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Abstract

With the ever-increasing demand in urban mobility and modern logistics sector, the vehicle population has been steadily
growing over the past several decades. One natural consequence of the vehicle population growth is the increase in traffic
congestion. Almost all (metropolitan) cities including the major ones, like Los Angeles, Beijing, New York, are suffering
from heavy traffic congestion. Statistics show that, in 2015, 43 cities in China are suffering a prolonged travel time of more
than 1.5 h every day during rush hours. In the meanwhile, traffic accidents are plaguing the economic development as well.
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1 Introduction
1.1 Background

With the ever-increasing demand in urban mobility and mod-
ern logistics sector, the vehicle population has been steadily
growing over the past several decades. One natural conse-
quence of the vehicle population growth is the increase in
traffic congestion. Almost all (metropolitan) cities includ-
ing the major ones, like Los Angeles, Beijing, New York,
are suffering from heavy traffic congestion. Statistics show
that, in 2015, 43 cities in China are suffering a prolonged
travel time of more than 1.5 h every day during rush hours.
In the meanwhile, traffic accidents are plaguing the economic
development as well.

As it is shown in Fig. 1, the number of traffic accidents
has been maintaining in a high number during the past five
years and people are having more and more vehicles. It is
estimated that there is at least one person dying from traffic
accidents worldwide every minute. Besides traffic accidents
and congestions, there are still miscellaneous issues making
people uncomfortable. It is more and more difficult to find
an available Parking spot during rush hours in urban areas.
People usually spend more than 20 min searching for a Park-
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ing spot, which is meaningless and quite annoying as the
searching time increases. Environmental pollution is another
big issue. With the increasing number of vehicles, vehicle
emissions of SO,, NOx, CO, CO», dust particles, smog and
noise have reached or even exceeded levels comparable to
those from industrial production and are harmful to the envi-
ronment and human health.

With the help of recent development in artificial intelli-
gence (Al), we are able to make vehicles intelligent enough
so that the aforementioned problems can be solved.

1.2 What is AIV

Artificial intelligence for vehicles (AIV) aims at applying
both practical and advanced Al techniques to vehicles so that
vehicles can perform human-like or even superhuman behav-
iors [1,2]. The algorithms such as deep neural networks are
designed to mimic the working principle of the brain and
trained over large data sets to perform various tasks. Intelli-
gent vehicles combine Al techniques such as environmental
perception, map building and path planning and integrate
them with multi-scale auxiliary driving services and other
functions [1,2], so that vehicles are able to make intelligent
decisions. It focuses on the applications of artificial intelli-
gence, machine learning and automatic control to vehicles,
as depicted in Fig. 2.
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Fig.1 Traffic accident statistics in China

1.3 Why do Vehicles Need Al

With rapid economic development, intelligent vehicles are in
urgent need. Along with the sustained and rapid growth of car
ownership, almost every country is facing severe traffic con-
gestion, road safety and environmental pollution problems.
In the meanwhile, the number of fatal traffic accidents is
increasing each year and most of them are caused by human
operating errors. With the continued growth of car owner-
ship, the number of fatal traffic accidents is expected to grow.
Relying on advanced Al techniques, we can solve the afore-
mentioned problems. Figure 3 summarizes four main factors
which make vehicles in urgent need of Al techniques.

(1) China strategic needs of economy China, as the lead-
ing developing country, has been late in developing other
innovative technologies related to vehicles, such as electric
vehicles. However, recent booming of Al techniques grant
the country new opportunities to take the lead in developing
Al-enabled vehicles.

(2) China artificial intelligence 2.0 China Al 2.0 has put
the development of new trends of Al technologies such as
hybrid intelligence, multi-modal data fusion technologies in
a very important strategy point. Developing novel Al tech-
niques for vehicles clearly aligns with such strategies.

(3) Society needs of China automobile China has its unique
traffic situation. In urban areas, the driving scenarios are too
complex and it is very difficult for the drivers to always make
the right driving decision. This makes China in the most need
of Al-enabled vehicles which can react to complex changing
driving environment.

