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enemies: understanding the co-evolution of friendship
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Abstract Social interactions take place simultaneously through different interac-

tion types, such as communication, friendship, trade, exchange, enmity, revenge,

etc. These interactions can be conveniently described with time-dependent multi-

layer networks. Little is known about the dynamics of social network formation on

single layers. How the dynamics on one layer is coupled to and influences the

dynamics on another layer is a completely unexplored territory. This is mainly due

to the lack of comprehensive microscopic interaction data on time-dependent multi-

layer networks. In this work, we study a unique dataset of 350,000 odd players in a

massive multi-player online game, for which we know practically every social

interaction event. We focus on the dynamics of friendship interactions and how they

are coupled to the dynamics of enmity interactions. We are able to identify the

driving processes behind the joint network formation of friendship and enmity links.

The essential mechanisms turn out to be specific triadic closure rules. We propose a

simple dynamical model that allows us to predict not only the correct levels of

social balance but also the detailed simultaneous structural properties of the

friendship and enmity networks, including their degree distributions, clustering

coefficients and nearest neighbor degrees. While the formation of new friendship

links can be largely understood on the basis of structural features of the friendship

network alone, this is not true for enmity networks. The formation of enmity links is

driven by the need to socially balance triadic relations that contain negative and
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positive interactions. Networks of enmity relations can only be understood struc-

turally in the context of the positive social ties they are embedded in.

Keywords Social network formation � Triadic closure � Social balance � Co-
evolution � Multi-layer network

Introduction

Over the past decades, the focus of social science has shifted from topics centered

around social behavior of individuals and groups to relationships and interactions

among social entities. Network science and methodology from complex adaptive

systems [1, 2] have become increasingly relevant for quantitative social science [3].

A central challenge of contemporary social science is to understand the structure

and dynamics of social networks on the basis of ‘‘microscopic’’ interactions

between individuals. In recent years, two developments greatly facilitated the

empirical side of this task: first, electronic fingerprints and automated methods of

data acquisition gradually superseded conventional methods such as interviews and

questionnaires. This opened completely new scales of analysis, while eliminating

various sources of bias [4]. Second, the general availability of social network data

has substantially increased, not least because an increasing number of people

participate in virtual worlds, such as massive multiplayer online games [5, 6].

Today, structural properties of numerous real-world social networks are well-

studied. The most important structural information is carried in the distribution

functions of the degrees, the clustering coefficients, and the nearest neighbor

degrees. They allow us to make statements about robustness, efficiency, hierarchy

and assortativity of the underlying networks. Countless findings have been reported,

such as the appearance of power laws in scientific collaboration networks [7],

mobile communication networks [8], or networks of co-starring movie actors [9],

just to name a few. In contrast, the study of social network dynamics has been

primarily approached from a purely theoretical perspective: a significant amount of

literature concentrates on hypothetical dynamical models [10] and agent-based

models [11]. This has led to the paradoxical situation that, on the one hand, the

dynamical origin of a majority of the observed network structures is virtually

unknown and cannot be related to actually observed interaction patterns. On the

other hand, many proposed mechanisms of network formation lack empirical

verification. To overcome this discrepancy, it is necessary to get a better

understanding of the intrinsic connection between structure and actual microscopic

dynamics of social networks. In other words, the following two essential questions

need to be addressed: What are the actual microscopic key processes behind social

network formation? And, how do these processes lead to the observed structural

properties, such as degree distributions or clustering coefficients as a function of

degree? This requires a thorough empirical analysis of network formation processes,

as well as the testing in a model environment that incorporates these processes and

is able to explain the observed network properties. Many real-world social networks
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are comprised of positively and negatively connoted relations and show evidence of

social balance [12]. Realistic models of social network formation should be able to

predict the correct levels of social balance.

In this work, we provide some answers to the above questions, based on the

analysis of friendship and enmity networks obtained from the online game

PARDUS [13–17]. PARDUS is a browser-based, open-ended massive multiplayer

online game (MMOG) with presently more than 350,000 registered players. For a

detailed discussion of the structural and dynamical properties of the game see [14].

The players live in a virtual, futuristic universe, where they act in a self-determined

manner to pursue their own goals and interact with each other in a multitude of

ways. Typically, players strive for increasing social status and wealth, which can be

achieved by engaging in various political and economic activities. In this context,

social factors such as cooperation and conflict become important. In particular,

players in PARDUS can mark each other as friends or enemies. These markings

persist until they are removed. Each marking is private and only known to the two

players involved in the associated friendship or enmity relation. At any time, each

player maintains two personal lists: one containing all their friends and enemies, and

one containing all players that have marked them as a friend or enemy, respectively.

