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Abstract
We formalize the notion of the dependency structure of a collection of multiple
signals, relevant from the perspective of information theory, artificial intelligence,
neuroscience, complex systems and other related fields. We model multiple signals by
commutative diagrams of probability spaces with measure-preserving maps between
some of them. We introduce the asymptotic entropy (pseudo-)distance between dia-
grams, expressing how much two diagrams differ from an information-processing
perspective. If the distance vanishes, we say that two diagrams are asymptotically
equivalent. In this context, we prove an asymptotic equipartition property: any
sequence of tensor powers of a diagram is asymptotically equivalent to a sequence
of homogeneous diagrams. This sequence of homogeneous diagrams expresses the
relevant dependency structure.

Keywords Asymptotic equipartition property · Entropy distance · Diagrams of
probability spaces · Multiple signals

1 Introduction

According to usual modeling assumptions in information theory, a discrete signal
is cut into a collection of long words of length n, whose particular representation
is irrelevant (each word is considered as an atomic object without inner structure),
and small errors are allowed. If the signal is modeled as a sequence of independently,
identically distributed randomvariables, there is onlyone relevant variable determining
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the signal, namely the entropy: the exponential growth rate of the number of typical
words of length n. We elaborate on this point of view below in Sect. 1.1.

Similarly, if one probes a measure-preserving dynamical system at a discrete
sequence of times with a finite-output measurement device and counts measurement
trajectories of length n, while discarding rarely appearing, untypical ones, one arrives
at the notion of entropy of a system-measurement pair. Entropy, in this case, is the expo-
nential growth rate of the number of typical trajectorieswith respect to the lengthn. The
supremum of such entropies over varying measurement devices is the Kolmogorov–
Sinai entropy of a measure-preserving dynamical system. According to a theorem of
Ornstein [17], the entropy is the only invariant of the isomorphism classes of certain
types of dynamical systems (Bernoulli shifts).

In information theory, but also in artificial intelligence, neuroscience and the theory
of complex systems, one usually studies multiple signals at once. Likewise, a dynam-
ical system is often observed with multiple measurement devices simultaneously. In
these cases, one assumes in addition that the relations between the signals are essential.
In this article we characterize, under these modeling assumptions, the relevant invari-
ants in multiple signals, that are obtained as i.i.d. samples from random variables. We
explain this in more detail in Sects. 1.3 and 1.4.

We will now explain our point of view on entropy for a single signal, that is, for a
single probability space.

1.1 Probability spaces and their entropy

First we consider a finite probability space X = (S, p), where S is a finite set, and
p is a probability measure on S. For simplicity, assume for now that the measure p
has full support. Next, we consider the, so-called, Bernoulli sequence of probability
spaces

Xn = (Sn, p⊗n)

where Sn denotes the n-fold Cartesian product of S, and p⊗n is the n-fold product
measure.

The entropy of X is the exponential growth rate of the observable cardinality of
tensor powers of X . The observable cardinality, loosely speaking, is the cardinality
of the set Xn after the biggest possible subset of small measure has been removed. It
turns out that the observable cardinality of Xn might be much smaller than |S|n , the
cardinality of the whole of Xn , in the following sense.

The Asymptotic Equipartition Property states that for every ε > 0 and n � 0 one
can find a, so-called, typical subset A(n)

ε ⊂ Sn , defined as a subset that takes up almost
all of the mass of Xn and the probability distribution on A(n)

ε is almost uniform on the
normalized logarithmic scale, as stated in the following theorem, see [8].

Theorem 1.1 (Asymptotic equipartition property) Suppose X = (S, p) is a finite
probability space. Then, for every ε > 0 and every n � 0 there exists a subset
A(n)

ε ⊂ Xn such that
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1. p⊗n(A(n)
ε ) > 1 − ε

2. For any a, a′ ∈ A(n)
ε holds

∣
∣
∣
∣

ln p⊗n(a)

n
− ln p⊗n(a′)

n

∣
∣
∣
∣
< ε.

Moreover, if A(n)
ε and B(n)

ε are two subsets of Xn satisfying the two conditions above,
then their cardinalities satisfy

∣
∣
∣
∣
∣

ln |A(n)
ε |

n
− ln |B(n)

ε |
n

∣
∣
∣
∣
∣
< 2ε. (1)

The cardinality |A(n)
ε | may be much smaller than |S|n , but it will still grow expo-

nentially with n. Even though there are generally many choices for such a set A(n)
ε , in

view of the property (1) in Theorem 1.1, the exponential growth rate with respect to
n is well-defined up to 2ε.

The limit of the growth rate as ε → 0+ is called the entropy of X

Ent(X) := lim
ε↓0 lim

n→∞
1

n
ln |A(n)

ε |. (2)

This point of view on entropy goes back to the original idea of Boltzmann [3,4],
according to which entropy is the logarithm of the number of equiprobable states, that
a system, comprised of many identical weakly interacting subsystems, may take on.
It was further developed and applied to Information Theory by Shannon [19], and in
the context of dynamical systems by Kolmogorov and Sinai [12,13,21].

Entropy is especially easy to evaluate if the space is uniform, since for any finite
probability space with the uniform distribution the observable cardinality is equal to
the cardinality of the whole space and therefore

Ent(X) = ln |X |. (3)

For non-uniform spaces, the entropy can be evaluated by the well-known formula

Ent(X) = −
∑

x∈SX
pX (x) ln pX (x).

1.2 Asymptotic equivalence

If X1 and X2 are probability spaces with the same entropy, there is a bijection between
their typical sets of sequences of length n, for the plain reason that they can be chosen
to have the same cardinality. It means that up to a change of code (of representation)
and an error that becomes small as n gets large, the spaces Xn

1 and Xn
2 are equivalent.

In the same sense, both Xn
1 and Xn

2 are equivalent to a uniform measure space with
cardinality enEnt(Xi ).
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In [10], Gromov formalized this concept of asymptotic equivalence. With his def-
inition, two Bernoulli sequences of measure spaces Xn

1 and Xn
2 are asymptotically

equivalent if there exists an “almost-measure-preserving” “almost-bijection”

Xn
1 Xn

2
f

Even though we were greatly influenced by ideas in [10], we found that Gromov’s
definition does not extend easily to situations in which multiple signals are processed
at the same time, or when a dynamical system is probed with several measurement
devices at once.

1.3 Diagrams of probability spaces

We model multiple signals by diagrams of probability spaces. By a diagram of
probability spaceswemean a commutative diagramof probability spaces andmeasure-
preserving maps between some of them. We will give a precise definition in Sect. 2.4,
but will now consider particular examples of diagrams called two-fans.

A two-fan

X
πX←− U

πY−→ Y

is a triple of probability spaces X = (X , pX ),Y = (Y , pY ) and U = (U , pU ), and
two measure-preserving maps πX and πY . We will restrict ourselves for now to the
case in which the underlying set of U is the Cartesian product of the underlying sets
of X and Y ,U = X ×Y , and πX and πY are the ordinary projections. Such a situation
arises, for example, when a complex dynamical system, such as a living cell or a brain,
is observed via two measuring devices.

Generalizing from the case of single signals, we might want to say that two-fans

X1 ←− U1 −→ Y1
X2 ←− U2 −→ Y2

are asymptotically equivalent if for large n there exist almost measure-preserving,
almost-bijections

Xn
1 Un

1 Yn
1

Xn
2 Un

2 Yn
2

f h g

Without additional assumptions, asymptotic equivalence classes for two-fans would
be completely determined by the entropies of the constituent spaces.

However, such an asymptotic equivalence relation would be too coarse. Consider
the three examples of two-fans are shown in Fig. 1, which is to be interpreted in
the following way. Each of the spaces Xi and Yi , i = 1, 2, 3, have cardinality six
and a uniform distribution, where the weight of each atom is 1

6 . The spaces Ui have
cardinality 12 and the distribution is also uniform with all weights being 1

12 . The
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Y1

X1

U1

Y2

X2

U2

Y3

X3

U3

Fig. 1 Examples of pairs of probability spaces together with joint distributions

support of the measure on Ui ’s is colored grey on the pictures. The maps from Ui to
Xi and Yi are coordinate projections.

In view of Eq. (3) we have for each i = 1, 2, 3,

Ent(Xi ) = ln 6

Ent(Yi ) = ln 6

Ent(Ui ) = ln 12.

However, common information-processing techniques can still differentiate between
the two-fans, by calculating solutions to information-optimization problems. This
observation is sometimes expressed by saying that mutual information does not cap-
ture the full dependency structure that is relevant from an information-processing
perspective. Information-optimization problems play an important role in information
theory [25], causal inference [18], artificial intelligence [23], information decompo-
sition [5], robotics [1], and neuroscience [9].

The additional assumption that the relations between the signals is relevant and
should be preserved by the asymptotic equivalence results in the requirement that the
following diagram commutes

Xn
1 Un

1 Yn
1

Xn
2 Un

2 Yn
2

f h g

However, with this generalization of an asymptotic equivalence to diagrams, we
were not able to prove a corresponding Asymptotic Equipartition Property or even to
prove the transitivity of the relation.

1.4 The entropy distances and asymptotic equivalence for diagrams

Instead of finding an almost measure-preserving bijection between large parts of the
two spaces, we consider a stochastic coupling (transportation plan, joint distribution)
between a pair of spaces and measure its deviation from being an isomorphism of
probability spaces (a measure-preserving bijection). Such ameasure of deviation from
being an isomorphism then leads to the notion of intrinsic entropy distance, and its
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stable version—the asymptotic entropy distance, as explained in Sect. 3. We say two
sequences of diagrams are asymptotically equivalent if the asymptotic entropy distance
between them vanishes.

The intrinsic entropy distance is an intrinsic version of a distance between random
variables going bymany different names, such as entropy distance, shared information
distance andvariation of information. Itwas reinventedmany times bydifferent people,
among them Shannon [20], Kolmogorov, Sinai and Rokhlin. It appears in the proof
of the theorem about generating partitions for ergodic systems by Kolmogorov and
Sinai, see for example [22].

The intrinsic version of the entropy distance between probability spaces was intro-
duced by Kovacevic et al. [14] and by Vidyasagar [24]. They showed that the involved
minimization problem is NP-hard. Methods to find approximate solutions are dis-
cussed in [6,11].

1.5 Asymptotic equipartition property

With the notion of asymptotic equivalence induced by the asymptotic entropy distance,
we can prove an asymptotic equipartition property for diagrams. Whereas the asymp-
totic equipartition property for single probability spaces states that high tensor powers
of probability spaces can be approximated by uniformmeasure spaces, the Asymptotic
Equipartition Property Theorem for diagrams, Theorem 6.1, states that sequences of
successive tensor powers of a diagram can be approximated in the asymptotic entropy
distance by a sequence of homogeneous diagrams.