(4) Changes in the business model of automobile With
the development of communication technologies, new modes
of business models, such as car sharing, Uber and DiDi, of
automobile companies are emerging. Almost all of the new
business models need Al techniques to support and reach
optimized decisions.
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Fig.2 The framework of AIV
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Fig.3 Four main factors make vehicles in urgent need of Al

1.4 State-of-the-Art of AIV

Currently, enterprises and universities all around the world
have taken initiative to layout strategic investments in AIVs
[3,4]. National policies and regulations are speeding up to
release restrictions for the expected development. The USA,
France, Britain, Germany, Japan, South Korea and other
countries have developed a number of smart car-related poli-
cies to promote the integration of intelligent vehicles and
existing transportation systems. Traditional car manufacture
and technology companies have invested billions of dollars
to support the development of AIVs.

1.4.1 Worldwide Government Strategies

The US Transportation Secretary announced that they will
render the test and application of automated driving in cap-
ital and give $4 billion support in the next 10 years. At the
same time, they will exempt the entire automotive indus-
try, 2500 intelligent vehicles which comply with the relevant
provisions of the existing traffic safety within two years.
France launched the new industrial France strategy which
will be listed as one of the main focuses for the development
of automatic driving in the 2013. In July 2016, the Minis-
ter of Commerce and the Ministry of transport in France
announced that they will remove the rules which restricts
automatic driving. Germany has allowed Bosch’s automatic
driving technology for road test since 2013.
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The Japanese government plans to allocate 34 billion yen
(around $300 million) in the Tsukuba Science City construc-
tion intelligent vehicle test site, wishing that the country can
put the newly pilot-less automobile into operation before the
opening of the Tokyo Summer Olympics in 2020. The South
Korean government plans to invest 40 billion won (about $33
million 920 thousand) for unmanned vehicles in the next 3
years. In August 2016, NuTonomy, the world’s first driver-
less taxi which began operating passenger, was also approved
in Singapore officially.

1.4.2 Enterprise Strategies

In the enterprise field, the leapfrog development of automo-
bile intelligent Internet technology manufacturers and many
industry giants and emerging companies displayed the latest
in the automotive technology products and services such as
Tesla and Google have launched the automatic driving car to
the road test. At the same time, the traditional car manufac-
tures are gradually advancing the degree of fusion of ‘Smart
+ connected’ technologies.

1.4.3 Universities and Research Institutes

In universities and research institutes, automotive intelligent
technology is making full use of the latest achievements in
artificial intelligence. In the beginning of 2015, Carnegie
Mellon University and Uber secretly set up a ‘center high-
technology research and development institutions in Pitts-
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burgh to research and develop automatic driving vehicle.
Stanford University and Massachusetts Institute of Technol-
ogy were awarded $50 million by Toyota Corporation for the
development of full automatic driving technology. In early
2016, the University of Cambridge developed the SegNet sys-
tem and the PoseNet system, which made a new breakthrough
in the car around the object perception and self-positioning.
Atthe same time, University of Oxford has set up an Oxbotica
company to develop unmanned software.

1.4.4 China Strategies and Opportunities

Although China started relatively late but developed rapidly,
China is expected to take the lead in the introduction of
national standards from the top-level design. In June 2016,
the national intelligent & connected vehicles (Shanghai)
demonstration area for closed test is opened. In 2016, Soci-
ety of Automotive Engineering of China released a 450 page
automatic driving technology road map, which is expected
to lay the foundation for the intelligent vehicle infrastructure
communication standards in 2018.

1.5 Next-Generation AIV

With the rapid development of Al techniques and vehicle-
related technologies, it can be foreseen that the next genera-
tion of AIV will see more standardization and the related Al
functionalities will be modular. Figure 6 shows the envisions
of the next-generation AIV framework. In the next 10-20
years, AIVs will be put into specific application scenarios
and have clear definitions over the related Al functionali-
ties. For Al functionalities, it will be divided into three parts,
namely world models, planner and decision maker and com-
puting platform.

In order to realize vision automatic positioning system
under high speed, it is crucial to establish a high-precision
map. World Models aim at building the high-precision map
for future AIVs, planner and decision maker will perform
path planning and other-related driving decision-making
functionalities, and computing platform will provide the
in-car computation environment for the execution of map
building as well as decision making.

