. 4.16 but now making use of the above values for A1 and
A0. The cubic equation also permits a large v analysis for
the n = 2 response and one finds that

K = − 8γ cos3 α sinα

bμ + 8γ cos4 α︸ ︷︷ ︸
K(∞,n=2)

−24bμγ cos3 α sinα

(bμ + 8γ cos4 α)2

1

v4/3
+o(v−4/3). (5.4)

Thus, as v → ∞, the n = 2 response curve approaches
the asymptote K = K(∞,n=2). With one limiting exception,
this asymptotic value is strictly less than the value − tanα

that was obtained for the n = 1 neo-Hookean case (viz.
Eq. 4.17). The limiting exception is the inextensible fiber
limit γ /μ → ∞ in which case K(∞,n=2) → − tanα.

Using Eqs. 5.4 in 4.8 gives

m ∼
(
sinα − 8γ cos4 α sinα

bμ + 8γ cos4 α

)
ex + v cosα ey , as v → ∞. (5.5)

As the swelling becomes large, the fibers again approach a
vertical orientation, but nowm · ex = mx no longer tends to
zero.

Figure 5 shows the response curves for both n = 1, n =
2, as well as for several other values of n that do not permit the
direct analytical treatment. As in Fig. 3, we take α = −π/6.
The horizontal asymptote for n = 2 is evident. Both the
n = 2 curve and the n = 3 curve have an internal maximum.

Fig. 5 K versus swelling v as determined by Eq. 5.3 for selected
values of n when α = −π/6, γ /μ = 1, and b = 1. The horizontal
asymptote for all n ≤ 1 is K = − tan(−π/6) = 0.577, exactly as
in Fig. 3. The horizontal asymptote for n = 2 is K = K(∞,n=2) =
3
√
3/11 = 0.472. The maxima for n = 2 and n = 3 occur at

v = 4.407 and v = 2.280, respectively. These locations are indicated
by ∗ in the figure

6 Azimuthal shear response with the power
lawmatrix material

We now return to the full azimuthal shear problem, where
now we use the power law material model (5.1) for the
matrix response. The reference fiber angle α and the
swelling v are both taken to be uniform (independent of R).
The latter in conjunction with Eq. 3.5 gives r(R) in the form

r(R) =
√

A2 + v(R2 − A2). (6.1)

The governing equation for g(R) follows by substituting
from Eqs. 5.1 and 2.6 into Eq. 3.18 yielding

μk

2

(
1 + b

n
(I1 − 3v2/3)

)n−1

+ γ cosα (k cosα + λ sinα) (I4 − 1) = 0, (6.2)

where I1 and I4 are given by Eqs. 3.9 and 3.10 and so
also bring in additional terms involving k = rg′(R). Thus,
Eq. 6.2 is a first-order ODE for g(R) subject to the condition
g(A) = 0. When there is neither swelling nor fibers, the
corresponding boundary value problem for a tube composed
of such a material and subject to an externally imposed twist
was studied in [7].

The additional complications due to swelling and the
presence of fibers motivated the local analysis of the
previous section. It is thus noted that Eq. 6.2 as an ODE
for g′(R) mirrors the layer Eq. 5.3—which was a scalar
equation for the amount of shearK . In particular, the special
cases n = 1 and n = 2 give a cubic structure to Eq. 6.2
which facilitates the integration in those two cases.
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Fig. 6 Displaced and deformed fibers for the n = 1 neo-Hookean
type matrix taking α = π/6, B/A = 2, γ /μ = 1. The unswollen
reference state is on the left (v = 1). Center (v = 8/3) and right
(v = 5) show the effect of increasing swelling. The fibers tend to

straighten (solid lines) compared with a hypothetical case where there
is no localized shearing (dashed lines), imparting an overall twist to
the tube

6.1 Linear response in shear (the neo-Hookean type
response, n = 1)

If n = 1, then Eq. 5.1 reduces to the standard neo-Hookean
material in the absence of swelling. In particular, material
parameter b completely disappears from the constitutive
form. When swelling is present, we exactly recover the
problem studied previously in [3] and the reader is referred
to that work for complete details. For our present purposes,
representative results are shown in Fig. 6 for a sequence of
deformations corresponding to increasing v. If there was no
shearing, then each location would only displace radially,
giving the hypothetical fiber locations as shown by the
dashed lines. However, the localized shearing, which causes
the fibers to elongate less, results in the actual fiber locations
as given by the solid lines. Thus there is an overall twist.