Homogeneous diagrams have the property that the symmetry group acts transitively
on the support of the measures of the constituent spaces. Two-fans shown on Fig. 1
are particular examples of homogeneous diagrams.

Homogeneous probability spaces are just uniform probability spaces, while homo-
geneous diagrams are, unlike homogeneous probability spaces, rather complex
objects. Nonetheless, they seem to be simpler than arbitrary diagrams of probabil-
ity spaces for the types of problems that we would like to address.

In a subsequent articlewe show that the optimal values in Information-Optimization
problems only depend on the asymptotic class of a diagram and that they are contin-
uous with respect to the asymptotic entropy distance; in many cases, the optimizers
are continuous as well. The Asymptotic Equipartition Property implies that for the
purposes of calculating optimal values and approximate optimizers, one only needs to
consider homogeneous diagrams and this can greatly simplify computations.

Summarizing, the Asymptotic Equipartition Property and the continuity of
Information-Optimization problems are important justifications for the choice of
asymptotic equivalence relation and the introduction of the intrinsic and asymptotic
Kolmogorov–Sinai distances.

1.6 Definitions and results in random variable context

In this article, we use the language of probability spaces and their commutative dia-
grams rather than the language of random variables, because we often encounter
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situations in which their joint distributions are not defined, are variable, or even do
not exist.

Some relations between the probability spaces can be easily represented by com-
mutative diagrams of probability spaces, such as by a diamond diagram, Sect. 2.5.5,
while the description with random variables is complex and not easily interpretable.
The diagrams also provide a geometric overview of various entropy identities and
inequalities.

Since the language of random variables will be more familiar to many readers, we
now present our main result in these terms.

For random variables X, Y,Z etc., we denote by X ,Y , Z the target sets, and by
X ,Y , Z the probability spaces with the induced distributions.

In general, there is a relation between k-tuples of random variables and diagrams
of a certain type, involving a space for every subset I ⊂ {1, . . . , k}.

For example, a pair of randomvariablesX, Y (defined on the same probability space)
gives rise to a two-fan,

X ←− X × Y −→ Y

where X , Y and X × Y are the target spaces of the random variables X, Y and (X, Y)

endowed with their respective laws (i.e. the pushforward of the probability measure).
However, not every type of diagram corresponds to a tuple of random variables.
The entropy distance between two k-tuples X = (X1, . . . ,Xk) and Y = (Y1, . . . , Yk)

is defined by

kd(X, Y) :=
∑

I⊂{1,...,k}

(

2Ent(XIYI ) − Ent(XI ) − Ent(YI )
)

.

A random k-tuple (H1, . . . ,Hk) is called homogeneous if for every two elements

(h1, . . . , hk) ∈ H1 × · · · × Hk

(h′
1, . . . , h

′
k) ∈ H1 × · · · × Hk

there exists a k-tuple of invertible maps f1 : H1 → H1, . . . , fk : Hk → Hk such
that ( f1 ◦ H1, . . . , fk ◦ Hk) is equal to (H1, . . . ,Hk) in distribution and fi (hi ) = h′

i .
This condition is strictly stronger than the requirement that all the distributions are
uniform.

Given n random k-tuples

X(i) = (X1(i), . . . ,Xk(i)
)

, i = 1, . . . , n

we can naturally construct the k-tuple

(

X(1), . . . ,X(n)
)
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defined by

(

X(1), . . . ,X(n)
)

j = (X j (1), . . . ,X j (n)
)

, j = 1, . . . , k.

It is difficult to formulate our main result, Theorem 6.1, in full generality using
the language of random variables. However, the following theorem is an immediate
corollary.

Theorem 1 Let (X(i) : i ∈ N) be a sequence of i.i.d. random tuples defined on a
standard probability space.

Define random k-tuples Y(n) by

Y(n) := (X(1), . . . , X(n)).

Then, there exists a sequence of homogeneous randomk-tuplesH(n) = (H1(n), . . . ,

Hk(n)), where Hi (n) takes values in Xn
i , such that

1

n
kd(Y(n),H(n)) = O

(

n−1/2 ln3/2(n)
)

.

2 Category of probability spaces and diagrams

In this section we present the basic setup used throughout the article. We will start by
explaining how probability spaces and (equivalence classes) of measure-preserving
maps between them form a category. This point of view on probability theory was
already advocated in [2,10].

Category theory yields simple definitions of diagrams of probability spaces and
morphisms between them and allows for precise and relatively short proofs. The setup
is also convenient when couplings (joint distributions) between probability spaces are
absent or variable.

2.1 Categories

Below we briefly review elementary category theory. We refer the reader to the first
chapter of [15] for a more extensive introduction.

A category C is an abstract mathematical structure that captures the idea of a col-
lection of spaces and structure-preserving maps between them, such as groups and
homomorphisms, vector spaces and linear maps, and topological spaces and contin-
uous maps. Categories consist of a collection of objects (which need not to be sets),
a collection of morphisms (which need not to be maps), and a rule for composing
morphisms.

More formally a category consists of

– A class of objects ObjC;
– A class of morphisms HomC(A, B) for every pair of objects A, B ∈ ObjC. For
a morphism f ∈ HomC(A, B) one usually writes f : A → B. Object A will be
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called the domain and B the target of f , and we say that f is a morphism from A
to B;

– For each triple of objects A, B and C , a binary, associative operation, called
composition,

◦ : HomC(B,C) × HomC(A, B) → HomC(A,C)

(g, f ) �→ g ◦ f

– For every object A ∈ ObjC an identity morphism 1A : A → A, with the property
that for every f : A → B and every g : B → A,

f ◦ 1A = f , 1A ◦ g = g.

A morphism f : A → B is an isomorphism if there exists a morphism g : B → A
such that f ◦ g = 1B and g ◦ f = 1A.

Category theory becomes a very powerful tool when functors and their natural
transformations are considered. Functors can be seen as homomorphisms between
categories. In turn, natural transformations are homomorphisms between functors.

A (covariant) functor X : C → D between two categories C and D, maps objects
and morphisms in C to objects and morphisms in D, respectively. It satisfies the
following additional properties: For every morphism f : A → B in C the image
X ( f ) is a morphism fromX (A) toX (B) in D and composition is preserved,

X (g ◦ f ) = X (g) ◦ X ( f )

for any pair of morphisms f : A → B and g : B → C .
A natural transformation between functors X ,Y : C → D is a family η of mor-

phisms in categoryD, indexedbyobjects inC: For every A ∈ ObjC, there is amorphism
ηA : X (A) → Y (A), such that for every morphism f : A → B the diagram

X (A) X (B)

Y (A) Y (B)

ηA

X ( f )

ηB

Y ( f )

commutes, that is

ηB ◦ X ( f ) = Y ( f ) ◦ ηA.

2.2 Probability spaces and reductions

We will now describe the category Prob. The objects in Prob are finite probability
spaces. A finite probability space X is a pair (S, p), where S is a (not necessarily finite)
set and p : 2S → [0, 1] is a probability measure, such that there is a finite subset of
S with full measure. We denote by X = supp p the support of the measure and by
|X | := |supp pX | its cardinality. Slightly abusing the language, we call this quantity
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the cardinality of X . We will no longer explicitly mention that the probability spaces
we consider are finite. We will also write pX where we truly mean its density with
respect to the counting measure.

We say that a map f : X → Y between two probability spaces X and Y ismeasure-
preserving if the push-forward f∗ pX equals pY . This means that for every A ⊂ Y ,

( f∗ pX )(A) := pX ( f −1A) = pY (A).

We say that two measure-preserving maps f : X → Y are equivalent if they agree on
a set of full measure. We call an equivalence class of measure-preserving maps from
X to Y a reduction.

The morphisms in the category Prob are exactly the reductions between finite
probability spaces.At this stage onemightwant to check thatProb is indeed a category,
and this is guaranteed as the composition of two reductions is again a reduction.

2.3 Isomorphisms, automorphisms and homogeneity

Now that we have organized probability spaces and reductions into a category, we get
concepts such as isomorphism for free: Two probability spaces X andY are isomorphic
in the category Prob if and only if there exists a measure-preserving bijection between
the supports of themeasures on X andY . If X andY are isomorphic, they have the same
cardinality. The automorphism group Aut(X) is the group of all self-isomorphisms of
X .

A probability space X is called homogeneous if the automorphism group Aut(X)

acts transitively on the support X of the measure. For the category Prob, this turns out
to be a complicated way of saying that the measure on X is uniform on its support, but
whenwe consider diagrams later, therewill be no such simple implication.Homogene-
ity is an isomorphism invariant and we will denote the subcategory of homogeneous
spaces by Probh.

There is a product in Prob (which is not a product in the sense of category theory!)
given by the Cartesian product of probability spaces, that we will denote by X ⊗Y :=
(X × Y , pX ⊗ pY ), where pX ⊗ pY is the (independent) product measure. There are
canonical reductions X ⊗ Y → X and X ⊗ Y → Y given by projections to factors.
For a pair of reductions fi : Xi → Yi , i = 1, 2 their tensor product is the reduction
f1 ⊗ f2 : X1 ⊗ X2 → Y1 ⊗ Y2, which is equal to the class of the Cartesian product of
maps representing fi ’s. The product leaves the subcategory of homogeneous spaces
invariant. If one of the factors in the product is replaced by an isomorphic space, then
the product stays in the same isomorphism class.

We close this section with a technical remark. The category Prob is not a small
category. However it has a small full subcategory, that contains an object for every
isomorphism class inProb and for every pair of objects in it, it contains all the available
morphisms between them and is closed under the product. From now on we imagine
that such a subcategory was chosen and fixed and replaces Prob in all considerations
below.
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2.4 Diagrams of probability spaces

Essentially, a diagram X = {Xi ; fi j
}

is a commutative diagram in Prob consisting
of a finite number of probability spaces and reductions between some of them. We
have seen an example of the two-fan diagram in the introduction

X
f←− U

g−→ Y

Another example is the diamond diagram

U

X1 X2

Z

f1 f2

g1 g2

We require the diagram to be commutative, that is

g1 ◦ f1 = g2 ◦ f2.

A morphism ρ : X → Y between two diagrams X = {

Xi ; fi j
}

and Y =
{

Yi ; gi j
}

of the same shape is a collection of reductions between corresponding indi-
vidual objects ρi : Xi → Yi , that commute with the reductions within each diagram,
ρ j ◦ fi j = gi j ◦ ρi .

We need to keep track of the combinatorial structure of the collection of reductions
within a diagram. There are several possibilities for doing so:

– the reductions form a directed, acyclic graph which is transitively closed;
– the spaces in the diagram form a poset;
– the underlying combinatorial structure could be recorded as a finite category.

The last option seems to be most convenient since it has many operations, that
are necessary for our analysis, already built-in. Besides, we need at times to iterate
the construction of commutative diagrams, to create diagrams of diagrams, which is
readily available in the category-theory framework but is cumbersome in the other
contexts.