2 Survey on Artificial Intelligences
2.1 Introduction

Recently, deep learning (DL)-based perception, conception
and decision maker are more and more popular in artificial
intelligence. LeCun et al. [5] utilize deep learning in image
understanding with deep convolutional networks and dis-
tributed representations and language processing. Mnih et

al. [6] combined deep learning and reinforcement learning,
and implemented the human-level control for games, and
then, Silver et al. [7] create computer go based on a com-
bination of deep neural networks and tree search which can
play at the level of the strongest human players. Deep rein-
forcement learning as the core technology demonstrated the
artificial intelligence in finite and full defined domain which
is referred as artificial normal intelligence (ANI). With ANI,
AlV is able to achieve assistant driving.

With the breakthrough of human-level conception and the
computation technology, Lake et al. [8] proposed a compu-
tational model which can capture human learning abilities
for handwritten form the world’s alphabets. Moser et al. [9]
realized brain-like localization and navigation and acquired
the Nobel Prize in Physiology/Medicine in 2014. It follows
brain-like, spiking neural network (SNN), the generation
[10] neural net gradually board on the Al stage. Based
on the brain-like conception, the artificial intelligence can
be applied in different generalized domains with human
equal ability which is called artificial generalized intelligence
(AGI). With AGI, it makes advanced auxiliary driving and
autonomous driving possible in AIV.

The human—machine-based artificial intelligence springs
up. Human—machine concept coupling artificial intelligence
performs playing with young children in school [11].
Human-machine semi-physical coupling Al is a foreground
in AIV. Huang [12] utilized human-machine physical cou-
pling Al on interactive learning for human-powered augmen-
tation lower exoskeleton [12,13]. Human-machine-based Al
isreferred as artificial super intelligence (ASI). With ASI, the
machine will hold on the total ability for dealing with trans-
portation and moving services, and even surpass the human
intelligence in every domains.

Al with deep learning and reinforcement learning as the
core technology can be divided into practical artificial intel-
ligence (PAI) and advanced artificial intelligence (advanced
AI). We will introduce the PAI and advanced Al in the fol-
lowing sections.

2.2 Practical Artificial Intelligence

The basic Al algorithms roughly include the following four:
(1) Artificial neural network (ANN) is one of the most impor-
tant basic artificial intelligences, namely shallow neural
network, consisting of a computational elements (neurons)
heavily connected to each other. The number of network
inputs can be much greater than the traditional architec-
tures. This makes the network a useful tool for analyzing
high-dimensional data. (2) Compared to ANN, the study
of deep learning focuses on deep neural network. It uses
a cascade of many layers of nonlinear processing units for
feature extraction and transformation and learns multiple lev-
els of representations that correspond to different levels of
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abstraction. (3) Support vector machine (SVM) classifica-
tion methods are the most precise discriminatory methods
used in classification. (4) Simulated annealing is widely and
successfully applied to production scheduling and control
engineering.

As computers and robots become intelligent, smart com-
puters are changing society. Practical artificial intelligence
now is everywhere in our daily lives. Siri is a typical instance
of practical artificial intelligence (PAI). It is a computer
program that works as an intelligent personal assistant and
knowledge navigator, part of Apple Inc.’s i0S, watch OS,
macOS and tvOS operating systems. The feature uses a
natural language user interface to answer questions, make
recommendations and perform actions by delegating requests
to a set of web services. It makes user’s life more convenient
and efficient. Another application use case of PAI is Google
Search. It is based on parallel computing, big data and deep
learning algorithm to complete intelligent analysis for data
and problems. Every time users search on Google, they actu-
ally help to carry out deep learning for Google Search.

2.3 Advanced Artificial Intelligence

The advanced Al technologies include deep neural network,
recurrent neural network, spiking neuron network and trans-
fer learning and reinforcement learning on multi-domain and
multi-time level.

Deep neural networks (DNNs), recurrent neural networks
260 (RNNs) and transfer learning combined with rein-
forcement learning make breakthroughs in traditional Al
applications. RNNs can deliver excellent performance in
many tasks when trained to predict the next output token
given the input and previous tokens. This can be applied
successfully in machine translation, speech recognition and
so on. Transform learning enables the agent to reuse or
transfer the knowledge learning from one task to another.
SNN is the brain-like simulator which can efficiently sim-
ulate bio-inspired spiking neural networks consisting of
different neural models. SNN can integrate event-driven and
time-driven computation schemes. SNN shows promising
capabilities in achieving a performance similar to that of liv-
ing brains due to their more faithful similarity to biological
neural networks, notably, in pattern recognition task.