We have a full record of all friendship and enmity markings for 1235 consecutive

days. From this data, we extract a time series of networks in the following way: if at

any time during day t player j is marked by player i as a friend or an enemy, a

friendship respectively enmity link from i to j is added to the network associated

with day t. This is done for all players and days. We obtain a dataset comprising

friendship and enmity networks of 4000–5000 continuously active players for 1235

days. Figure 1 schematically illustrates the two-layer network structure of

friendship (green arrows) and enmity (red arrows) markings among players. Each

player is represented by two nodes (grey circles connected by a dashed line).

The paper is structured as follows: first, we analyze the dynamics of network

formation for the PARDUS friendship and enmity interactions, which leads to the

identification of the most relevant driving processes behind the dynamics. We then

implement these processes in a two-layer network model and perform numerical

simulations. Finally, we validate the model by comparing its emergent network

properties and social balance levels with those found in the primary data. The

Fig. 1 Snapshot of a two-layer
social network of friendship
(green arrows) and enmity (red
arrows) relations. Each pair of
nodes (grey circles) connected
by a dashed line represents a
single individual
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proposed model is not only compatible with social balance theory, but also in good

agreement with the structural network properties that are found in the data.

Identification of the dynamical driving processes

Basic network dynamics

Players enter and exit the game. When a player enters the game initially, there are

no social interaction links. When the player eventually meets and interacts with

other avatars, every interaction between them is recorded as a link in a temporal

multi-layer network. We only focus on the two layers of friendship and enmity.

Links in the two network layers exist until they are actively removed from the

network by the players that established them, or when a player exits the game. In the

latter case, the corresponding node is removed from the two-layer friendship–

enmity network, and their links in both layers are deleted.

To analyze the dynamics of network formation, we look at link creation and

deletion events and at player entry and exit events. Since players and their actions

both have characteristic life times, the number of nodes and links in the networks

can be expected to be relatively stationary. To confirm that this is indeed the case,

and to later determine the link and node creation (deletion) rates, we check if and

when the stationarity conditions for node and link dynamics are met. If DNþ and

DN� denote the average numbers of players entering or leaving the game within a

time period of interest, and DLþ (DL�) denotes the average number of link creation

(deletion) events, stationarity requires:

DNþ � DN� � DNþ � DN�; ð1Þ

DLþ � DL� � DLþ � DL�: ð2Þ

We observe that after an initial growth phase, where DNþ [DN�, both the network

size N and the total number of links L fluctuate around constant values, indicating

indeed a stationary state. We choose our period of observation as the final 100 days

of the dataset. From Eqs. (1) and (2) the node and link creation rates can be

computed, see below.

In the PARDUS society, we find that the overlap between friendship and enmity

networks is negligible (Jaccard coefficient J� 0), and their respective reciprocities

are fundamentally different (q[ 0:55 for friendship and q\0:13 for enmity).

Therefore, the typical interaction between two players is either mutual and friendly

or asymmetric and hostile [13, 14].

Triadic closure dynamics

We now show that the creation of new links can be mainly attributed to two types of

triadic closure processes, and that players actively delete their enmity links much

more frequently than their friendship links. According to social balance theory, the

230 J Comput Soc Sc (2018) 1:227–239

123



link creation dynamics is determined by the local network structure [18, 19]. In

particular, links tend to be created between nodes that share a common neighbor,

i.e., the generic process of link creation is the closure of an open triad [20, 21].

Given 2 possible link types and 2 possible link directions for each of the 3 edges, up

to a factor of 2 due to mirror symmetry, there are ð2� 2Þ3=2 ¼ 32 unique ways to

close an open triad. We make use of the fact that most of the friendship links are

reciprocal and disregard their directionality. This reduces the number of possibil-

ities. Along a similar line of reasoning, due to their rare occurrence, we ignore

reciprocal enmity links. This leaves us with six different types of triadic closure

processes if a new friendship link is created, and nine types if a new enmity link is

created, see Fig. 2a.