A (finite) poset category G is a finite category such that for every two objects O1
and O2 there is at most one morphism between them in either direction:

∣
∣HomG(O1, O2) ∪ HomG(O2, O1)

∣
∣ ≤ 1.

For instance, the poset category Λ2,

O1 O12 O2
π1 π2

is a category with three objects {O1, O12, O2} and two non-identity morphisms
π1 : O12 → O1 and π2 : O12 → O2.

A two-fan is then a diagram indexed by Λ2: we assign to each object in Λ2 a
probability space and to each morphism in Λ2 a reduction.
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In general, then, a diagram of probability spaces indexed by a poset category G is
a functor X : G → Prob. The requirement that X is a functor and not just a map
between objects and morphisms (combined with the assumption that there is only one
morphism between objects), is exactly the requirement that the diagrams should be
commutative.

The collection of all diagrams of probability spaces indexed by a fixed poset cate-
gory G forms the so-called category of functors

Prob〈G〉 := [G,Prob].

The objects of Prob〈G〉 are diagrams, that is functors from G to Prob, while mor-
phisms in Prob〈G〉 are natural transformations between them. We will refer to the
morphisms in Prob〈G〉 as reductions as well.

Let us go through the simple example of two-fans: we look at a reduction η : X →
Y between two-fan diagrams X ,Y : Λ2 → Prob. The reduction η, being a natural
transformation between X and Y , is illustrated by the commutative diagram

X (O1) X (O12) X (O2)

Y (O1) Y (O12) Y (O2)

η(O1)

X (π1)

η(O12)

X (π2)

η(O2)

Y (π1) Y (π2)

Thus, a reduction of a two-fan is a family of reductions of probability spaces indexed
by the objects in the poset category Λ2 such that the diagram commutes.

For a diagramX ∈ Prob〈G〉, the poset categoryGwill be called the combinatorial
type ofX . For a poset category G or a diagramX ∈ Prob〈G〉 we denote by [[G]] =
[[X ]] the number of objects in the category G.

An object O in a poset category G will be called a source, if it is not a target of
any morphism except for the identity. Likewise a sink object is not a domain of any
morphism, except for the identity morphism. If a category contains a unique source
object, the object is called the initial object and such a categorywill be called complete.

The above terminology transfers to diagrams indexed by G: A source space in
X ∈ Prob〈G〉 is one that is not a target space of any reduction within the diagram, a
sink space is not the domain of any non-trivial reduction andX is called complete if
G is, i.e. if it has a unique source space.

The tensor product of probability spaces extends to a tensor product of diagrams.
For X ,Y ∈ Prob〈G〉, such that X = {Xi ; fi j

}

and Y = {Yi ; gi j
}

define

X ⊗ Y := {Xi ⊗ Yi ; fi j ⊗ gi j
}

.

The construction of the category of commutative diagrams could be applied to any
category, not just Prob. Two additional cases will be of interest to us.

Denote by Set the category of finite sets and surjective maps. Then all of the above
constructions could be repeated for sets instead of probability spaces. Thus we could
talk about the category of diagrams of sets Set〈G〉.

Given a reduction f : X → Y between two probability spaces, the restriction
f : X → Y is a well-defined surjective map. Given a diagram X = {

Xi ; fi j
}

of
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probability spaces, there is an underlying diagram of sets, obtained by taking the
supports of measures on each level and restricting reductions on these supports. We

will denote it by X =
{

Xi ; f
i j

}

, where Xi := supp pXi . Thus we have a forgetful

functor

· : Prob〈G〉 → Set〈G〉.

We could also repeat the construction of commutative diagrams to form a category
of diagrams of diagrams. Thus given two poset categories G and H we can form a
categoryProb〈G,H〉 := Prob〈G〉〈H〉.Wewill rarely need anything beyond a two-fan
of diagrams. There is a natural isomorphism

Prob〈G〉〈H〉 ≡ Prob〈H〉〈G〉.

Thus, for example, a two-fan of G-diagrams could be equivalently considered as a
G-diagram of two-fans, see also Sect. 2.5.3.

2.5 Examples of diagrams

We now consider some examples of poset categories and corresponding diagrams, that
will be important in what follows.

2.5.1 Singleton

We denote by • the poset category with a single object. Clearly diagrams indexed by
• are just probability spaces and we have Prob ≡ Prob〈•〉.

2.5.2 Chains

The chain Cn of length n ∈ N is a category with n objects {Oi }ni=1 and morphisms
from Oi to Oj whenever i ≥ j . A diagram X ∈ Prob〈Cn〉 is a chain of reductions

X = (Xn → Xn−1 → · · · → X1).

2.5.3 Two-fan

The two-fan Λ2 is a category with three objects {O1, O12, O2} and two non-identity
morphisms O12 → O1 and O12 → O2. A diagram indexed by a two-fan will also be
called a two-fan.

Essentially, a two-fan (X ← Z → Y ) is a triple of probability spaces and a pair of
reductions between them.

A reduction of a two-fan F = (X ← Z → Y ) to another two-fan F ′ = (X ′ ←
Z ′ → Y ′) is a triple of reductions Z → Z ′, Y → Y ′ and X → X ′ that commute with
the reductions within each fan, so that the diagram on Fig. 2a is commutative.
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X Z Y

X ′ Z′ Y ′

Z

X Z′ Y
m

a Reduction of two-fans bMinimization of a two-fan

Fig. 2 Two-fans, their reductions and minimizations

A two-fan (X ← Z → Y ) is calledminimal if for any super-diagram
{

X ,Y , Z , Z ′}

shown on Fig. 2b the reduction m : Z → Z ′ must be an isomorphism. Minimal two-
fans are also called couplings in probability theory.

For any two-fan (X ← Z → Y ) of probability spaces there always exist a unique
(up to isomorphism), minimal two-fan (X ← Z ′ → Y ), that can be included in the
diagram shown onFig. 2b. Theminimization can be constructed by taking Z ′ := X×Y
as a set and considering a probability distribution on Z ′ induced by a map Z → Z ′,
that is the Cartesian product of the reductions Z → X and Z → Y in the original
two-fan. Thus, the inclusion of a pair of probability spaces X and Y as sink vertices
in a minimal two-fan is equivalent to specifying a joint distribution on X × Y .

Note thatminimality of a two-fan is defined in purely categorical terms. Even though
the definition applies to two-fans of morphisms in any category, the minimization need
not to exist. However as the next proposition asserts, if minimization of any two-fan
exists in a category C, then it also exists in a category of diagrams over C.

Proposition 2.1 Let G be a poset category, and let X = {Xi ; ai j }, Y = {Yi ; bi j }
and Z = {Zi ; ci j } be three G-diagrams. Then

1. A two-fan F = (X ← Z → Y ) ∈ Prob〈G,Λ2〉 of G-diagrams is minimal if
and only if the constituent two-fans of probability spacesFi = (Xi ← Zi → Yi )
are all minimal.

2. For any two-fan F = (X ← Z → Y ) of G-diagrams its minimal reduction
exists, that is, there exists a minimal two-fan F ′ = (X ← Z ′ → Y ) included
in the following diagram

Z

Z ′

X Y

The proof of Proposition 2.1 can be found on page 274.

2.5.4 Co-fan

A co-fan V is a category with three objects and morphisms

V = (O1 → O• ← O2) .
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��� =

⎛
⎜⎜⎜⎜⎝

O12

O1 O2

O•

⎞
⎟⎟⎟⎟⎠

M2 =

⎛
⎜⎜⎜⎝

O12 O23

O1 O2 O3

⎞
⎟⎟⎟⎠

a Diamond category b Two-tents category

Fig. 3 Diamond and two-tents categories

2.5.5 A diamond diagram

A “diamond” diagram is indexed by a diamond category �, that consists of a two-fan
and a co-fan, as shown on Fig. 3.

Of course, there is also a morphism O12 → O•, which lies in the transitive closure
of the given four morphisms. We will often skip writing morphisms that are implied
by the transitive closure.

A diamond diagram will be called minimal if the top two-fan in it is minimal.

2.5.6 “Two-tents” diagram

The “two-tents” category M2 consists of five objects, of which two are sources and
three are sinks, and morphisms are as in Fig. 3b.

Thus, a typical two-tents diagram consists of five probability spaces and reductions
as in

X = (X ← U → Y ← V → Z).

The probability spaces U and V are sources and X , Y and Z are sinks.

2.5.7 Full diagram

The full category Λn on n objects is a category with objects {OI }I∈2{1,...,n}\{∅} indexed
by all non-empty subsets I ∈ 2{1,...,n} and a morphism from OI to OJ , whenever
J ⊆ I .

A diagramX indexed by a full category will be calledminimal, if for every two-fan
in it, it also contains a minimal two-fan with the same sink vertices. IfX ∈ Prob〈Λn〉
is minimal full diagram of probability spaces, then the setX (OI ) can be considered as
a subset of the product

∏

i∈I X (Oi ), while reductions are just coordinate projections.
For an n-tuple of random variables X1, . . . ,Xn one may construct a minimal full

diagram X ∈ Prob〈Λn〉 by considering all joint distributions and “marginalization”
reductions. We denote such a diagram by 〈X1, . . . ,Xn〉. On the other hand, the reduc-
tions from the initial space to the sink vertices of a full diagram can be viewed as
random variables on the domain of definition given by the (unique) initial space.
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SupposeX ∈ Prob〈Λn〈 is a minimal full diagram with sink vertices X1, . . . , Xn .
It is convenient to viewX as a distribution on the Cartesian product of the underlying
sets of the sink vertices:

pX ∈ Δ(X1 × · · · × Xn)

where ΔS stands for the space of all probability distribution on a finite set S.
Once the underlying sets of the sink spaces are fixed, there is a one-to-one corre-

spondence between the full minimal diagrams and distributions as above.
As a corollary of Proposition 2.1 we also obtain the following characterization of

minimal full diagrams of any G-diagrams of probability spaces.

Corollary 2.2 Let G be an arbitrary poset category. Then

1. A full diagram F of G-diagrams is minimal, if and only if the constituent full
diagrams of probability spaces Fi are all minimal.

2. For any full diagramF ∈ Prob〈G,Λn〉 of G-diagrams there exists another min-
imal full diagram F ′ ∈ Prob〈G,Λn〉 with the same sink entries and a reduction
μ : F → F ′, such that μ restricts to an isomorphism on sink entries of F .
Moreover, F ′ is unique upto isomorphism.

2.6 Constant diagrams

Suppose X is a probability space andG is a poset category. One may form a constant
G-diagram by considering a functor that maps all objects in G to X and all the

morphisms to the identity morphism X
Id−→ X . We denote such a constant diagram

by XG or simply by X , when G is clear from the context. Any constant diagram is
automatically minimal.

If Y = {Yi ; fi j
}

is another G-diagram, then a reduction ρ : Y → XG (which we
write sometimes simply as ρ : Y → X ) is a collection of reductions ρi : Yi → X ,
such that

fi j ◦ ρi = ρ j .