2.4 State-of-the-Art of Al

Artificial intelligence has been applied in many practi-
cal fields. In March, 2016, AlphaGo developed by Google
DeepMind beat Li Shishi. Not just AlphaGo, DeepMind
team made important breakthrough in so many fields, such
as speech synthesis, lip reading and differentiable neural
computer. In 2016, so many companies and institutes got
involved in unmanned vehicle’s research and development.
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In August 2016, the first unmanned taxi in the world, named
NuTonomy, was drove on the road and it is also the first
company which open unmanned vehicle to the public. In
September 2016, Google published an article to introduce
the new machine translation system they invented: Google
Neural Machine Translation. This system achieved the best
improvements of machine translation so far. In October 2016,
Microsoft published an article ‘Achieving Human Parity in
Conversational Speech Recognition.” The speech recogni-
tion system achieved an equivalent or even a low word error
rate when compared to humans.

The core technology of Al is the combination of deep
learning and reinforcement learning. Deep learning allows
computational models that are composed of multiple pro-
cessing layers to learn representations of data with multiple
levels of abstraction. Sys terms combining deep learning and
reinforcement learning produce impressive results in learn-
ing to play difficult and different games.

2.4.1 Deep Neural Networks

With the development of computing resources and pre-
training technology, deep learning has made a breakthrough
in the field of artificial intelligence, including speech recogni-
tion, visual object recognition and detection and other fields.
At present, the typical deep learning models include convo-
lutional neural network (CNNSs), recurrent neural networks
(RNNs), deep belief networks (DBNs) and stacked autoen-
coder (SAE).

Recently, using CNNSs to automatically learn features has
become a tendency. VGG16 [14] was applied to extract fea-
tures, and a cascade AdaBoost classifier was trained based on
these features [15,16]. Their good performance testified that
CNNs have a strong power of extracting general and repre-
sentative features without the need of human interference.
However, these methods were always based on rectangle
window of a fixed size, so they had to firstly get proposals
provided by other methods such as ACF [17], stixel [18,19],
edge boxes [20], BING [21], selective search [22], objectness
[23] and CPMC [24]. Moreover, their methods were not end-
to-end and several stages of processes had to be gone through
before giving the final results. Although they had achieved
good performance, sophisticated operations limit their prac-
tical use and may be time-consuming as well. Bei Tong et
al. present an end-to-end network based on faster R-CNN
and neural cascade classifier for pedestrian detection in [25].
Different from faster R-CNN which only makes use of the
last convolutional layer, they utilize features from multiple
layers and feed them to a neural cascade classifier. Such an
architecture favors more low-level features and implements
a negative mining process in the network. Both of these two
factors are important in pedestrian detection. The classifier
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Fig.4 The model structure of DNN and RNN

is jointly trained with the faster R-CNN in the unifying net-
work.

Furthermore, mediated perception approaches [26] involve
multiple initial subcomponents for recognizing driving-
relevant objects, such as lanes, traffic signs, traffic lights, cars,
pedestrians [27]. The recognition results are then combined
into a consistent world representation of the car’s imme-
diate surroundings. Behavior reflex approaches construct a
direct mapping from an image to a driving action. This idea
dates back to the late 1980s when [28,29] used a neural net-
work to construct a direct mapping from an image to steering
angles. Chenyi Chen et al. [30] propose a direct perception
approach for autonomous driving; they propose to map an
input image to a small number of key perception indicators
which is directly related to the affordance of a road/traffic
state for driving [31]. Their representation provides a set of
compact yet complete descriptions of the scene to enable a
simple controller to drive autonomously. And they train a
deep CNN with 12 h of human driving and show that their
model can work well to drive a car in a very diverse set of
virtual environments. The model structure of DNN and RNN
is shown in Fig. 4.

2.4.2 Reinforcement Learning

Reinforcement learning (RL) as shown in Fig. 5 addresses
the problem of a decision maker faced with a sequential
decision problem and using evaluative feedback as a per-
formance measure [32]. The general purpose of RL is to find
a ‘good’ mapping that assigns ‘perceptions’ to ‘actions’ and
classically addresses situations in which a single decision
maker interacts with a stationary environment. The pow-
erful methods and impressive results of RL [33,34] have
rendered this framework quite popular among the computer
science and robotic communities, and recent years have wit-
nessed increasing interest in extending RL methods to multi-

Ut put

agent problems. Markov games (also known as stochastic
games) and several variations or specializations thereof have
been used to model multi-agent RL problems [35]. Several
researchers have applied single-agent RL methods (with ade-
quate adaptations) to this multi-agent framework.

