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Abstract
Bilinear models with three types of effects are considered: fixed effects, random 
effects and latent variable effects. In the literature, bilinear models with random 
effects and bilinear models with latent variables have been discussed but there 
are no results available when combining random effects and latent variables. It is 
shown, via appropriate vector space decompositions, how to remove the random 
effects so that a well-known model comprising only fixed effects and latent variables 
is obtained. The spaces are chosen so that the likelihood function can be factored 
in a convenient and interpretable way. To obtain explicit estimators, an important 
standardization constraint on the random effects is assumed to hold. A theorem is 
presented where a complete solution to the estimation problem is given.

Keywords  Fixed effects · Growth curve model · Likelihood-based estimates · 
Random effects · Rank restrictions

Mathematics Subject Classification  62F10 · 62F30

1  Introduction

In this article, we present a multivariate linear model which incorporates repeated 
measurements profiles (growth curves), covariate effects, random effects and 
effects due to latent variables. The model can be used to analyse quite complex 
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data structures. We are not aware of any mathematical treatment of such a model. 
Focus is on obtaining explicit estimators because it is easier to understand explicit 
estimators than estimators derived by some algorithm. The derivation of explicit 
estimators also implies that it is easier to study properties of estimators and to 
perform model validation which is part of the statistical paradigm.

A base model here is a bilinear regression model which is often referred to as 
the growth curve model and was introduced by Potthoff and Roy (1964). It will be 
assumed that there exists covariate information (background information) which 
is modeled via fixed linear effects. It is also assumed that due to, for example, 
the sampling procedure there will be random effects which have an impact on 
the data, i.e., increase the variation. Further, we exploit the idea of adding latent 
process information to the model. When measuring many background variables, 
it is often the case that fewer latent processes are governing these variables. For 
example, if we make field trials unobserved soil characteristics can be important 
and it seems reasonable to think of the soil characteristics as latent variables. 
Another example is when measuring EEG signals on many places on the scalp, 
the response can be thought to be govern by a few latent variables. The latent 
variables in this article are taken into account by supposing rank restrictions on 
parameters and in our presentation a rank restriction on the mean parameters is 
applied. Note that sometimes in the literature, latent variables are motivating the 
use of random effects which is a different implementation of the concept of latent 
variable.

Before defining the model, some notation are introduced. Bold upper cases 
denote matrices: C(A) is the column vector space generated by the columns of A 
and C(A)⟂ denotes its orthogonal complement. The orthogonal projector on C(A) 
is denoted PA and equals PA = A(A�A)−A� , where “-” denotes an arbitrary gener-
alized inverse (g-inverse). Note that I − PA is a projector on C(A)⟂ . The rank of A 
is denoted r(A) . Moreover, we will often write (M)()� instead of (M)(M)� , where 
M represents any matrix expression. The matrix normal distribution with mean 
� : p × n and dispersion � ⊗� (the symbol ⊗ stands for the Kronecker prod-
uct) is denoted Np,n(�,�,� ) for matrices of size p × n and positive semi-definite 
matrices � : p × p and �  : n × n (see Ohlson et al. 2013).

Now the model which will be considered is presented in detail.

Definition 1  Let

where A : p × q1 , C1 : k1 × n , C2 : k2 × n , F : k3 × n , are all known matri-
ces, C(F�) ⊆ C(C�

1
) , r(�) = q2 < min(p, k3) , Z : k4 × n , p ≤ k4 , ZZ� = Ik4 , 

U ∼ Np,k4
(0,�u, Ik4 ) , E ∼ Np,n(0,�e, In) , where U and E are independently 

distributed.

Note the important standardization constraint ZZ� = I which will be utilized 
later. The parameters which are to be estimated are B1 , B2 , � , �u and �e . Instead 
of C(F�) ⊆ C(C�

1
) given in Definition  1 some other condition can be used which 

X = AB1C1 + B2C2 +�F + UZ + E,
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follows from the derivation of the estimates in the next section. Since in this arti-
cle only estimation is considered, the random effect UZ will not be predicted.