For a given B/A and γ /μ, the outer surface net twist
φo = |g(B)| is dependent on the fiber winding angle α.

Fig. 7 Amount of outer surface twist φo versus fiber winding angle α

(both angles in degrees) for selected values of v for the n = 1 neo-
Hookean type matrix. Once again B/A = 2 and γ /μ = 1. Table 1
gives values of the maxima. The dashed line shows the upper bound as
given by Eq. 6.3

There is no twist for either radially oriented fibers (α = 0)
or circumferentially oriented fibers (α = π/2). Figure 7
shows how twist φo = |g(B)| varies with α on the interval
0 < α < π/2. For each v, the value of φo is maximized for
some intermediate value of α. This maximizing value of α

varies with v as shown in the accompanying table (Table 1).
The theoretical upper bound value for the twist φo occurs

if the deformed fibers become perfectly radial in orientation.
This upper bound value for the outer surface twist g(B)

associated with deformed fibers that are straight and radial
(dfsr) is (in radians)

φ
df sr
o = log(B/A) tanα. (6.3)

This bounding curve is also shown in Fig. 7. As v

increases, the various curves in Fig. 7 approach this upper
bound value, albeit in a highly nonuniform fashion in view
of “pinning condition” φo ≡ 0 at α = π/2. In other
words, circumferential fibers (α = π/2) give no shearing
tendency upon swelling. However, highly inclined fibers
(α = π/2 − ε with ε > 0 very small but nonzero) become
formally unbounded in length as ε → 0. Straightening these
long fibers thus gives a formally unbounded twist φo in the
limit as ε → 0.

Table 1 The location of maximum outer twist φo vs. fiber winding
angle α (both in degrees) of the five twist-swelling response curves in
Fig. 7 (for the n = 1 neo-Hookean type matrix)

v α φo

1.5 34.26 9.80

2 40.97 16.07

8/3 46.41 22.02

4 53.17 30.16

5 56.26 34.65
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Fig. 8 Swelling-induced twist taking n = 2 and b = 1 for v = 1, 8/3, 5. Other parameter values are α = π/6, B/A = 2, γ = 1

Fig. 9 Swelling-induced twist taking n = 2 and b = 10 for v = 1, 8/3, 5. Other parameter values are α = π/6, B/A = 2, γ = 1

Fig. 10 Swelling-induced twist taking n = 2 and b = 0.1 for v = 1, 8/3, 5. Other parameter values are α = π/6, B/A = 2, γ = 1
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6.2 Stiffening in shear (n = 2)

In the layer analysis of Section 5, the case n = 2 was the
other instance of the Knowles power law matrix material
that gave analytical simplification. Similarly, the case n =
2 gives certain analytical simplification to the governing
Eq. 6.2 because it reduces to

B3k
3 + B2k

2 + B1k + B0 = 0, (6.4)

where

B3 = bμ

4
+ γ cos4 α, B2 = γ (2 + λ) cos3 α sinα,

B1 = μ

(
1 + b

2
− 3b

4
v2/3 + b

4
v2

)

+ γ
(
(v2 − 1) cos4 α + 2λ cos2 α sin2 α

)
,

B0 = γ λ(v2 − 1) cos3 α sinα.

Other values of n (other than 1 and 2) when used
in Eq. 6.2 give highly nonlinear equations for k (with
embedded radical expressions) that require numerical root
finding procedures (as considered shortly). However, this
n = 2 case permits an explicit solution for k and hence g′.
Numerical integration starting from g(A) = 0 then provides
g(R).