Burden involved Nash-Q iterations, while retaining the
convergence properties of the latter in most classes of games.
In a somewhat related line of work, joint-action learners
combine Q-learning with fictitious play in fully cooperative
multi-agent MDPs [36]. Fictitious play was also combined
with prioritized sweeping to address planning in adversarial
scenarios [37]. Gradient-based learning policies are analyzed
in detail in [38]. In another work, Bowling and Veloso [39]
propose a policy-based learning method that applies policy
hill-climbing with a varying learning step, using the princi-
ple of ‘win or learn fast’ (WoLF-PHC). Many other works on
multi-agent learning systems can be found in the literature—
see, for example, Sen and Wei [40].

With the deepening of the research on reinforcement learn-
ing algorithm and theory, reinforcement learning algorithm
has been widely used in practical engineering optimization
and control. The reinforcement learning method in nonlinear
control, robot control, artificial intelligence, problem solving,
combinatorial optimization and scheduling, communication
and digital signal processing, multi-agent, pattern recog-
nition and traffic control and other fields has made some
successful application. In recent years, especially in the auto-
matic driving technology of intelligent vehicle, RL learning
has a great potential, for example, in 2016, the AlphaGo
computer system combines RL algorithm and depth learn-
ing to make the computer go to the level even more than the
level of the top professional players, causing a sensation in
the world. Therefore, reinforcement learning, as a universal
learning algorithm that can solve the intelligent vehicle prob-
lem from perception to decision control, will be more widely
used in various fields of real life.

@ Springer
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Fig.5 Basic RL framework

3 Artificial Intelligence for Vehicles
3.1 Introduction

Figure 6 shows the framework on how to apply Al techniques
to assist vehicle development. As Al techniques develop from
ANTI, to AGI and ASI, it will help the development of vehicles
in different scales. In the intelligent vehicle field, as Al devel-
ops, it will make vehicles more and more intelligent, from L1
to L4 as defined by SAE standards [41]. For the connected
vehicle field, Al techniques will help the connected vehicle
technology from in-car computation to cloud computation
and realize real-time communication between vehicles and
roadside units.

3.2 Autonomous Vehicles (AV)
3.2.1 Key Technologies in AV

In AV, the driving environment perception, cognition map,
path planning and strategy control are the equivalent impor-
tant task in AV [42-44]. How to drive like human beings
is the most important task. Developing AV needs to inte-
grate multimodal high-dimensional data processing in real
time, high-precision cognitive map building and positioning
technology, the optimal path planning and decision-making
control technology, human—computer interaction and redun-
dancy compensation technology. Recently, deep reinforce-
ment learning techniques are widely applied in AV [45,46].

3.2.2 Current Prevailing AV Use Cases

In 2010, seven Google driverless cars to form a team began
to try on the road in California. In August 2012, Google
announced that under the control of the computer, it has
more than ten driverless cars that have been safe to travel
480 thousand km. On May 8, 2013, Nevada Motor Vehicle
Administration officially issued the first unmanned vehi-
cle license to Google. NuTonomy, a Singapore company,
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hopes to provide users with mobile phone driverless taxi.
In 2016, the company’s test car successfully runs across the
various obstacles passed the first test in Singapore. The com-
pany will also continue to commercial test of this kind of
car in Singapore and plans for the next few years in the
city with thousands of driverless taxi. It uses the coordina-
tion of unmanned aerial vehicle (UAV) algorithm to manage
driverless cars; NuTonomy said that it will improve the car
efficiency, thereby reducing traffic congestion and emissions
of carbon dioxide gas. NuTonomy algorithm contains a ‘for-
mal logic’ function which gives car flexibility, which can
make it in violation of the less important traffic rules. It can
make use of complex judgment to transcend parked cars side
by side without affecting the traffic.