When in Definition 1 B2C2 = 0 , �F = 0 and UZ = 0 , the classical growth curve 
model appears (see Potthoff and Roy 1964; von Rosen 2018). When �F = 0 and 
UZ = 0 , then we have the growth curve model with background information, i.e., a 
mixture of GMANOVA and MANOVA models; some references to this model, as 
well as more general models, are Chinchilli and Elswick (1985), Verbyla and Vena-
bles (1988), von Rosen (1989) and Bai and Shi (2007). If B2C2 = 0 and �F = 0 , then 
we have the growth curve model with random effects (see Ip et al. 2007) whereas if 
only �F = 0 holds we refer to Yokoyama and Fujikoshi (1992) and Yokoyama (1995) 
where similar models are considered and where references to earlier works can be 
found. In these works, one puts structures on the covariance matrix which leads to 
somewhat different models than in this article.

2 � Two examples

This section presents two examples where the proposed model in Definition 1 can be 
used.

Example 1  In the first example, a field experiment had been conducted where plant 
growth was studied under different treatment conditions. A couple of weeks after 
sowing, plant heights were collected weekly and in total p weeks were studied. In 
the study, treatments were randomly assigned to plots and each week plants were 
randomly chosen from plots and plant growth was measured. The experimental units 
were the plots which were modeled with respect to plant growth over time.

It was assumed that plant growth is linear and the basic model equaled:

where with the help of A the linear plant growth over p weeks was modeled. For 
example when p = 4,

The matrix C1 in (1) is the design matrix connected to the treatments. If we would 
have had a univariate response or A = I , when comparing treatments, C1 is the same 
design matrix as in ANOVA or MANOVA, respectively.

In particular, one wanted to take into account that fields are inhomogeneous objects 
with respect to soil characteristics since usually plant growth depends on soil character-
istics. Plots were distributed over relatively large areas and, therefore, the characteris-
tics varied among the plots. Thus, it was important to include in (1) soil characteristics 
as covariable:

(1)X = AB1C1 + E,

A� =

(
1 1 1 1

t1 t2 t3 t4

)
.

(2)X = AB1C1 + B2C2 + E.
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Moreover, when measuring plant growth, it was not possible to measure all plants 
within a plot. Instead each week a number of randomly selected plants were meas-
ured. Thus, it was natural to include a random effect in (2) leading to the model:

Note that the condition ZZ� = Ik4 standardized the random effects according to the 
number of plots used to study a specific treatment.

Weather variables were also considered which are important variables for plant 
growth. However, there were too many weather-related variables which can have an 
influence on plant growth. For example, every hour during the day/night cycle tem-
perature, precipitation, wind speed, etc., was recorded. All these variables are more 
or less connected and it was difficult to directly measure their influence on plant 
growth. Therefore, the concept of latent variable was of interest and latent variables 
were implemented in our model via rank restrictions on a parameter matrix. Hence, 
we ended up with the model presented in Definition 1, i.e.,

When the rank of � equals r the interpretation is that there exist r latent processes 
affecting plant growth. The condition C(F�) ⊆ C(C�

1
) in Definition  1 means that 

the weather observations were taken at the same plots where plant growth was 
measured.

Example 2  In the second example, it will be shown that the model in Definition 1 
can be used to analyze “small area” (small domain) problems. Small area estimation 
is an active research area in statistics with many applications. An introduction to 
the subject is for example given in the book by Rao and Molina (2015). The com-
mon thread for small area estimation problems is that a survey study (finite popula-
tion case) has taken place and based on the survey the goal is to extract information 
about small domains by adding local information which was not accounted for in the 
comprehensive survey.

Sometimes survey samples are investigated several times. For example, suppose 
that there exists a national survey which collects information about some specific 
production from a certain type of companies. The survey samples are followed up 
once per year and this is ongoing for, say, 5 years. Moreover, suppose that there are 
20 regions and each region consists of 10 subregions. The survey can consist of four 
companies from each subregion so the whole survey comprises 800 companies.