LetX = {Xi ; fi j
}

be a complete diagram with the initial space X0. Then there is
a canonical reduction

ρ : XG
0 → X . (4)

with components

ρi := f0i .

By {•} we denote a one-point probability space. The constant G-diagram {•}G is a
unit with respect to the product in Prob〈G〉.
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Fig. 4 Non-homogeneous
two-fans consisting of uniform
spaces

Y4

X4

U4

Y5

X5

U5

2.7 Homogeneous diagrams

A diagram X ∈ Prob〈G〉 indexed by some poset category G is called homogeneous
if its automorphism group Aut(X ) acts transitively on every probability space in
X . Three examples of homogeneous diagrams were given in the introduction. The
subcategory of all homogeneous diagrams indexed by G will be denoted Prob〈G〉h.

In fact, forX to be homogeneous it is sufficient that the Aut(X ) acts transitively
on every source space in X . Thus, if X is complete with initial space X0, to check
homogeneity it is sufficient to check the transitivity of the action of the symmetries of
X on X0.

Any subdiagram of a homogeneous diagram is also homogeneous. In particular, all
the individual spaces of a homogeneous diagram are homogeneous

Prob〈G〉h ⊂ Probh〈G〉.

However homogeneity of the whole of the diagram is a stronger property than homo-
geneity of the individual spaces in the diagram, thus in general

Prob〈G〉h �= Probh〈G〉.

Two examples of non-homogeneous two-fans are shown in Fig. 4. The pictures are
to be interpreted in the same way as the pictures in Fig. 1.

A single probability space is homogeneous if and only if there is a representative
in its isomorphism class with uniform measure and the same holds true for chain
diagrams, for the co-fan or any other diagram that does not contain a two-fan. However,
for more complex diagrams, for example for two-fans, no such simple description is
available.

2.7.1 Universal construction of homogeneous diagrams

Examples of homogeneous diagrams could be constructed in the following manner.
SupposeΓ is a finite group and {Hi } is a collection of subgroups. Consider a collection
of sets Xi := Γ /Hi and consider a natural surjection fi j : Xi → X j whenever Hi is
a subgroup of Hj . Equipping each Xi with the uniform distribution one can turn the
diagram of sets

{

Xi ; fi j
}

into a homogeneous diagram of probability spaces. It will
be complete if there is a smallest subgroup (under inclusion) among Hi ’s.
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Such a diagram will be complete and minimal, if together with any pair of groups
Hi and Hj in the collection, their intersection Hi ∩ Hj also belongs to the collection
{Hi }.

In fact, any homogeneous diagram arises this way. Suppose diagram X =
{

Xi ; fi j
}

is homogeneous, then we set Γ = Aut(X ) and choose a collection of
points xi ∈ Xi such that fi j (xi ) = x j and denote by Hi := Stab(xi ) ⊂ Γ . Then,
if one applies the construction of the previous paragraph to Γ , with the collection of
subgroups {Hi }, one recovers the original diagram X upto isomorphism.

2.8 Conditioning

Suppose a diagram X contains a fan

F =
(

X
f←− Z

g−→ Y

)

.

Given a point x ∈ X with a non-zero weight one may consider conditional probability
distributions pZ ( · |x) on Z , and pY ( · |x) on Y . The distribution pZ ( · |x) is
supported on f −1(x) and is defined by the property that for any function f : Z → R

holds

∫

Z
f d pZ =

∫

X

[∫

Z
f (z)d pZ (z|x)

]

d pX (x)

and is given by

pZ (z|x) = pZ (z)

pX (x)
.

The distribution pY ( · |x) is the pushforward of pZ ( · |x) under g

pY ( · |x) = g∗ pZ ( · |x).

Recall that ifF is minimal, the underlying set of Z can be assumed to be the product
X × Y . In that case

pY (y|x) = pZ (x, y)

pX (x)
.

We denote the corresponding space Y |x := (Y , pY ( · |x)).
Under some assumptions it is possible to condition a whole sub-diagram of X .

More specifically, if a diagramX contains a sub-diagram Y and a probability space
X satisfying the condition that there exists a space Z in X that reduces to all the
spaces in Y and to X , then we may condition the whole of Y on x ∈ X given that
pX (x) > 0.
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For x ∈ X with positive weight we denote by Y |x the diagram of spaces in Y
conditioned on x ∈ X . The diagram Y |x has the same combinatorial type as Y and
will be called the slice of Y over x ∈ X . Note that the space X itself may or may
not belong to Y . The conditioning Y |x may depend on the choice of a fan between
Y and X , however whenX is complete the conditioning Y |x is well-defined and is
independent of the choice of fans.

Suppose now that there are two subdiagram Y and Z in X and in addition Z is
a constant diagram, Z = ZG′

for some poset category G′. Let z ∈ Z , then Y |z is
well defined and is independent of the choice of the space inZ , the element of which
z is to be considered.

If X is homogeneous, then Y |x is also homogeneous and its isomorphism class
does not depend on the choice of x ∈ X .

2.9 Entropy

Wedefine entropy by the limit inEq. 2. Entropy satisfies the so-calledShannon inequal-
ity, see for example [8]. Namely for any minimal diamond diagram

X12

X1 X2

X•

the following inequality holds,

Ent(X1) + Ent(X2) ≥ Ent(X12) + Ent(X•). (5)

Furthermore, entropy is additive with respect to the tensor product, that is, for a
pair of probability spaces X ,Y ∈ Prob holds

Ent(X ⊗ Y ) = Ent(X) + Ent(Y ). (6)

Conditional entropy Ent(X |Y ) is defined for a pair X , Y of probability spaces
included in a minimal two-fan (X ← Z → Y ) as

Ent(X |Y ) := Ent(Z) − Ent(X).

The above quantity is always non-negative in view of Shannon inequality (5).
Moreover, the following identity holds, see [8]

Ent(X |Y ) =
∫

Y
Ent(X | y)d pY (y). (7)

For a G-diagram X = {Xi ; fi j
}

define the entropy homomorphism

Ent∗ : Prob〈G〉 → R
[[G]],

{

Xi ; fi j
} �→ (

Ent(Xi )
) ∈ R

[[G]].
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It will be convenient for us to equip the target R[[G]] with the �1-norm. Thus

|Ent∗(X )|1 =
[[G]]
∑

i=1

Ent(Xi ).

If X is a complete G-diagram with initial space X0, then by Shannon inequality
(5) there is an obvious estimate

Ent(X0) ≤ |Ent∗(X )|1 ≤ [[X ]] · Ent(X0).

3 The entropy distance

We turn the space of diagrams into a pseudo-metric space by introducing the intrinsic
entropy distance and asymptotic entropy distance. The intrinsic entropy distance is
obtained by taking an infimum of the entropy distance over all possible joint distribu-
tions on two probability spaces.

3.1 Entropy distance and asymptotic entropy distance

3.1.1 Entropy distance in the case of single probability spaces

For a two-fan F = (X ← Z → Y ) define a “distance” kd(F ) between probability
spaces X and Y with respect toF by

kd(F ) := Ent(Z |Y ) + Ent(Z |X)

= 2Ent(Z) − Ent(X) − Ent(Y ).

If a two-fanF satisfies kd(F ) = 0, then both reductions inF are isomorphisms.
Thus, essentially kd(F ) is somemeasure of the deviation of the statistical map defined
byF from being a deterministic bijection between X and Y .

The minimal reduction F ′ of F satisfies

kd(F ′) ≤ kd(F ). (8)

For a pair of probability spaces X , Y define the intrinsic entropy distance as

k(X ,Y ) := inf
{

kd(F ) : F = (X ← Z → Y ) is a two-fan
}

. (9)

The optimization takes place over all two-fans with sink spaces X and Y . In view of
inequality (8) one could as well optimize over the space of minimal two-fans, which
we will also refer to as couplings between X and Y . The tensor product of X and Y
trivially provides a coupling and the set of couplings is compact, therefore an optimum
is always achieved and it is finite.
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Thebivariate functionk : Prob×Prob → R≥0 defines a notionof pseudo-distance
and it vanishes exactly on pairs of isomorphic probability spaces. This follows directly
from the Shannon inequality (5), and a more general statement will be proven in
Proposition 3.1 below.

3.1.2 Entropy distance for complete diagrams

The definition of entropy distance for complete diagrams repeats almost literally the
definition for single spaces.Wefix a complete poset categoryG andwill be considering
diagrams from Prob〈G〉.

Consider three such diagramsX = {Xi , fi j
}

, Y = {Yi , gi j
}

andZ = {Zi , hi j
}

from Prob〈G〉. Recall that a two-fan F = (X ← Z → Y ) can also be viewed as
a G-diagram of two-fans

Fi = (Xi ← Zi → Yi ).

Define

kd(F ) :=
∑

i

kd(Fi )

=
∑

i

(

2Ent(Zi ) − Ent(Xi ) − Ent(Yi )
)

.

The quantity kd(F ) vanishes if and only if the fan F provides isomorphisms
between all individual spaces in X and Y that commute with the inner structure of
the diagrams, that is, it provides an isomorphism between X and Y in Prob〈G〉.

The intrinsic entropy distance between diagrams is defined in analogy with the case
of single probability spaces

k(X ,Y ) := inf
{

kd(F ) : F = (X ← Z → Y )
}

,

where the infimum is over all two-fans of G-diagrams with sink vertices X and Y .
The following proposition records that the intrinsic entropy distance is in fact a

pseudo-distance on Prob〈G〉, provided G is a complete poset category (that is when
G has a unique initial space).

Proposition 3.1 Let G be a complete poset category. Then the bivariate function

k : Prob〈G〉 × Prob〈G〉 → R

is a pseudo-distance on Prob〈G〉.
Moreover, two diagrams X ,Y ∈ Prob〈G〉 satisfy k(X ,Y ) = 0 if and only if

X is isomorphic to Y in Prob〈G〉.
The idea of the proof is very simple. In the case of single probability spaces X ,Y , Z

a coupling between X and Z can be constructed from a coupling between X and Y and
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a coupling between Y and Z by adhesion on Y , see [16]. The triangle inequality then
follows from Shannon inequality. However, since we are dealing with diagrams the
combinatorial structure requires careful treatment. Therefore, we provide a detailed
proof on page 276.

It is important to note, that the proof uses the fact that G is complete. In fact, even
though the definition of k could be easily extended to some bivariate function on
the space of diagrams of any fixed combinatorial type, it fails to satisfy the triangle
inequality in general, because the composition of couplings requires completeness of
G.

3.1.3 The asymptotic entropy distance

Let G be a complete poset category. We will show in Corollary 3.5 below, that the
sequence

n �→ k(X n,Y n)

is sublinear and therefore the following limit exists.