3.2.3 Key Barriers of AV

Among the main obstacles to widespread adoption of
autonomous vehicles, in addition to the technological chal-
lenges, are disputes concerning liability; the time period
needed to turn an existing stock of vehicles from nonau-
tonomous to autonomous; resistance by individuals to forfeit
control of their cars; consumer concern about the safety
of driverless cars; implementation of legal framework and
establishment of government regulations for self-driving
cars; risk of loss of privacy and security concerns, such as
hackers or terrorism; concerns about the resulting loss of
driving-related jobs in the road transport industry; and risk
of increased suburbanization as driving becomes faster and
less onerous without proper public policies in place to avoid
more urban sprawl.

3.3 Connected Vehicles (CV)
3.3.1 What are Connected Vehicles

The car with intelligent network is the device which is
equipped with vehicle sensor, controller and actuator advan-
ced, etc. And it is a new generation of intelligent vehicles
which is the integration of modern communication and
network technology to achieve complex environmental per-
ception, intelligent decision-making and control functions,
so that it can be integrated to achieve energy saving, envi-
ronmental protection and comfort of driving. The car can
realize inter- and intravehicle communication, as well as
with the road traffic through a certain equipment which
can fuse car networks, inter-vehicle networks to realize
car communications, internal communications and vehicle
road communication (car connection with network center,
intelligent transportation systems and other service centers)
[47—49], so that it can achieve the information exchange
between the inside and outside network and solve the prob-
lem of the information exchange between the vehicle and the
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3.3.2 Key Benefits of Connected Vehicles

(1) Provide information sharing services to ensure safe

travel, convenient travel

Connected vehicles [50,51] can make traffic reports and
electronic map through the GPS global satellite posi-
tioning system, according to the current road condition
such as traffic congestion, complex road conditions, traf-
fic safety, collision warning and route guidance, so that
it can achieve early prediction of the speed limit in front
of the intersection and the installation of illegal traffic
cameras to ensure safe driving.

(2) Satellite positioning navigation and autodetection

Connected vehicles can determine the location of stolen
vehicle and route through the GPS satellite positioning
technology, in order to search and track vehicle recovery
and arrest the thieves. In addition, the vehicle perfor-
mance and condition can be automatically monitored,
transmitted with remote expert consultation in many
places to guide vehicle maintenance, etc.

@ Springer
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(3) Road rescue and vehicle emergency warning system

In the course of driving, if there is a traffic accident, the driver
can contact the emergency services or car service station
through the emergency call button of the telematics system
[52-54]; When the vehicle is in a dangerous situation, the
driver can receive from emergency warning and emergency
response plans issued by the road traffic management depart-
ment to ensure road safety and smooth road rescue.

3.3.3 New Technologies of CV

The new technologies of CV are composed of sensing, deci-
sion, control, communication positioning and data platform,
mainly including the following aspects:

(1) Advanced sensing technology, which includes machine
vision image recognition technology, radar (laser, mil-
limeter wave, ultrasound) of the surrounding obstacle
detection technology, detect and monitor the driver’s
physiological status by a flexible electronic photonic
device and so on.

(2) Communication location [55] and mapping, which inclu-
des necessary information sharing and collaborative
control communication between numbers of intelligent
network security technology of automobile, mobile self-
organization network technology, the high-precision
positioning technology, construction technology and
high-precision map and local scene.

(3) Intelligent decision technology, including risk situation
modeling technology, risk warning and control prior-
ity division, multi-objective collaborative technology,
vehicle trajectory planning, driver diversity analysis,
human—computer interaction.

(4) The vehicle control technology [41,56], which includes
longitudinal motion control system based on the drive
and braking system, lateral motion control based on
steering system, vertical motion control based on driv-
ing/braking/steering/chassis integrated control and sus-
pension, and at the same time, it can use communication
and vehicle sensor to achieve team collaboration and
cooperative vehicle.

(5) Data platform technology which includes nonrelational
database schema, efficient data storage and retrieval,
association analysis and deep mining of large data cloud
operating system and information security mechanism.

3.3.4 Current Prevailing CV Use Cases
China Association of Automobile Manufacturers (CAAM)

defined CV as vehicles equipped with advanced vehicle
sensors, controllers, actuators and other devices, and the inte-
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gration of modern communications and network technology
to achieve the car and X (people, cars, roads, background,
etc.) intelligent information exchange sharing, with complex
environmental awareness, intelligent decision-making, col-
laborative control and implementation functions, can achieve
safe, comfortable, energy efficient, efficient driving, and ulti-
mately replace the operation of a new generation of cars
[57,58].