Figures 8, 9 and 10 show a sequence of swelling-induced
twist deformations corresponding to increasing v. Each
figure is analogous to Fig. 6, the difference being that now
n = 2 instead of n = 1. For the n = 1 case, the parameter
b dropped out. The parameter b does not drop out for the
case n = 2, and this accounts for the three separate figures
showing the effect of b. Taking n = 2 and b = 1 (Fig. 8)
to compare against n = 1 (Fig. 6) shows relatively similar

Fig. 11 Amount of outer surface twist versus fiber winding angle α

for selected values of v for the more general power law matrix material
model when n = 2 and b = 1. Table 2 gives values of the maxima.
The dashed line shows the upper bound as given by Eq. 6.3

Table 2 The location of maximum outer twist φo vs. fiber winding
angle α (both in degrees) for the five twist-swelling response curves in
Fig. 11

v α φo

1.5 34.31 9.30

2 39.60 14.06

8/3 43.26 17.32

4 46.04 19.97

5 46.86 20.74

twist behavior, with the n = 2 results lagging somewhat.
Increasing b for n = 2 decreases the twist (Fig. 9) while
decreasing b increases the twist (Fig. 10).

Curves of overall twist as a function of fiber winding
angle at fixed v, analogous to the curves in Fig. 7 for n = 1,
can also be constructed for the case n = 2. One such set
is shown in Fig. 11. These curves are the counterparts to
the curves in Fig. 7, but now for n = 2 and b = 1. In
particular, we observe how the location of the maxima does
not shift as much with v as it did for the n = 1 curves.
The theoretical upper bound value for φo as v increases
continues to be given by Eq. 6.3. However, now, in contrast
to the n = 1 case, we find that the curves remain well below
this bounding value as v increases (Table 2).

The effect of fiber-to-matrix stiffness is shown in Fig. 12.
Each curve of twist φo as a function of swelling v is for a
different value of γ /μ, all other parameters being common
to all of the curves. As v increases, each curve approaches
a separate asymptote, whose ultimate twist value increases
as the relative fiber stiffness increases. For example, the
ultimate twist value associated with γ /μ = 1 is given by

Fig. 12 Amount of outer surface twist versus swelling v for selected
values of fiber-to-matrix stiffness ratio γ /μ for the more general
power law matrix material model when n = 2, b = 1, α = π/6, and
B/A = 2
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Fig. 13 Twist when n = 0.75
and b = 1 for v = 8/3 and
v = 5. Other parameter values
are α = π/6 (30◦), B/A =
2, γ /μ = 1

0.291317 (rad) = 16.69◦. This value is below the theoretical
upper bound value of φ

df sr
o = 0.400189 (rad) = 22.92◦

as given by Eq. 6.3. As γ /μ increases, the asymptotes in
Fig. 12 move upward and in the limit as γ /μ → ∞ they
then approach the value φ

df sr
o = 22.92◦. This n = 2

behavior is qualitatively different from that for n = 1.
As shown in Fig. 7 of [3], for n = 1 there is a common
asymptote for all values of γ /μ. This common asymptote
for n = 1 is given by φ

df sr
o .

6.3 Other values of n in Eq. 5.1

When n is different than 1 or 2, the governing Eq. 6.2 is not
readily solved for k by algebraic means. Thus a numerical
root finding procedure is utilized prior to the numerical
integration to obtain g(R). In particular, as g(A) = 0,
a recursive tangent line approximations can be used to
approximate g(R) for A ≤ R ≤ B. For this purpose,
the interval [A, B] is divided into some number of equal
subintervals where the size of each interval is dR.

Figures 13 and 14 show the swelling-induced twist
deformation for the softening materials with n = 0.75
and n = 0.5, the latter of which is the case with the
ultimate shear stress limit. The unswollen (starting) v = 1
configuration is therefore the same as that shown in previous
Figs. 6, 8, 9, and 10. A comparison between all of the
different presented cases for n is found in Fig. 15 which
clearly shows how increasing n decreases the amount of
twist. A verification of the numerical solution procedure
that generated all of these figures is presented in Fig. 16.
That figure shows the convergence of the numerical solution
to that obtained by the analytical (algebraic) root finding
procedure for the algebraically solvable case n = 2.