κ(X ,Y ) := lim
n→∞

1

n
k(X n,Y n). (10)

We call it’s value, κ(X ,Y ), the asymptotic entropy distance between two diagrams
X ,Y ∈ Prob〈G〉.

As a corollary of Proposition 3.1 and definition (10) we immediately obtain that
the asymptotic entropy distance is a homogeneous pseudo-distance on Prob〈G〉.
Corollary 3.2 Let G be a complete poset category. Then the bivariate function

κ : Prob〈G〉 × Prob〈G〉 → R

is a pseudo-distance on Prob〈G〉 satisfying the following properties: for any pair of
diagrams X ,Y ∈ Prob〈G〉
1. κ(X ,Y ) ≤ k(X ,Y )

2. for any n ∈ N0 holds κ(X n,Y n) = n · κ(X ,Y ).

We will see later that there are instances when κ < k, moreover there are pairs of
non-isomorphic diagrams with vanishing asymptotic entropy distance between them.

In the next subsection we derive some elementary properties of the intrinsic entropy
distance and the asymptotic entropy distance.

3.2 Properties of (asymptotic) entropy distance

3.2.1 Tensor product

We show that the tensor product on the space of diagrams is 1-Lipschitz. Later this
will allow us to give a simple description of tropical diagrams, that is, of points in the
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asymptotic cone of Prob〈G〉, as limits of certain sequences of “classical” diagrams,
as will be discussed in a subsequent article.

Proposition 3.3 Let G be a complete poset category. Then with respect to the Kol-
mogorov distance on Prob〈G〉 the tensor product

⊗ : (Prob〈G〉, k)2 → (Prob〈G〉, k)

is 1-Lipschitz in each variable, that is, for every triple X ,Y ,Y ′ ∈ Prob〈G〉 the
following bound holds

k(X ⊗ Y ,X ⊗ Y ′) ≤ k(Y ,Y ′).

This statement is a direct consequence of additivity of entropy with respect to the
tensor product. Details can be found on page 279.

It follows directly from definition (10) and Proposition 3.3, that the asymptotic
entropy distance enjoys a similar property.

Corollary 3.4 LetG be a complete poset category. Then with respect to the asymptotic
entropy distance on Prob〈G〉 the tensor product

⊗: (Prob〈G〉, κ)2 → (Prob〈G〉, κ)

is 1-Lipschitz in each variable.

As another corollary we obtain the subadditivity properties of the intrinsic entropy
distance and asymptotic entropy distance.

Corollary 3.5 Let G be a complete poset category and let X ,Y ,U ,V ∈ Prob〈G〉,
then

k(X ⊗ U ,Y ⊗ V ) ≤ k(X ,Y ) + k(U ,V )

and

κ(X ⊗ U ,Y ⊗ V ) ≤ κ(X ,Y ) + κ(U ,V ).

It implies in particular that shifts are non-expanding maps in (Prob〈G〉,k) or
(Prob〈G〉, κ).

Corollary 3.6 Let G be a complete poset category and δ = k, κ be either intrinsic
entropy distance or asymptotic entropy distance on Prob〈G〉. Let U ∈ Prob〈G〉.
Then the shift map

U ⊗ · : (Prob〈G〉, δ) → (Prob〈G〉, δ), X �→ U ⊗ X

is a non-expanding map with respect to either intrinsic entropy distance or asymptotic
entropy distance.
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Less obvious is the fact that κ is, in fact, translation invariant and in particular,
(Prob〈G〉, κ) satisfies the cancellation property. This is the subject of Proposition 3.7
below, which was communicated to us by Tobias Fritz.

Proposition 3.7 For any triple of diagrams X ,Y ,U holds

κ(X ⊗ U ,Y ⊗ U ) = κ(X ,Y ).

The proof of the lemma can be found on page 280.

3.2.2 Entropy

Recall that we defined the entropy function

Ent∗ : Prob〈G〉 → R
[[G]]

by evaluating the entropy of all individual spaces in a G-diagram. The target space
R

[[G]] will be endowed with the �1-norm with respect to the natural coordinate system.
With such a choice, the entropy function is 1-Lipschitz with respect to the Kolmogorov
distance on Prob〈G〉.
Proposition 3.8 SupposeG is a complete poset category and δ = k, κ is either intrin-
sic entropy distance or asymptotic entropy distance on Prob〈G〉. Then the entropy
function

Ent∗ : (Prob〈G〉, δ) → (R[[G]], | · |1), X = {Xi , fi j
} �→ (EntXi )i ∈ R

[[G]]

is 1-Lipschitz.

Again, the proof of the proposition above is an application of Shannon’s inequality,
see page 281 for details.

3.3 The Slicing Lemma

The Slicing Lemma, Proposition 3.9 below, allows to estimate the intrinsic entropy
distance between two diagrams with the integrated intrinsic entropy distance between
“slices”, which are diagrams obtained by conditioning on another probability space.
It turned out to be a very powerful tool for estimation of the intrinsic entropy distance
and will be used below on several occasions.

As described in Sect. 2.6, by a reduction of a diagram X = {Xi , fi j
}

to a single
spaceU wemean a collection of reductions

{

ρi : Xi → U
}

from the individual spaces
inX to U , that commute with the reductions withinX

ρ j ◦ fi j = ρi .

Alternatively, whenever a single probability space appears as a domain or a target of
a morphism to or from a G-diagram, it should be replaced by a constant G-diagram.
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Proposition 3.9 (Slicing Lemma) Suppose G is a complete poset category and we
are givenX , X̂ ,Y , ˆY ∈ Prob〈G〉—fourG-diagrams andU , V ,W ∈ Prob—three
probability spaces, that are included into the following three-tents diagram

X̂ W Ŷ

X U V Y

such that the two-fan (U ← W → V ) is minimal. Then the following estimate holds

k(X ,Y ) ≤
∫

W
k(X |u,Y |v)d pW (u, v)

+[[G]] · kd(U ← W → V )

+
∑

i

[

Ent(U |Xi ) + Ent(V |Yi )
]

.

The idea of the proof of the Slicing Lemma (page 281) is as follows. For every pair
(u, v) ∈ W we consider an optimal two-fan Guv couplingX |u and Y |v. These fans
have the same underlying diagram of sets. Then we construct a coupling betweenX
and Y as a convex combination of distributions of Guv’s weighted by pW (u, v). The
estimates on the resulting two-fan then imply the proposition.

Various implications of the Slicing Lemma are summarized in the next corollary.

Corollary 3.10 LetG be a complete poset category,X ,Y ∈ Prob〈G〉 andU ∈ Prob.

1. Given a “two-tents” diagram

X ← X̂ → U ← Ŷ → Y

the following inequality holds

k(X ,Y ) ≤
∫

U
k(X |u,Y |u)d pU (u) + 2 · [[G]] · Ent(U ).

2. Given a fan

X ← X̂ → U

the following inequality holds

k(X ,Y ) ≤
∫

UV
k(X |u,Y )d pU (u) + 2 · [[G]] · Ent(U ).

3. Let X → U be a reduction, then

k(X ,Y ) ≤
∫

U
k(X |u,Y )d pU (u) + [[G]] · Ent(U ).
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4. For a co-fan X → U ← Y holds

k(X ,Y ) ≤
∫

U
k(X |u,Y |u)d pU (u).

4 Distributions and types

In this section we recall some elementary inequalities for (relative) entropies and the
total variation distance for distributions on finite sets. Furthermore, we generalize the
notion of a probability distribution on a set to a distribution on a diagram of sets.
Finally, we give a perspective on the theory of types, and also introduce types in the
context of complete diagrams.

4.1 Distributions

4.1.1 Single probability spaces

For a finite set S we denote by ΔS the collection of all probability distributions on
S. It is a unit simplex in the real vector space R

S . We often use the fact that it is a
compact, convex set, whose interior points correspond to fully supported probability
measures on S.

For π1, π2 ∈ ΔS denote by |π1 − π2|1 the total variation of the signed measure
(π1 − π2) and define the entropy of the distribution π1 by

h(π1) := −
∑

x∈X
π1(x) ln π1(x). (11)

If, in addition, π2 lies in the interior of ΔS define the relative entropy by

D(π1 || π2) :=
∑

x∈X
π1(x) ln

π1(x)

π2(x)
.

The entropy of a probability space is often defined through formula (11). It is a standard
fact, and can be verified with the help of Lemma 4.2 below, that for π ∈ ΔS holds

h(π) = Ent(S, π) (12)

which justifies the name “entropy” for the function h : ΔS → R.
Define a divergence ball of radius ε > 0 centered at π ∈ InteriorΔS as

Bε(π) := {π ′ ∈ ΔS : D(π ′ || π) ≤ ε
}

. (13)

For a fixed π and ε � 1 the ball Bε(π) also lies in the interior of ΔS.
The total variation norm and relative entropy are related by the following inequality.
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Lemma 4.1 Let S be a finite set, then for any π1, π2 ∈ ΔS, Pinsker’s inequality holds

|π1 − π2|1 ≤ √2D(π1 || π2).

The claim of the Lemma, Pinsker’s inequality, is a well-known inequality in for
instance information theory, and a proof can be found in [8].

4.1.2 Distributions on diagrams

A map f : S → S′ between two finite sets induces an affine map f∗ : ΔS → ΔS′.
For a diagram of sets S = {

Si ; fi j
}

we define the space of distributions on the
diagram S by

ΔS :=
{

(πi ) ∈
∏

i

ΔSi : ( fi j )∗πi = π j

}

.

Essentially, an element ofΔS is a collection of distributions on the sets Si inS that is
consistentwith respect to themaps fi j . The consistency conditions ( fi j )∗πi = π j form
a collection of linear equations with integer coefficients with respect to the standard
convex coordinates in

∏
ΔSi . Thus, ΔS is a rational affine subspace in the product

of simplices. In particular, ΔS has a convex structure.
If S is complete with initial set S0, then specifying a distribution π0 ∈ ΔS0

uniquely determines distributions on all of the Si ’s by setting πi := ( f0i )∗π0. In such
a situation we have

ΔS ∼= ΔS0.

If S is not complete and S0, . . . , Sk is a collection of its source sets, then ΔS is
isomorphic to an affine subspace of the product ΔS0 × · · · × ΔSk cut out by linear
equations with integer coefficients corresponding to co-fans in S with source sets
among S0, . . . , Sk .

To simplify notation, for a probability space X or a diagram X we will write

ΔX := ΔX

ΔX := ΔX .

4.2 Types

We now discuss briefly the theory of types. Types are special subspaces of tensor
powers that consist of sequences with the same “empirical distribution” as explained
in details below. For a more detailed discussion the reader is referred to [7,8]. We
generalize the theory of types to complete diagrams of sets and complete diagrams of
probability spaces.