4 Key Technologies in AIV

4.1 World Model

World model aims at providing the precise representation
of the world. Precision is the key parameter measuring the
performance of a map for intelligent vehicles [59]. [60] pro-
pose to use multiple support regions (MSRs) of different
sizes surrounding an interest point to choose the best scale
of the support region. In [61], the paper proposes a novel
method to enhance a driver’s situation awareness by dynam-
ically providing a global view of surroundings for the driver.
At present, high-precision maps are sorted into two classes,
namely ADAS and HAD, respectively. ADAS maps’ accu-
racy is in the scale of meters, while HAD maps can achieve
the accuracy of centimeters. HAD maps are more precise
than ADAS maps, with more specific road information, such
as lane and crosswalk lines. This provides the basic recovery
of the real road scene in the data. Therefore, HAD maps can
be used in self-driving cars.

Automobile intelligence is the trend of the automobile
industry, which requires high-precision maps with high
update rate. To reach the state of fully automated driving,
high-precision map is the foundation; real-time information
is also required.

Gaode completed the development of ADAS map for free-
ways and city expressways by the end of 2015 and for national
highways and provincial highways by the end of 2016. Also,
Gaode completed the development of HAD map for freeways
in 2016. In 2017, Gaode is going to develop ADAS maps in
more than 30 cities and HAD maps in national highways and
provincial highways. Currently, HAD maps have narrowed
the scale into centimeters. If traditional maps are printed for
humans, the HAD maps are built for vehicles. It allows auto-
mobiles driving by themselves in the freeways. Figures 7 and
8 show the HAD map construction framework. The localiza-
tion functionality is based on image, high-precision cognitive
map is based on deep learning, and vehicle data are fetched
from the GIS acquisition module.

4.2 Planner and Decision Maker

The decision module integrates path planning, behavior plan-
ning, reference planning and motion planning, makes the



Survey on Artificial Intelligence for Vehicles

1

Multimode environment
modeling and perception

=={(cip-

sunprioge
uonesiAeu JuIBIUY

Fig.8 World model

final intelligent decision and drives the smart car [62—64].
[65] proposed a development framework and novel algo-
rithms for road situation analysis based on driving action
behavior, where the safety situation is analyzed by simulat-
ing real driving action behaviors. Based on the input of HAD
maps and the expectation of the driver, the scheme of path
planning, behavior planning, reference planning and motion
planning is proposed. (1) Path planning part is to propose the
most suitable route for driver according to the maps and the

application of large data navigation algorithm; (2) behav-
ior planning proposes an anthropomorphic driving scheme
according to the map and the driver’s historical behavior; (3)
reference planning predicts the future trajectory of the refer-
ence target based on the model input of the moving obstacles
in the map; (4) motion planning combines other vehicle tra-
jectories and proposes the specific short time trajectory [31].

The decision maker [66—68] is based on the prediction of
the behavior of other vehicles and makes decisions accord-
ingly. This decision maker must be accepted by passengers
(comfortable, reliable, agile, etc.) and also be accepted by
other traffic participants (for example, cannot cause panic,
ambiguity, strange and other associations). The detailed
framework is shown in Fig. 9.

4.3 Computing Platform for AIV

There are two major directions for the solution in existing
computing platform. One is the central computation way
which is represented by NVIDIA PX2. The other is the dis-
tributed computation which is represented by Intel, NXP and
Infineon, etc. Intel and NVIDIA are competing to promote
driverless cars. Both Intel Go and NVIDIA Drive PX2 have
the same goals—to train the computer to be more intelligent,
to help the car to detect pedestrians and identify lanes and
stop signals, to make decision based on the data gathered by
algorithm, cameras and sensors.
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Fig.9 The framework of planner and decision maker
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Fig. 11 Advanced driver assistance system

The new platform for computation and development aims
at making a breakthrough in the area of integrating vehicle
with Al computing architecture and developing an intelligent
interface model for vehicle Al It shows that a vehicle-
mounted high-performance computing platform which can
deal with big data is absolutely necessary in the process of
driverless technologies driving into new stage quickly and
smoothly. Figure 10 shows one example of the computing
platform.