Figure 2b shows the corresponding relative rates for our data, i.e., how often a

newly appearing link closes an open triad of a specific type divided by the total

number of closure events within our observation period. We find that both

friendship (left) and enmity (right) link creation events are dominated by one type of

triadic closure process. Type I is responsible for (44% of the created friendship

links, type VIII for 27% of the enmity links. Note that the relative rates do not add

(a) (c)

(b)

Fig. 2 Driving processes behind two-layer social network formation, based on the numerical analysis of
coupled friendship and enmity networks obtained from the massive multiplayer online game PARDUS.
a Schematic illustration of all possible types of triadic closure processes, given that friendship links are
reciprocal and enmity links are uni-directional. Shown on the left (right) are triads that are closed by a
friendship (enmity) link, the respective positions of the closing links are indicated by the dashed lines.
b Relative frequencies of triadic closure processes when new friendship (left) respectively enmity (right)
links are created. Note that the rates do not add up to one because several triads can be closed
simultaneously. c Fractions of links that are actively deleted by players. While friendship links (green)
primarily disappear from the network because a player leaves the game, enmity links (red) are often
actively withdrawn
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up to one because several triads may be closed simultaneously in a single link

creation event.

The friendship triadic closure process (FTC), labelled I in Fig. 2, is known to

play a key role in social network formation [16]. It can be experessed as ‘‘The friend

of my friend is my friend’’, meaning that new friendships tend to be made between

people who already have a common friend. Note that the mixed triadic closure

process (MTC) VIII, is equally important. The phrase ‘‘The enemy of my friend is

my enemy’’ is a possible verbalization of this process, and reflects the fact that a

person A will more likely declare another person B as an enemy if already one of A’s

friends (person C) considers B as an enemy. Further, if we regard enmity as a

psychological reaction to hostile or aggressive behaviour [22], this process can be

viewed as an elementary representation of ‘‘solidary behavior’’.

We quantify the absolute occurrences of the processes FTC and MTC by

determining the triadic closure parameters [13, 16], i.e., how often a newly created

link closes at least one triad of a specific type. We obtain the values sf ¼ 0:588
(FTC). This confirms similar measurements in [13, 16]. We find se ¼ 0:406 (MTC).

In PARDUS, there are two ways to delete a link: either a link is actively

withdrawn by the person that generated it, or a player leaves the game and is

removed together with their links from the network. We find that there is a major

difference in how often friendship and enmity links are actively deleted. As

illustrated in Fig. 2c, friendship links usually last until one of the players leaves the

game (only a fraction of rf ¼ 0:352 is actively deleted), while enmity links

primarily disappear because players actively delete them (re ¼ 0:894).

Model

Based on the network formation analysis, we propose a model for coupled

friendship and enmity dynamics that includes the key processes triadic closure,

active link deletion, and the addition and removal of nodes. It is a generalization of

the model introduced in [16], which is centered around the triadic closure process

for reciprocal, positive social relations (friendship). By including uni-directional

negative relations (enmity) we take into account the coupled nature of social

interactions.

We start with a social network of N nodes representing individuals and two

network layers representing friendship and enmity relations among the avatars. The

network is initialized by sequentially assigning each node two friendship links

(undirected) and two enmity links (one incoming, one outgoing) to randomly chosen

nodes. Then the following steps are iterated. The dynamics from timestep t to t þ 1

is given by:

1. With probability p, add a friendship link to the network:

(1:1) Friendship triadic closure. With probability sf , pick a node with

sufficiently large friendship neighborhood (degree kf � 2) at random

and connect two randomly selected friends.
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(1:2) With probability 1� sf , pick a node (degree kf � 1) at random and

connect one of its friends with any randomly chosen node.

2. With probability 1� p, add an enmity link to the network:

(2:1) Mixed triadic closure. With probability se, pick a node with friendship

degree kf � 1 and enmity out-degree koute � 1 at random and randomly

select one neighbor in each layer (i.e., one friend and one enemy).

Connect the friend with the enemy in such a way that the new link

points towards the enemy.

(2:2) With probability 1� se, pick a node (degree koute � 1) at random and

connect one of its enemies with any randomly chosen node in such a

way that the new link points towards the enemy.

3. Active friendship link deletion. With probability r	f , pick a node (degree kf � 1Þ
at random and remove one of its friendship links.

4. Active enmity link deletion. With probability r	e , pick a node (degree koute � 1Þ at
random and remove one of its outgoing enemity links.

5. Node turnover. With probability q, pick a node at random and remove it from

the network along with all its links. Introduce a new node and link it to two

randomly selected nodes (one friendship link and one incoming enmity link).

Then continue with timestep t þ 1.

Results

Calibration

The model is completely specified by the set of parameters ðN; p; sf ; se; r	f ; r	e ; qÞ. All
these parameters can be measured from the data in the game. The model has no free

parameters. For q[ 0 nodes have a finite lifetime, hence the coupled friendship and

enmity dynamics approach a stationary state. Note that nodes enter and leave the

network with similar rates. To calibrate the model, we resort to our numerical

analysis of the stationary properties of the PARDUS networks (see previous

section).