The theory of types for diagrams, that are not complete, is more complex and will
be addressed in a subsequent article.
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4.2.1 Types for single probability spaces

Let S be a finite set. For n ∈ N denote also

Δ
(n)

S := ΔS ∩ 1

n
Z
S

a collection of rational points in ΔS with denominator n. (We say that a rational
number r ∈ Q has denominator n ∈ N if r · n ∈ Z)

Define the empirical distribution map q : Sn → ΔS, that sends (si )ni=1 = s ∈ Sn

to the empirical distribution q(s) ∈ ΔS given by

q(s)(a) = 1

n
· ∣∣ {i : si = a} ∣∣ for any a ∈ S.

Clearly the image of q lies in Δ
(n)
S.

For π ∈ Δ
(n)
S, the space T n

π S := q−1(π) equipped with the uniform measure is
called a type over π . The symmetric group Sn acts on Sn by permuting the coordinates.
This action leaves the empirical distribution invariant and therefore could be restricted
to each type, where it acts transitively. Thus, for π ∈ Δ

(n)
S the probability space

(T n
π S, u) with u being a uniform (Sn-invariant) distribution, is a homogeneous space.
Suppose X = (X , p) is a probability space. Let τn be the pushforward of p⊗n

under the empirical distribution map q : Xn → ΔX . Clearly supp τn ⊂ Δ
(n)
X , thus

(ΔX , τn) is a finite probability space. Therefore we have a reduction

q : Xn → (ΔX , τn) (14)

which we call the empirical reduction. If π ∈ Δ
(n)
X is such that τn(π) > 0, then

T n
π X = Xn|π.

In particular, it follows that the right-hand side does not depend on the probability p
on X as long as π is “compatible” to it.

The following lemma records some standard facts about types, which can be
checked by elementary combinatorics and found in [8].

Lemma 4.2 Let X be a probability space and x ∈ Xn, then

1. |Δ(n)
X | =

(
n + |X |

|X |
)

≤ e|X |·ln(n+1) = eO(|X |·ln n)

2. p⊗n(x) = e−n
[

h(q(x))+D(q(x) || p)
]

3. en·h(π)−|X |·ln(n+1) ≤ |T n
π X | ≤ en·h(π) or|T n

π X | = en·h(π)+O(|X |·ln n)

4. e−n·D(π || p)−|X |·ln(n+1) ≤ τn(π) = p⊗n(T n
π X) ≤ e−n·D(π || p) orτn(π) =

e−n·D(π || p)+O(|X |·ln n)
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If X = (X , pX ) is a probability space with rational probability distribution with
denominator n, then the type over pX will be called the true type of X

T nX := T n
pX X .

As a corollary to Lemma 4.2 and equation (12) we obtain the following.

Corollary 4.3 For a finite set S and π ∈ Δ
(n)
S holds

n · h(π) − |S| · ln(n + 1) ≤ Ent(T n
π S) ≤ n · h(π).

Also, for a finite probability space X = (S, p) with a rational distribution p with
denominator n holds

n · Ent(X) − |X | · ln(n + 1) ≤ Ent(T nX) ≤ n · Ent(X).

In particular,

Ent(T nX) = n · Ent(X) + o(|X | · n).

The following important theorem is known as Sanov’s theorem. It can be easily
derived from Lemma 4.2 or a proof can be found in [8].

Theorem 4.4 (Sanov’s Theorem) Let X = (S, p) be a finite probability space and let
q : Xn → (ΔX , τn) be the empirical reduction. Then for every r > 0,

τn(ΔX \ Br (p)) ≤ e−n·r+|X |·ln(n+1)

where Br (p) is the divergence ball (relative entropy ball) defined in (13).

Combining the estimate in Theorem 4.4 with the Pinsker’s inequality in 4.1 we
obtain the following corollary.

Corollary 4.5 For a finite probability space X = (S, p) holds

τn({π : |π − p|1 ≥ r}) ≤ e− 1
2 n·r2+O(|X |·ln n).

4.3 Types for complete diagrams

In this subsectionwe generalize the theory of types for diagrams indexed by a complete
poset category. The theory for a non-complete diagrams is more complex and will
be addressed in our future work. Before we describe our approach we need some
preparatory material.
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Suppose we have a reduction f : X → Y between a pair of probability spaces.
Then for any n ∈ N there is an induced reduction f∗ : (ΔX , τn) → (ΔY , τn) that can
be included in the following diamond diagram

Xn Y n

(ΔX , τn) (ΔY , τn)

f n

q q
f∗

that satisfies certain special condition, namely, the sides of the diamond are indepen-
dent conditioned on the bottom space

ΔX ⊥⊥Yn|ΔY .

In particular, for any π ∈ ΔX with τn(π) > 0 and π ′ = f∗π ∈ ΔY holds

Yn|π = Yn|π ′ (15)

and there is a well-defined reduction

T f : T n
π X → T n

π ′Y

for any π ∈ Δ
(n)
X and π ′ = f∗π ∈ Δ

(n)
Y .

Nowwe are ready to give the definitions of types. LetX ∈ Prob〈G〉 be a complete
diagram, X = {Xi ; fi j

}

with initial space X0 and let π ∈ Δ
(n)
X .

Define the type T n
π X as the G-diagram, whose individual spaces are types of the

individual spaces of X over the corresponding push-forwards of π

T n
π X := {T n

πi
X i ; T fi j

}

.

Consider a symmetric group Sn acting on X n by automorphisms permuting the
coordinates. The action leaves the types T n

π X invariant and it is transitive on the initial
space T n

π X0. Thus, each type T n
π X is a homogeneous diagram.

4.3.1 The empirical two-fan

Unlike in the cases of single probability spaces there is no empirical reduction from
the power of X to ΔX . It will be convenient for us to see the types as the power of
the diagram conditioned on a distribution. This is achieved by including the power of
diagram into a empirical two-fan.
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Given a G-diagramX with initial space X0 we construct the associated empirical
two-fan with sink verticesX n and (ΔX , τn)

G as the “composition” of the canonical
reduction (X0)

G −→ X , Eq. (4) in Sect. 2.6, and the empirical reduction Xn
0 −→

ΔX0 ∼= ΔX in Eq. (14).

Qn(X ) =

⎛

⎜
⎜
⎝

(XG
0 )(n)

X n (Δ
(n)
X , τn)

G

f n0∗ qG

⎞

⎟
⎟
⎠

(16)

The two-fan Qn is not necessarily minimal, but its minimal reduction can be con-
structed using Lemma 2.2 on page 252.

Let π0 ∈ (ΔX , τn) with τn(π) > 0 and πi = f0iπ0. Then withinQn holds

T n
π Xi = Xn

i |πi = Xn
i |π0

by Eq. (15) and therefore

X n|π = T n
π X .

For every n ∈ N and π ∈ Δ
(n)
X0 the type T n

π X is a homogeneous diagram.
Suppose that a complete diagramX is such that the probability distribution p0 on the
initial set is rational with the denominator n, then we call T n

pX the true type of X
and denote

T nX := T n
p0X .

5 Distance between types

Our goal in this section is to estimate the intrinsic entropy distance between two types
over two different distributions π1, π2 ∈ Δ

(n)
S in terms of the total variation distance

|π1 − π2|1.
For this purposewe use a “lagging” techniquewhich is explained below. Practically,

we couple different types by randomly removing and inserting the appropriate amount
of symbols to pass from a trajectory of the one type to a trajectory of the other.

5.1 The lagging trick

Let Λα be a binary probability space,

Λα := ( {�,�} ; pΛα(�) = α
)
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and let X = {

(Xi , pi ); fi j
}

, Z = {

(Zi , qi ); gi j
}

be two diagrams indexed by a
complete poset category G and included in a minimal two-fan, i.e a coupling,

(Λα)G
λ←− Z

ρ−→ X .

Assume further that the distribution q on Z is rational with denominator n ∈ N, that
is q ∈ Δ

(n)
Z . It follows that p and pΛα are also rational with the same denominator

n.
We construct a lagging two-fan

L := (T (1−α)n(X |�)
l←− T nZ

Tρ−→ T nX
)

(17)

as follows. The right leg Tρ ofL is induced by the right leg ρ of the original two-fan.
The left leg

l : T nZ → T (1−α)n(X |�)

is obtained by erasing symbols that reduce to � and applying ρ to the remaining
symbols. The target space for the reduction l is the true type ofX |�which is “lagging”
behind T nZ by a factor of (1 − α). More specifically, the reduction l is constructed
as follows.

Let λ j : Z j → Λα be the components of the reduction λ : Z → Λα . Given
z̄ = (zi )ni=1 ∈ T n Z j define the subset of indices

Iz̄ := {i : λ j (zi ) = �
}

and define the j th component of l by

l j
(

(zi )
n
i=1

) := (ρ(zi )
)

i∈Iz̄ .

By equivariance each l j is a reduction of homogeneous spaces, since the inverse
image of any point has the same cardinality. Moreover the reductions l j commute
with the reductions in T nZ as explained in Sect. 4.3 and therefore l is a reduction of
diagrams.

The next lemma uses the lagging two-fan to estimate the intrinsic entropy distance
between its sink diagrams.

Lemma 5.1 Let X ,Z ∈ Prob〈G〉 be two diagrams indexed by a complete poset
category G and included in a minimal two-fan

Λα
λ←− Z

ρ−→ X

where distribution on Z is rational with denominator n ∈ N. Then

k
(

T (1−α)n(X |�), T nX
)
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≤ n · [[G]] · [2Ent(Λα) + α · ln |X0|] + 2 · [[G]] · |X0| · ln(n + 1)

= n · [[G]] · [2Ent(Λα) + α · ln |X0|
]+ O (|X0| · ln n) .

It is an immediate consequence of the Slicing Lemma, in particular Corollary 3.10
part (2) that

k
(

X |� , X
)

≤ [[G]] · [2Ent(Λα) + α · ln |X0|] .

By the subadditivity of the intrinsic entropy distance,

k
(

(X |�)⊗n , X ⊗n
)

≤ n · [[G]] · [2Ent(Λα) + α · ln |X0|] .

This bound is almost the estimate in Lemma 5.1, except Lemma 5.1 estimates the
distance between types rather than tensor powers. We will soon see that tensor powers
and types are very close in the intrinsic entropy distance. However, for the purpose of
the proof of Lemma 5.1, it suffices to know that their entropies are close, an estimate
that is provided by Corollary 4.3.

Proof of Lemma 5.1 We will use the lagging two-fan constructed in Eq. (17), namely

L := (T (1−α)n(X |�)
l←− T nZ

Tρ−→ T nX
)

as a coupling to estimate the intrinsic entropy distance

k
(

T (1−α)n(X |�) , T nX
) ≤ kd(L ).

Recall that by Corollary 4.3 for a probability space X with a rational distribution we
have

n · Ent(X) − |X | · ln(n + 1) ≤ Ent(T nX) ≤ n · Ent(X).