The survey produces for each subregion and year an estimate of the production of 
interest. The variance of its estimator is also obtained. However, in some sense these 
estimates are biased since they do not take care of local information (covariables). 
Moreover, the sample sizes are usually to small to draw firm conclusions about sub-
areas. Therefore, the idea is to borrow strength across subareas via statistical models 
and background information. Let x be a vector where all survey estimates of a spe-
cific subarea variable are gathered (a specific production in our example). Moreover, 
if for these variables a linear model is assumed, we can write:

(3)X = AB1C1 + B2C2 + UZ + E.

X = AB1C1 + B2C2 + UZ +�F + E.

x = ��C1 + �,
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where �′C1 models the true value of the variable of concern and the error term � is 
normally distributed with zero mean and known dispersion V , where the dispersion 
is determined solely by the survey design. Since V is known, one can equivalently 
study V−1∕2x and, therefore, without loss of generality it can be assumed that V = I . 
Since the observations in the survey are repeatedly measured, and if it is supposed 
that there exists a second-order polynomial trend over the years, which is of the 
same form for all subregions, the following model can be set up:

which models what happens with the companies over time.
Under the assumption of 20 regions, 10 subregions within each region, four compa-

nies within each subregion, repeated data collection for each company for 5 years and 
V = I , then E ∼ N5,800(0,�, I) . In this case, for example,

When expressing the survey estimators with the help of A and B1 , we cannot say this 
is always true. Therefore, a random error U ∼ Np,l(0,�u, Il) is introduced in (4) and 
the following model emerges:

where Z is related to C1 , i.e., C(Z�) ⊆ C(C�
1
) and if additionally standardizing the 

effects ZZ� = I.
There usually exist two types of covariables. One type is accounted for in the survey 

study and another type of covariables are variables, for example, obtained from regis-
ters about the companies in the survey or there are base-line data which were available 
when the survey started. The effect of the second type of covariables can be modeled 
by B2C2 which included in (5) yields the model:

Moreover, suppose that a large cluster of socio-econometric variables exists. It is 
difficult to express a functional relationship between the survey estimators and the 
socio-econometric variables. Instead the idea of latent variables is employed leading 
to rank restrictions on an unknown parameter which should model the effect of these 
variables. Thus, we arrive again to the model presented in Definition 1:

3 � Estimation

Let Q1 and Q2 be matrices of basis vectors such that

and assume Q�
i
Qi = I , i = 1, 2 , Q�

1
Q2 = 0 , v = r(C�

1
∶ C�

2
∶ Z�) , v > k4.

(4)X = AB1C1 + E,

A
� =

⎛⎜⎜⎝

1 1 1 1 1

t
1
t
2
t
3
t
4
t
5

t
2

1
t
2

2
t
2

3
t
2

4
t
2

5

⎞⎟⎟⎠
.

(5)X = AB1C1 + UZ + E,

X = AB1C1 + B2C2 + UZ + E.

X = AB1C1 + B2C2 +�F + UZ + E.

C(Q1) = C(C�
1
∶ C�

2
∶ Z�), C(Q2) = C(C�

1
∶ C�

2
∶ Z�)⟂
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A one–one transformation of the model in Definition 1, using Q1 and Q2 , yields:

Lemma 1  Let V = Q�
1
Z�ZQ1 : v × v . The matrix V is idempotent.

Proof  Since C(Z�) ⊆ C(Q1) and ZZ� = I the lemma is established by straight forward 
calculations of VV . 	�  ◻

From Lemma 1, it follows that:

where �  : v × v is an orthogonal matrix. The identity in (6) is post-multiplied by �  , 
leading to the model:

However, since the dispersion

the model in (8) is split into two models. Let � = (� 1 ∶ � 2) : v × k4, v × (v − k4) . 
Then, we have three models which will be used when finding estimators:

The idea is to utilize (10) and (11) to estimate B1 , B2 , � and �e . Thereafter, these 
estimators are inserted in (9) which yields simple estimation equations for obtaining 
�u . Suppose that estimators B̂1 , B̂2 , �̂ and �̂e have been obtained, and let

i.e., under the assumption of no randomness in B̂1 , B̂2 and �̂ we have a model:

(6)XQ1 =AB1C1Q1 + B2C2Q1 +�FQ1 + UZQ1 + EQ1,

(7)XQ2 =EQ2.