The triadic closure parameters can be directly measured and are sf ¼ 0:588 and

se ¼ 0:406. From the stationarity condition DLþ � DL� we get that the absolute

rates of active link deletion r	f and r	e and the fractions of actively deleted links

rf ¼ 0:352 and re ¼ 0:894, are related by r	f ¼ prf and r	e ¼ ð1� pÞre, respectively.
Further, stationarity implies:

p ¼ qðLf=N � 1Þ þ prf ; ð3Þ
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1� p ¼ qð2Le=N � 1Þ þ ð1� pÞre ð4Þ

with Lf and Le denoting the number of friendship links and enmity links, respec-

tively. To see this, consider the respective impact of possible events during a single

timestep on the total link balance: the expected number of added friendship links is

p (FTC or random) plus q (node turnover), while prf (active link deletion) plus

qLf=N (node turnover) links are removed on average. In an analogous manner, a

balance equation for enmity links can be found (note the factor 2 due to direc-

tionality). We set Lf ¼ 39; 095, Le ¼ 25; 699 and N ¼ 4; 232 as measured on the

last day of the observation period. p and q can be calculated from Eqs. (3) and (4).

We obtain p ¼ 0:118 and q ¼ 0:009.

We perform numerical simulations of the model using T ¼ 106 timesteps, which

correspond to approximately 100 days in the game. To exclude transient effects, we

check the stationarity conditions Eqs. (1) and (2) within the final 100 iterations.

Results are averaged over 50 realizations. The model is implemented in such a way

that previously existing links are overwritten when a new link is created. To avoid

the creation of loops in the network, which is very unlikely but can happen in

steps 1.2, 2.2 and 5 of the algorithm, a small modification is necessary: If a loop

would be created, choose another node. Finally, we tested the network analysis and

the simulation outcomes for robustness with respect to the particular choice of the

observation period. No significant differences from the presented results were

observed with other periods.

Test of social balance

As in [13], we use a method to empirically test social balance in networks of

positively (þ) and negatively (-) connoted social relations, in particular friendship

and enmity. To that end, all links of the network are symmetrized and a triad count

is performed for each of the four different types (þþþ,þþ�,þ��, ���).

The obtained numbers are then compared to the expected numbers in a null model

(randomly reshuffled link types), and the z score is applied for each triad type (see

Methods section).

Social balance theory states that þþþ triads (‘The friend of my friend is my

friend’) and þ�� triads (‘The enemy of my enemy is my friend’) are stable or

balanced, whereas triads of type þþ� (‘The friend of my friend is my enemy’) are

unbalanced and associated with social stress [18, 19, 21]. The purely negative triad

��� is considered to be unbalanced [19] or balanced [23], depending on the

formulation of the theory. People tend to change their relations in such a way that

the energy needed for maintaining contacts is minimized [24], and unbalanced

triads are avoided. As a consequence, balanced triads are expected to be over-

represented in the network (positive z score), and unbalanced triads are expected to

be under-represented (negative z score).

We use this method to test both the PARDUS data at the final day of the

observation period, and the averaged simulation outcomes. We find that þþþ and

þ�� triads are heavily over-represented both in the data and in the model. For

þþþ we find z scores of 10 for the model and 71 for the data. For þ�� we get
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�105 for the model and �112 for the data, for þ�� we have 113 for the model

and 47 for the data, and finally for ��� we have 1 for the model and �5 for the

data.

We conclude that the friendship and enmity networks in PARDUS are

compatible with social balance theory in its weak formulation [23]. In [13], similar

results were reported. We further see that the model endogenously leads to social

balance.

Network properties: data and model

We now validate the model by calculating the distributions of degrees, clustering

coefficients and nearest neighbor degrees for the simulated networks. We compare

them to the actual distributions in the PARDUS networks at the final day of the

observation period.

Figure 3a shows the cumulative in-degree and out-degree distributions for the

friendship (left) and enmity (right) networks. We observe that the friendship degree

distributions from the data (grey) and the model (green) are in good agreement.

Note that the model only allows for bidirectional friendship links. Therefore the in-

degree (r) and out-degree (D) distributions are identical. The enmity in-degree

distribution of the data shows an approximate power law behavior with an exponent

close to �1. Such a behavior is absent in the enmity out-degree distribution of the

data. The model distributions initially follow a power law with exponents close to

�1, before rapidly decreasing for large degree values. While the model overesti-

mates the true distribution values in the middle range of degrees (approximately

between 30 and 110), it does account for the asymmetry in enmity in- and out-

degrees and the power law behavior.