By using the above solution procedure, it is then possible
to obtain graphs of twist at the outer surface φo versus
swelling v for the full range of n values. In this regard, the
graphed information is like that presented in Fig. 12 but
now for different exponents n rather than different stiffness
ratios. Figure 17 is representative of such graphs, here using
the values n = 0.25, 0.5, 0.75, 1, 2, and 3. The graphs

Fig. 14 Twist when n = 0.5 and
b = 1 for v = 8/3 and v = 5.
Other parameter values are α =
π/6 (30◦), B/A = 2, γ /μ = 1

98 emergent mater. (2020) 3: –87 101



Fig. 15 Deformed fiber paths showing outer twist when v = 5 and
b = 1 for selected values of n = 0.5, 0.75, 1, 2. Other parameter
values are α = π/6 (30◦), B/A = 2, γ /μ = 1

Fig. 16 Verification that the numerical solution procedure converges
for the case n = 2 in which algebraic root finding is feasible

Fig. 17 Overall twist at the outer surface φo versus swelling v

for different values of the material power law exponent n =
0.25, 0.5, 0.75, 1, 2, and 3. Other parameter values are α =
π/6 (30◦), B/A = 2, γ /μ = 1, and b = 1. The fully numerical
solution procedure is utilized when n = 0.25, 0.5, 0.75, 3 because
analytical root finding is not feasible at those values of n

for n ≤ 1 all approach a common asymptote, and this
asymptote is given by φ

df sr
o from Eq. 6.3. In contrast, the

cases n = 2 and n = 3 approach asymptotes that are strictly
below that theoretical upper bounding value.

7 Discussion and conclusions

Whereas previous studies have concentrated on the effect
of fiber stiffness and patterning on eliciting complex
deformation as a material swells, the present work focuses
specific attention on the effect of the base matrix response,
i.e., the mechanical behavior of the material in which the
fibers are embedded. We show that the base matrix material
response also has a significant effect on both simple layer
shearing and circular tube twisting as the material swells.

For circular tube twisting, we consider the relative
rotation of the tube cross-section when the tube wall
contains spirally patterned fibers that proceed from the
inner to the outer radius. Because the local deformation
is one of simple shear superposed on biaxial deformation,
the tube twist findings of Section 6 are anticipated on the
basis of certain key understandings of the matrix-fiber-
swelling mechanics obtained in Sections 4 and 5 for the
more straight forward problem of a simple material layer
that swells. For the simpler layer problem, the fibers proceed
through the layer cross-section along straight lines. Both
horizontally aligned fibers and vertically aligned fibers
provide no shearing tendency as the layer swells. However,
inclined fibers will cause shearing. In all cases throughout
this study, the fibers were modeled on the basis of wf as
given by Eq. 2.6

Section 4 restricted attention to the matrix material model
wm given by Eq. 2.5 with q = 0 and provided the most
intuitive key understanding, namely that the generation of
shear under simple swelling is due to the presence of
fibers, and the effect is magnified as the fibers become
relatively stiffer with respect to the matrix. In this case,
the ratio γ /μ provided a complete characterization of this
relative stiffness. This led to the shear-swelling behavior
shown in Fig. 3 with curves for different γ /μ approaching
a common asymptote as v becomes large. The rate of
approach increased with γ /μ and the common asymptotic
value has magnitude tanα. This asymptote is associated
with a shearing that places the fibers in the minimal length
position, i.e., along the Y axis. Small values of α mean
the originally unswollen state involves nearly vertical fibers,
and so there is minimal total shearing capacity. Values of
α near ±π/2 mean the originally unswollen state involves
nearly horizontal fibers and so there is a large shearing
capacity and in fact the asymptote’s magnitude | tanα|
becomes unboundedly large because the fibers become
unboundedly long as they proceed from Y = 0 to Y = H
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in the limit as α → ±π/2. However, if α = ±π/2 then
the fibers are purely horizontal, and there is no shearing
tendency because the fibers no longer traverse the layer
thickness.