V = �

(
Ik4 0

0 0

)
� �

,

(8)XQ1� = AB1C1Q1� + B2C2Q1� +�FQ1� + UZQ1� + EQ1� .

D[UZQ1� ] =

(
Ik4 0

0 0

)
⊗�u,

(9)
XQ1� 1 = AB1C1Q1� 1 + B2C2Q1� 1 +�FQ1 + UZQ1� 1 + EQ1� 1,

UZQ1� 1 ∼ Np,k4
(0,�u, Ik4 ), EQ1� 1 ∼ Np,k4

(0,�e, Ik4),

(10)
XQ1� 2 = AB1C1Q1� 2 + B2C2Q1� 2 +�FQ2� 2 + EQ1� 2,

EQ1� 2 ∼ Np,v−k4
(0,�e, Iv−k4 ),

(11)XQ2 = EQ2, EQ2 ∼ Np,n−v(0,�e, In−v).

Y0 =XQ1� 1 − AB̂1C1Q1� 1 − B̂2C2Q1� 1 − �̂FQ1,

� =�u +�e,

Y0 = Ẽ, Ẽ ∼ Np,k4
(0,� , Ik4 ).
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Based on this model, the maximum likelihood estimator, under the assumption that 
p ≤ k4 , �̂ = k−1

4
Y0Y

�
0
 , which means that a natural estimator of �u is given by

This estimator can only be used if �̂u is positive definite. However, if the estimator 
is not positive definite, via eigenvalues of �̂u the estimator can be modified.

Now we return to (10) and (11) to estimate B̂1 , B̂2 , �̂ and �̂e , and it is convenient to 
merge the models, i.e.,

Let

and then (12) is identical to

Furthermore, the likelihood function which corresponds to the model in (15) equals

with equality if and only if

which, under some full rank conditions on D2 , determines B2 as a function of B1 and 
� . To show the inequality, we have used

�̂u =
1

k 4

Y0Y
�
0
− �̂e.

(12)
X(Q1� 2 ∶ Q2) =AB1(C1Q1� 2 ∶ 0) + B2(C2Q1� 2 ∶ 0)

+�(FQ1� 2 ∶ 0) + Ẽ, Ẽ ∼ Np,n−k4
(0,�e, In−k4 ).

(13)Y =X(Q1� 2 ∶ Q2) ∶ p × (n − k4),D1 = (C1Q1� 2 ∶ 0) ∶ k1 × (n − k4),

(14)D2 =(C2Q1� 2 ∶ 0) ∶ k2 × (n − k4),D3 = (FQ1� 2 ∶ 0) ∶ k3 × (n − k4)

(15)Y =AB1D1 + B2D2 +�D3 + Ẽ.

(16)

L(B1,B2,�,�e) =(2�)
−
1

2
p(n−k4)|�e|−

1

2
(n−k4)

× e
−
1

2
tr{�−1

e
(Y−AB1D1−B2D2−�D3)()

�}
v

≤(2�)
−
1

2
p(n−k4)|�e|−

1

2
(n−k4)

× e
−
1

2
tr{�−1

e
(Y(I−PD�

2
)−AB1D1(I−PD�

2
)−�D3(I−PD�

2
)()�}

B2D2 = YPD�
2

− AB1D1PD�
2

−�D3PD�
2

,

(Y − AB1D1 − B2D2 −�D3)()
�

= (Y − AB1D1 − B2D2 −�D3)PD�
2

(Y − AB1D1 − B2D2 −�D3)
�

+ (Y − AB1D1 − B2D2 −�D3)(I − PD�
2

)(Y − AB1D1 − B2D2 −�D3)
�

= (Y − AB1D1 − B2D2 −�D3)PD�
2

(Y − AB1D1 − B2D2 −�D3)
�

+ (Y − AB1D1 −�D3)(I − PD�
2

)(Y − AB1D1 −�D3)
�,
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where both terms are positive semi-definite. The density in (16) corresponds to the 
model:

Thus, we have a model which was treated by von Rosen and von Rosen (2017) and 
any further calculations are not necessary. For notational conveniences, we write the 
model in (17):

D̃1 = D1(I − PD�
2

) and D̃3 = D3(I − PD�
2

) . Note that C(�D
�

3
) ⊆ C(�D

�

1
) because 

C(F�) ⊆ C(C�
1
) which is essential for being able to obtain explicit estimators (see von 

Rosen 1989).
The following theorem presents the estimators of the parameters in the model 

given by Definition 1.