Thus we can estimate kd(L ) as follows

kd(L ) =
∑

i

[(

Ent(T n Zi ) − Ent(T nXi )
)

+(Ent(T n Zi ) − Ent(T (1−α)n(Xi |�)))
]

≤ n ·
∑

i

[

(Ent(Zi ) − Ent(Xi )) + (Ent(Zi ) − (1 − α)Ent(Xi |�))
]

+ 2 · [[G]] · |X0| · ln(n + 1).

By minimality of the original two-fan and Shannon inequality (5) we have a bound

Ent(Zi ) − Ent(Xi ) ≤ Ent(Λα).
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The second part in the sum can be estimated using relation (7) as follows

Ent(Zi ) − (1 − α)Ent(Xi |�) = Ent(Λα) + Ent(Xi |Λα) − (1 − α)Ent(Xi |�)

= Ent(Λα) + (1 − α)Ent(Xi |�) + αEnt(Xi |�) − (1 − α)Ent(Xi |�)

≤ Ent(Λα) + α · ln |Xi |.

Combining all of the above we obtain the estimate in the conclusion of the lemma. ��

5.2 Distance between types

In this section we use the lagging trick as described above to estimate the distance
between types over two different distributions inΔS whereS is a complete diagram
of sets.

Proposition 5.2 Suppose S is a complete G-diagram of sets with initial set S0. Sup-
pose p, q ∈ Δ

(n)
S and let α = 1

2 |p0 − q0|1. Then

k(T n
pS , T n

q S ) ≤ 2n · [[G]] · [α · ln |S0| + 2Ent(Λα)] + 4[[G]] · |X0| · ln(n + 1)

= 2n · [[G]] · [α · ln |S0| + 2Ent(Λα)] + O(|X0| · ln n).

The idea of the proof is to write p and q as a convex combination of a common
distribution p̂ and “small amounts” of p+ and q+, respectively. Then we use the
lagging trick to estimate distances between types over p and p̂, as well as between
types over q and p̂. We now present details of the proof.

Proof of Proposition 5.2 Recall that for a complete diagram S with initial set S0 we
have

ΔS ∼= ΔS0. (18)

Our goal now is to write p and q as the convex combination of three other distri-
butions p̂, p+ and q+ as in

p = (1 − α) · p̂ + α · p+

q = (1 − α) · p̂ + α · q+.

We could do it the following way. Let α := 1
2 |p0 − q0|1. If α = 1 then the

proposition follows trivially by constructing a tensor-product fan, so from now on we
assume that α < 1. Define three probability distributions p̂0, p

+
0 and q+

0 on S0 by
setting for every x ∈ S0

p̂0(x) := 1

1 − α
min {p0(x), q0(x)}

p+
0 := 1

α
(p0 − (1 − α) p̂0)
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q+
0 := 1

α
(q0 − (1 − α) p̂0).

Denote by p̂, p+, q+ ∈ ΔS the distributions corresponding to p̂0, p
+
0 , q+

0 ∈ ΔS0
under the affine isomorphism (18). Thus we have

p = (1 − α) · p̂ + α · p+

q = (1 − α) · p̂ + α · q+.

Now we construct a pair of two-fans of G-diagrams

Λα ←− X̃ −→ X and Λα ←− Ỹ −→ Y (19)

by setting

X := (S , p)

Y := (S , q)

X̃i :=
(

Si × Λα; p̃i (s,�) = (1 − α) p̂i (s), p̃i (s,�) = α · p+
i (s)

)

Ỹi :=
(

Si × Λα; q̃i (s,�) = (1 − α) p̂i (s), q̃i (s,�) = α · q+
i (s)

)

X̃ :=
{

X̃i ; fi j × Id
}

Ỹ :=
{

Ỹi ; fi j × Id
}

.

The reductions in (19) are given by coordinate projections. We have the following
isomorphisms

X |� ∼= Y |� ∼= (S , p̂).

To estimate the distance between types we now apply Lemma 5.1 to the fans in (19)

k(T n
pS , T n

q S ) = k(T nX , T nY )

≤ k
(

T nX , T (1−α)n(X |�)
)+ k

(

T (1−α)n(Y |�), T nY
)

≤ 2n · [[G]] · [α · ln |S0| + 2Ent(Λα)] + 4[[G]] · |X0| · ln(n + 1).

��

6 Asymptotic equipartition property for diagrams

Below we prove that any Bernoulli sequence of complete diagrams can be approx-
imated by a sequence of homogeneous diagrams. This is essentially the Asymptotic
Equipartition Theorem for diagrams.
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Theorem 6.1 Suppose X ∈ Prob〈G〉 is a complete diagram of probability spaces.
Then there exists a sequence H̄ = (Hn)

∞
n=0 of homogeneous diagrams of the same

combinatorial type asX such that for all n ≥ |X0|

1

n
k(X ⊗n,Hn) ≤ C(|X0|, [[G]]) ·

√

ln3 n

n
(20)

where X0 is the initial space ofX and C(|X0|, [[G]]) is a constant only depending on
|X0| and [[G]].
Proof Denote by S = X the underlying diagram of sets and by pX the true distri-
bution onS , such that

X = (S , pX ).

We will construct the approximating homogeneous sequence by taking types over
rational approximations of pX in ΔS , that converge sufficiently fast to the true
distribution pX .

More specifically, we select rational distributions pn ∈ Δ
(n)
S such that

|pn − pX |1 ≤ |S0|
n

.

As homogeneous spaces Hn we set Hn = T n
pnS . We will show that the intrinsic

entropy distance between Hn and X n satisfies the required estimate (20).
First we apply slicing along the empirical two-fan

Qn(X ) =
(

X n ← X̃ (n) → (ΔS , τn)
G
)

defined in Sect. 4.3, Eq. (16) on page 267.
For the estimate below we use the fact that

Ent(ΔS , τn) ≤ ln |Δ(n)

S | ≤ |S0| · ln(n + 1).

By slicing (see Corollary 3.10(2)) along the empirical two-fan we have

k(T n
pnS ,X ⊗n) ≤ 2 · [[G]] · Ent(ΔS , τn) +

∫

ΔS
k(T n

pnS , T n
π S )d τn(π)

≤ 2 · [[G]] · |S0| · ln(n + 1) +
∫

ΔS
k(T n

pnS , T n
π S )d τn(π).

To estimate the integral we split the domain into a small divergence ball Bεn =
Bεn (pX ) around the “true” distribution and its complement

∫

ΔS
k(T n

pnS , T n
π S )d τn(π) =

∫

ΔS \Bεn

k(T n
pnS , T n

π S )d τn(π) (21)
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+
∫

Bεn

k(T n
pnS , T n

π S )d τn(π) (22)

and we set the radius εn equal to

εn := (|S0| + 1)
ln(n + 1)

n
.

To estimate the first integral on the right-hand side of equality (22) note that the
distance between two types over the same diagram of sets can always be crudely
estimated by

2 · ln |S0| · [[G]] · n.

Moreover, by Sanov’s theorem, Theorem 4.1, we can estimate the empirical measure
of the complement of the divergence ball

τn(ΔS \ Bεn ) ≤ e−n·εn+|S0|·ln(n+1) ≤ 1

n

where we used the definition of εn to conclude the last inequality. Therefore we obtain

∫

ΔS \Bεn

k(T n
pnS , T n

π S )d τn(π) ≤ 2 · ln |S0| · [[G]] · n · τn(ΔS \ Bεn )

≤ 2 · ln |S0| · [[G]].

Define

αn = |S0|
n

+√2εn

if the right-hand side is smaller than 1 and set αn = 1 otherwise. Then every π ∈
Bεn (pX ) satisfies |pn − π | ≤ 2αn by Pinsker’s inequality (Lemma 4.1), and the
triangle inequality. Consequently, by the estimate on the distance between types in
Proposition 5.2

∫

Bεn

k(T n
pnS , T n

π S )d τn(π)

≤ 2n · [[G]] · (αn ln |S0| + 2Ent(Λαn )
)+ 4 · [[G]] · |S0| · ln(n + 1).

Using the definition of αn and εn we find that

∫

Bεn

k(T n
pnS , T n

π S )d τn(π) = O
(√

n · ln3 n
)
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and hence combining the above estimates

1

n
k(T n

pnS ,X ⊗n) = O

⎛

⎝

√

ln3 n

n

⎞

⎠ .

A more precise check shows that for n ≥ |S0|, the constants appearing in O only
depend on |S0| and [[G]]. ��

7 Technical proofs

This section contains some proofs that did not make it into the main text. The number-
ing of the claims in this section coincides with the numbering in the main text. Lemma
that first appear in this section are numbered within section.

Proposition 2.1 Let G be a poset category, and let X = {Xi ; ai j }, Y = {Yi ; bi j }
and Z = {Zi ; ci j } be three G-diagrams. Then

1. A two-fan F = (X ← Z → Y ) ∈ Prob〈G,Λ2〉 of G-diagrams is minimal if
and only if the constituent two-fans of probability spacesFi = (Xi ← Zi → Yi )
are all minimal.

2. For any two-fan F = (X ← Z → Y ) of G-diagrams its minimal reduction
exists, that is, there exists a minimal two-fan F ′ = (X ← Z ′ → Y ) included
in the following diagram

Z

Z ′

X Y

Before we go to the proof of Proposition 2.1, we will need the following lemma.

Lemma 7.1 Suppose we are given a pair of two-fans of probability spaces

F = (X
α←− Z

β−→ Y )

F ′′ = (X ′′ α′′←− Z ′′ β ′′
−→ Y ′′)

such that F ′′ is minimal. Let

F
μ−→ F ′=(X

α′←− Z ′ β ′
−→Y )

be a minimal reduction of F . Then for any reduction ρ : F → F ′′, there exists a
reduction ρ′ : F ′ → F ′′ such that ρ = ρ′ ◦ μ.
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Proof of Lemma 7.1 We define ρ′ on the sink spaces of F ′ to coincide with ρ.
To prove the lemmawe just need to provide a dashed arrow thatmakes the following

diagram commutative

Z

Z ′ Z ′′

X Y X ′′ Y ′′

μ

α

β

ρ

α′ β ′

ρ′

α′′ β ′′

ρ=ρ′ρ=ρ′

The reduction ρ′ is constructed by simple diagram chasing and by using theminimality
of F ′′. Suppose z′ ∈ Z ′ and z1, z2 ∈ Z are such that z′ = μ(z1) = μ(z2). By
commutativity of the solid arrows in the diagram above, we have

α′′ ◦ ρ(z1) = ρ ◦ α′ ◦ μ(z1) = ρ ◦ α′ ◦ μ(z2) = α′′ ◦ ρ(z2).

Similarly

β ′′ ◦ ρ(z1) = β ′′ ◦ ρ(z2).

Thus byminimality ofF ′′ it follows that ρ(z1) = ρ(z2). Hence, ρ′ can be constructed
by setting ρ′(z′) = ρ(z1). This finishes the proof of Lemma 7.1. ��
Proof of Proposition 2.1 First we address claim (1) of the Proposition. Let G =
{

Oi ;mi j
}

be a poset category, X ,Y ,Z ∈ Prob〈G〉 be three G-diagrams and
F = (X ← Z → Y ) be a two-fan. Recall that it can also be considered as a
G-diagram of two-fans

F = {Fi ; fi j
}

.