All of these results are mirrored in the tube problem
for swelling-induced twist where φo is the analogue of
K and the curves of φo vs. v are the analogue of the
curves of K vs. v for the layer problem. The maximum
twisting capacity is now given by φ

df sr
o from Eq. 6.3,

which not only involves dependence on α but also on the
tube aspect ratio B/A. This is reflective of the fact that
the deformed fiber orientation under swelling varies with
radius, and every location must have its fibers brought into
radial alignment before the twisting capacity is formally
exhausted. As in the case of the layer, if wf and wm are

given by Eqs. 2.6 and 2.5 then the asymptote φ
df sr
o is

independent of γ /μ, although it is approached more rapidly
as γ /μ becomes large. The asymptotic value is formally
zero (no twisting capacity) if the fibers in the unswollen
state are already radial (α = 0), whereas the asymptotic
value tends to infinity as α → ±π/2 because now the
unswollen state involves unboundedly large spirals of fiber
paths that are nearly circular. However, if α = ±π/2 then
the unswollen spirals degenerate to closed perfect circles,
and there is no longer any twist under pure swelling, just as
the purely horizontal fibers caused the layer problem to lose
its shearing tendency.

The above summary results are for wm given by Eq. 2.5
which means that the matrix has a straightforward linear
relation in simple shear between shear stress and the amount
of shearing. Polymers, gels, and the ground substance in
biological tissue may exhibit far more complex behavior in
simple shear, specifically some hardening or softening is not
uncommon. Furthermore, under softening, the shear traction
may or may not have an ultimate value. Finally, softening
may be so severe as to elicit a collapse in shear phenomenon
as might occur in phase transition or damage scenarios—
either permanent or temporary (reversible/healable).

To investigate these effects, wm was replaced with
Eq. 5.1 where now the power-law exponent n allows a
simple distinction between all of these cases. In addition,
the special value n = 1 recovers the original model (2.5).
The results of Section 5 show these significant effects in
the context of the layer analysis. Here it is immediate that
matrix hardening (n > 1), at least as it impacts upon
the relative fiber-to-matrix stiffness, would correspond to
fiber softening. The converse also holds. Thus, increasing
n could be expected to have qualitatively similar effects as
decreasing γ /μ, and vice versa. This is indeed the case;
however, the layer analysis shows that the effect of varying
n is in fact more profound. Here the analytical result (5.4)
for n = 2 showed that the asymptote itself, not just the
rate of approach to the asymptote, was dependent on γ /μ.

Moreover, the full shearing capacity — meaning a situation
where the asymptotic value of the K vs. v curves for the
layer has magnitude| tanα| — is only achieved as γ /μ

becomes unboundedly large. For finite γ /μ, the asymptote
height remains below that associated with exhausting this
capacity.

This effect is mirrored in the swelling tube findings of
Section 6, where Fig. 12 clearly shows how the asymptotes
of the various φo vs. v curves are below the upper bound
provided by φ

df sr
o . For the n = 2 tube twist problem, because

it was the solution to a boundary value problem, we were
unable to determine this asymptotic value by pure analysis
and so found it numerically. This is in contrast to the layer
problem, where the relative simplicity of the homogeneous
deformation allowed us to extract the asymptotic value
K(∞,n=2) < − tanα for finite values of γ /μ.

For values of n different from 1 and 2, we appealed
to more extended computational procedures for both the
layer and the tube problem. Because n = 1 already gave
asymptotes that fully exhausted either the shearing capacity
or the twisting capacity, a similar full use of this deformation
capacity was found for any n ≤ 1 because by softening the
matrix it relatively stiffens the fibers. This can only increase
the asymptotes beyond their n = 1 heights. However, since
the n = 1 asymptotes already involved full use of the
shearing/twisting capacity, such full usage is maintained for
n < 1. Thus all the softening cases made use of the full
capacity. For this reason, the n ≤ 1 curves in both Figs. 5
and 17 show common upper bound (full usage capacity)
asymptotes for the n ≤ 1 cases. Finally, the n = 2 and n = 3
curves in Figs. 5 and 17 also show similar commonality.
Now however the n = 2 and n = 3 asymptotes are
below that associated with full usage of either layer shearing
capacity (Fig. 5) or tube twisting capacity (Fig. 17) as the
swelling becomes large.
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