Theorem 1  Let the model be as in Definition 1 and put v = dim C(C�
1
∶ C�

2
∶ Z�) . 

Define �1 and �2 via � = �1�2, where �1 : p × r(�) and �2 : r(�) × k3 . Moreover, 
the matrices D1 , D2, and D3 are given in (13) and (14), and Y1 , D̃1 and D̃3 are identi-
fied by comparing (17) and (18). Then,

	 (i)	 �̂1 = H(H�H)−1F̃1, where F̃ consists of the eigenvectors corresponding to the 
eigenvalues of the positive definite matrix 

 where 

 and H is defined by 

 where 

	 (ii)	 If C(A) ∩ C(�) = {0} , 

(17)
Y(I − PD�

2

) =AB1D1(I − PD�
2

) +�D3(I − PD�
2

)

+ E,E ∼ Np,n−k4
(0,�e, In−k4 ).

(18)Y1 =AB1D̃1 +�D̃3 + E, E ∼ Np,n−k4
(0,�e, In−k4 ),

Ip−r(A) −H�Y1PD̃�
3

R−1P
D̃�

3

Y�
1
H,

R = Iv + P
D̃�

3

Y�
1
HH�Y1PD̃�

3

T�
1
S−1
2
T1 = HH�

,

S1 =Y1(I − P
D̃�

1

)Y�
1
,

T1 =I − A(A�S−1
1
A)−A�S−1

1
,

S2 =S1 + T1Y1(PD̃�
1

− P
D̃�

3

)Y�
1
T�
1
;

�̂D̃3 = �̂1�̂
�

1
T�
1
S−1
2
Y1PD̃�

3

;
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 If additionally r(D̃
�

3
) = k3 , 

	 (iii)	 If C(A) ∩ C(�) = {0} , 

 If additionally r(D̃1) = k1 and r(A) = q1 , 

	 (iv)	

 If additionally r(D2) = k2 , 

	 (v)	

 where 

	 (vi)	

Proof  The proof follows from von Rosen and von Rosen (2017, Theorem 2.1) and 
the calculations presented in this section, in particular the model in (18) is utilized. 	
� ◻

A few remarks can be made: In (i), P
D̃�

1

− P
D̃�

3

 is always positive semi-definite 
because C(�D

�

3
) ⊆ C(�D

�

1
) ; the condition C(A) ∩ C(�) = {0} in (ii) and (iii) can always 

be assumed to hold because C(�) = C(�1) and any estimator �̂1 will not be related 
to C(A) ; the estimator in (vi) is only appropriate if �̂u is positive definite; the condi-
tion r(D̃1) = k1 in (iii) is fulfilled if C(D�

1
) ∩ C(D�

2
) = {0}.
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�̂ = �̂1�̂
�

1
T�
1
S−1
2
Y1D̃

�

3
(D̃3D̃

�

3
)−1;

AB̂1D̃1 = A(A�S−1
1
A)−A�S−1

1
(Y1PD̃

�

1

− �̂D̃3);

B̂1 = (A�S−1
1
A)−1A�S−1

1
(Y1D̃

�

1
(D̃1D̃

�

1
)−1 − �̂D̃3D̃

�

1
(D̃1D̃

�

1
)−1);

B̂2D2 = YPD�
2

− AB̂1D1PD�
2

− �̂D3PD�
2

;

B̂2 = YD�
2
(D2D

�
2
)−1 − AB̂1D1D

�
2
(D2D

�
2
)−1 − �̂D3D

�
2
(D2D

�
2
)−1;

(n − k4)�̂e = S2 + T̂2T1Y1PD̃�
3

Y�
1
T�
1
T̂
�

2
,

T̂2 = Ip − T1�̂1(�̂
�

1
T�
1
S−1
2
T1�̂1)

−�̂
�

1
T�
1
S−1
2
;

�̂u =
1

k4
Y0Y

�
0
− �̂e
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