Figure 3b depicts the clustering coefficient of the symmetrized friendship (left)

and enmity (right) networks as a function of degree. In both cases, we find good

agreement between data and model. In the friendship networks, the clustering

coefficients decrease with increasing degree, following a power law. The enmity

clustering coefficient versus degree exhibits a weak downward trend (approximate

power law) for degrees up to approximately 100, and then starts to fluctuate with

average values dropping rapidly. This drop is likely to be related to the asymmetry

of the cumulative enmity degree distributions, in particular to the existence of nodes

with a large in-degree and a comparatively small out-degree, public

enemies [14, 15].

The nearest neighbor degree versus degree functions can be seen in Fig. 3c.

There is a considerable overlap between data and model. The friendship nearest

neighbor degrees are to a large extent independent of the degrees (uniform

distribution). The distributions of the enmity nearest neighbor degrees are also close

to uniform for most degrees, but follow an approximate power law downward trend

for degrees larger than about 100. This is captured well in the model.
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Discussion

Theconjecture that structural and dynamical properties of social networks are intimately

connected, and that this connection is encoded largely in triadic processes involving

positively and negatively connoted relations, dates back as far as Heider’s balance

theory [19]. It is surprising that the two essential questions in this context have been

addressed so poorly up to now, namely: What are the key processes behind social
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the PARDUS data (grey) and model simulations (green and red): a cumulative distributions of in-degrees
(r) and out-degrees (D), b clustering coefficient as a function of degree, c nearest neighbor degree versus
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network formation? And, how do these processes lead to structural network properties?

This can be partially explained by limited data availability especially for negatively

connoted relations. The main finding in this paper is that it is possible to understand the

dynamics of positively connoted relations on a standalone basis [16]. However, this

does not apply for negatively connoted relations.

Based on a numerical analysis of social network data for friendship and enmity

relations from the massive multiplayer online game PARDUS, we can identify five key

processes of social network formation: friendship triadic closure (FTC), mixed triadic

closure (MTC), active friendship link deletion, active enmity link deletion, and node

turnover. FTC and node turnover constitute an autonomous description of friendship

link dynamics. This explains the success of the model in [16], which provides an

understanding of positive-connoted links only. In contrast, due to themixed nature of the

MTC process the dynamics of enmity links strongly depends on the friendship network.

To clarify how microscopic processes lead to the structural network properties, we

proposed a simple model for network formation based on the identified five key

processes. The triadic closure processes FTC and MTC naturally feature a preferen-

tial attachmentmechanism, since the probability to choose the neighbor of a randomly

selected node is an increasing function of its in-degree [25]. However, the joint friend

and enmity link dynamics leads to rich network structures, including non-trivial

behavior in the degree distributions. Also the clustering and nearest neighbor degrees,

when plotted against the degree, show behavior that was so-far not understood. The

model does neither control the multiplicity nor the co-occurrence rates of triadic

closure events, only the rate at which at least one triad of one type is closed.

We find surprisingly good agreement between the model results and the original

PARDUS data in terms of these structural network properties. The same is true for

the z scores of the four basic types of mixed triads. The results can be interpreted

both as a validation of the model and as evidence for its explanatory power.

In [13] an alternative model for social network formation based on triadic closure

was offered. However, in contrast to the model presented here, it lacks essential

features including the directionality of enmity links which are necessary for

asymmetrical degree distributions and specific link deletion mechanisms.

Methods

We calculate the overlap between friendship and enmity networks by means of the

Jaccard coefficient,

JðF;EÞ ¼ F \ Ej j
F [ Ej j ; ð5Þ

where F and E are the respective sets of links. Further, we measure reciprocity by,

q ¼ r	 � �a

1� �a
; ð6Þ

where r	 is the fraction of links that are in mutual dyads and �a is the ratio of

observed to possible links [26].
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To test for social balance, we follow the method introduced in [13]. First, we

symmetrize the friendship (þ) and enmity (-) links and remove links that are in

both networks. We perform a triad count for each of the four types

(þþþ,þþ�,þ��,���). Next, we construct a null model for the respective

numbers of triads. To that end, we reshuffle the link types without changing the

topology, i.e., we randomly assign link types þ and - to the existing links, while

keeping the number of þ and - links fixed. We then count the triads of each type

again. We repeat this step until 1000 realizations of the null model are obtained.

Finally, we calculate the z score,

z ¼ N � �N

r
; ð7Þ

for each of the triad types, where N is the observed number of triads of a certain

type, �N the average number in the null model and r the standard deviation of the

null model.
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