4.4 AIV Use Cases

Advanced driver assistance system (ADAS) makes use of
various kinds of in-car sensors; collects real-time informa-
tion about the environment, recognizing the static as well
as dynamic objects; and then recommends the most suitable
driving actions to the driver to avoid dangerous situations
[69]. Normally, ADAS includes GPS navigation system,
intelligent transportation services (ITS), automatic parking
(AP), adaptive cruise control (ACC) and lane keeping assist
system (LKAS).

GPS navigation system bases on current traffic informa-
tion and short-term forecast and will recommend the most
suitable route to the driver. ITS provides miscellaneous traf-
fic information to the driver, such as real-time congestion
information, traffic light information. AP aids drivers with
Parking maneuver actions and provides useful information
for Parking, such as the distance to the rear wall. ACC will
release drivers with boring driving situations and keep a con-
stant driving speed in the highway. LKAS keeps the vehicle
in the lane and provides warning to the driver if the driver
makes unintentional lane crossing actions. Figure 11 shows
the car-embedded products.

@ Springer

5 China’s Strategies on Developing AIV

Vehicle AI2.0 is a new generation of automotive intelligence
that achieved the new goal based on the new environment of
changing information. Among them, the new environment
refers to the popularity of connected vehicle, penetration of
cross-media vehicle sensor, multidimensional large data and
so on. The new goal refers to the anthropomorphic driving
field of ‘learning’ and ‘interaction’ in the process of thinking
like human beings.

‘Made in China 2025, ‘Internet+ three years of artifi-
cial intelligence implementation plan,” “Thirteen five auto
industry development plan,” ‘Artificial Intelligence 2.0’ are
proposed by Chinese Academy of Engineering. In 2016, the
first ‘National Intelligent Connected Vehicle (Shanghai) pilot
demonstration area’ closed test area approved by the Ministry
of Industry held an opening ceremony in Jiading.

The demonstration area is located in Shanghai Interna-
tional Automobile City, which belongs to Shanghai Anting
Town, Jiading District. There is an area of 90 square kilo-
meters, where it will carry out the overall test of intelligent
connected vehicle and intelligent traffic demonstration. In the
closed test area, the first period will form 29 functional test
scenarios. There will form nearly 100 test scenarios within
three years and explore the realization of vehicle traffic warn-
ing, bus priority, automatic parking and other demonstration
applications on the open road gradually, combined with intel-
ligent lighting to carry out the relevant applications.

China pays attention to unmanned driving at the national
level, make top-level design and scientific planning for
research and industrialization of unmanned technology and
revise and improve unmanned laws and regulations as soon
as possible, and provide system protection for development
of unmanned vehicles, testing and commercial applications.

As the driver’s control of the car is reduced, the focus
of legislative regulation should also be more biased toward
car manufacturers and software developers. In the process of
automobile production, the Ministry of Industry and Infor-
mation Technology should introduce the special inspection
standard for the unmanned vehicles, and research on the
access conditions and examination requirements of the pro-
duction enterprises involved in different parts and software
programs in unmanned vehicles, and the special inspection
standards of products. In the process of sales, the business
sector also should take appropriate measures to increase
market supervision for unmanned vehicles and regulate the
unmanned driving sales. For the unmanned car accident about
the division of responsibilities, it should be determining the
responsibility of the accident by the fault of the parties and
driving situation as the traditional traffic accidents.
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6 Conclusion and Future Work

This paper surveys the literature of artificial intelligence for
vehicles, reviews the history of vehicle development as well
as Al development. We give out the four main contents of
AIV and lay out the overall framework of AIV. In the near
future, AIV will be a boosting factor in the vehicle indus-
try; head into the next generation of vehicles which provides
human-Ilevel intelligence.

The current information technology revolution is driving
cardesign turn into a new page; intelligent vehicle technology
is changing people’s driving habits, at the same time, improv-
ing the traffic safety, energy conservation and emissions
reduction, bring city traffic planning layout again. Future
intelligent vehicles will be toward the direction of environ-
mental protection, energy saving, intelligent, personalized,
safe and comfortable. The perception, communication tech-
nology and the development of the embedded system will
strongly support the development of intelligent vehicles. At
present, the development of intelligent vehicle technology is
still in the assistant driving. It may take time to the high-
est level of semi-automatic and fully automatic phase, but
with the accumulation of intelligence technology, together
with the formulate of the relevant laws and regulations and
the acceptance of people, intelligent vehicle technology will
achieve rapid growth and ultimately promote the intelligent
car popularity.
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