Any minimizing reduction

F =(X ←Z →Y ) −→ F ′ =(X ←Z ′ →Y )

induces reductions

Fi =(Xi ← Zi →Yi ) −→ Fi =(Xi ← Z ′
i →Yi )

for all i in the index set I . It follows that if all Fi ’s are minimal, then so isF .
Now we prove the implication in the other direction. Suppose F is minimal. We

have to show that all Fi are minimal as well. Suppose there exist a non-minimal fan
among Fi ’s. For an index i ∈ I let

J̌ (i) := { j ∈ I : HomG(Oj , Oi ) �= ∅}
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Ĵ (i) := { j ∈ I : HomG(Oi , Oj ) �= ∅} .

Choose an index i0 such that

1. Fi0 is not minimal
2. for any j ∈ Ĵ (i0)\{i0} the two-fanF j is minimal.

Consider now the minimal reduction μ : Fi0 → F ′
i0
and construct a two-fan G =

{

Gi ; gi j
}

of G-diagrams by setting

Gi :=
{

F ′
i if i = i0

Fi otherwise

and

gi j :=

⎧

⎪⎨

⎪⎩

μ ◦ fi j if j = i0 and i ∈ J̌ (i0)

f ′
i j if i = i0 and j ∈ Ĵ (i0)

fi j otherwise

where f ′
i0 j

is the reduction provided by the Lemma 7.1 applied to the diagram

Fi0

F ′
i0

F j

μ
fi0 j

f ′
i0 j

We thus constructed a non-trivial reduction F → G which is identity on the sink
G-diagrams X and Y . This contradicts the minimality ofF .

To address the second assertion of the Lemma 2.1 observe that the argument above
gives an algorithm for the construction of a minimal reduction of any two-fan of
G-diagrams. ��
Proposition 3.1 Let G be a complete poset category. Then the bivariate function

k : Prob〈G〉 × Prob〈G〉 → R

is a pseudo-distance on Prob〈G〉.
Moreover, two diagrams X ,Y ∈ Prob〈G〉 satisfy k(X ,Y ) = 0 if and only if

X is isomorphic to Y in Prob〈G〉.
Proof The symmetry of k is immediate. The non-negativity of k follows from the fact
that entropy of the target space of a reduction is not greater then the entropy of the
domain, which is a particular instance of the Shannon inequality (5).

We proceed to prove the triangle inequality. We will make use of the following
lemma
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Lemma 7.2 For a minimal full diagram of probability spaces

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q

U W V

X Y Z

⎞

⎟
⎟
⎟
⎟
⎟
⎠

holds

kd(X ← W → Z) ≤ kd(X ← U → Y ) + kd(Y ← V → Z).

The Lemma 7.2 follows immediately from Shannon inequality.
Suppose for now that G = • and we are given three probability spaces X ,Y , Z

together with the optimal couplings U = (X ← U → Y ) and V = (Y ← V → Z)

in the sense of optimization problem (9). Together they form a two-tents diagram
T = (X ← U → Y ← V → Z). If we can extend T to a minimal full diagram Q
as in the assumption of Lemma 7.2, the triangle inequality would follow. The diagram
Q = ad(T ) can be constructed by the so called adhesion, as explained below.

As explained in Sect. 2.5.7, to construct a minimal full diagram with sink vertices
X , Y and Z it is sufficient to provide a distribution on Q := X × Y × Z with the
correct push-forwards. We do this by setting

pQ(x, y, z) := pU (x, y) · pV (y, z)

pY (y)
.

It is straightforward to check that the appropriate restriction of the full diagram defined
in the above manner is indeed the original two-tents diagram. Essentially, to extend
we need to provide a relationship (coupling) between spaces X and Z and we do it
by declaring X and Z independent conditioned on Y . This is an instance of operation
called adhesion, see [16]. Thus we have shown that k : Prob×Prob → R is a
pseudo-distance.

Assume now that G is an arbitrary complete poset category. Suppose X =
{

Xi ; fi j
}

, Y = {

Yi ; gi j
}

and Z = {

Zi ; hi j
}

are G-diagrams, with initial spaces
being X0, Y0 and Z0, respectively. Let

Û = (X ← U → Y ) and V̂ = (Y ← V → Z )

be two optimal minimal two-fans.
Recall that each two-fan of G-diagrams is a G-diagram of two-fans between the

individual spaces, that is

U = {Ui = (Xi ← Ui → Yi )
}

V = {Vi = (Yi ← Vi → Zi )
}

.
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We construct a coupling Ŵ between X and Z in the following manner. Starting
with the two-tents diagram between the initial spaces, we use adhesion to extend it
to a full diagram, thus constructing a coupling between X0 and Z0. This full diagram
could then be “pushed down” and provides full extensions of two-tents on all lower
levels. Thus we could “compose” couplings Û and V̂ and use a Shannon inequality
to establish the triangle inequality for the intrinsic entropy distance. Details are as
follows.

Consider a two-tents diagram

X0 ← U0 → Y0 ← V0 → Z0

and extend it by adhesion, as described above, to a Λ3-diagram

Q0

U0 W0 V0

X0 Y0 Z0

Together with the reductions

(X0)
G → X , (Y0)

G → Y , (Z0)
G → Z

(U0)
G → U , (V0)

G → V

explained in Sect. 2.6, it gives rise to a Λ3-diagram of G-diagrams

(Q0)
G

U (W0)
G V

X Y Z

(23)

The diagram above is not necessarily minimal and we now consider the “minimiza-
tion” of the Λ3-diagram (23), as provided by Lemma 2.2

Q̂ =

⎛

⎜
⎜
⎜
⎜
⎝

Q

U W V

X Y Z

⎞

⎟
⎟
⎟
⎟
⎠
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Applying Lemma 7.2 to each

Q̂i =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Qi

Ui Wi Vi

Xi Yi Zi

⎞

⎟
⎟
⎟
⎟
⎟
⎠

which is minimal by Lemma 2.2(1), we obtain the required inequality, concluding the
proof of the triangle inequality.

Finally, if k(X ,Y ) = 0, then there is a two-fan F of G-diagrams between X
and Y with kd(F ) = 0, from which it follows that X and Y are isomorphic. ��
Proposition 3.3 Let G be a complete poset category. Then with respect to the Kol-
mogorov distance on Prob〈G〉 the tensor product

⊗: (Prob〈G〉, k)2 → (Prob〈G〉, k)

is 1-Lipschitz in each variable, that is, for every triple X ,Y ,Y ′ ∈ Prob〈G〉 the
following bound holds

k(X ⊗ Y ,X ⊗ Y ′) ≤ k(Y ,Y ′).

Proof The claim follows easily from the additivity of entropy in equation (6). Suppose

that X = {Xi ; fi j
}

, Y = {Yi ; gi j
}

and Y ′ =
{

Y ′
i ; g′

i j

}

are three G-diagrams and

F = (Y ← Z → Y ′)

is an optimal fan, so that

k(Y ,Y ′) =
∑

i

[

2Ent(Zi ) − Ent(Yi ) − Ent(Y ′
i )
]

.

Consider the fan

G = (X ⊗ Y ← X ⊗ Z → X ⊗ Y ′).

Then, by additivity of entropy, in equation (6), we have

kd(F ) =
∑

i

[

2Ent(Xi ⊗ Zi ) − Ent(Xi ⊗ Yi ) − Ent(Xi ⊗ Y ′
i )
]

=
∑

i

[

2Ent(Zi ) − Ent(Yi ) − Ent(Y ′
i )
]

= kd(G )
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and, therefore,

k(X ⊗ Y ,X ⊗ Y ′) ≤ kd(G ) = kd(F ) = k(Y ,Y ′).

Thus, the tensor product of probability spaces is 1-Lipschitz with respect to each
argument. ��
Proposition 3.7 For any triple of diagrams X ,Y ,U holds

κ(X ⊗ U ,Y ⊗ U ) = κ(X ,Y ).

Proof Define a translation-invariant bivariate function κ′ on Prob〈G〉 by setting for a
pair A ,B ∈ Prob〈G〉

κ′(A ,B) := inf
C∈Prob〈G〉

κ(A ⊗ C ,B ⊗ C ).

Clearly, function κ′ is translation invariant and satisfies κ′ ≤ κ. Our task now is to
show that κ′ ≥ κ.

FixX ,Y ∈ Prob〈G〉. Choose some ε > 0 and take Z ∈ Prob〈G〉 such that

κ(X ⊗ Z ,Y ⊗ Z ) ≤ κ′(X ,Y ) + ε.

Since translations are non-expanding, it holds also for any U ∈ Prob〈G〉

κ(X ⊗ Z ⊗ U ,Y ⊗ Z ⊗ U ) ≤ κ′(X ,Y ) + ε.

Then for any n ∈ N we can estimate

κ(X ,Y ) = 1

n
κ(X n,Y n)

≤ 1

n

[

2κ({•}G ,Z ) + κ(X n ⊗ Z ,Y n ⊗ Z )
]

.

For i = 0, . . . , n we set Ti = X n−i ⊗Y i ⊗Z . Then we have T0 = X n ⊗Z and
Tn = Y n ⊗Z . Also for each i = 0, . . . , n − 1 the pair (Ti ,Ti+1) is a translation of
the pair (X ⊗ Z ,Y ⊗ Z ) by X n−i−1 ⊗ Y i , therefore

κ(Ti ,Ti+1) ≤ κ(X ⊗ Z ,Y ⊗ Z ) ≤ κ′(X ,Y ) + ε.

Now we continue the estimate

κ(X ,Y ) ≤ 1

n

[

2κ({•}G ,Z ) + κ(X n ⊗ Z ,Y n ⊗ Z )
]

≤ 1

n

[

2κ({•}G ,Z ) +
n−1
∑

i=0

κ(Ti ,Ti+1)
]
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≤ 2

n
κ({•}G ,Z ) + κ′(X ,Y ) + ε.

Since n is arbitrarily large, the first summand in the right-hand-side could be dropped
and then by choosing ε > 0 arbitrarily small we obtain the required inequality. ��
Proposition 3.8 SupposeG is a complete poset category and δ = k, κ is either intrin-
sic entropy distance or asymptotic entropy distance on Prob〈G〉. Then the entropy
function

Ent∗ : (Prob〈G〉, δ) → (R[[G]], | · |1), X = {Xi , fi j
} �→ (EntXi )i ∈ R

[[G]]

is 1-Lipschitz.

Proof Let X ,Y ∈ Prob〈G〉 and let

G = (X ← Z → Y )

be an optimal fan with components

Gi = (Xi ← Zi → Yi ).

For a fixed index i we can estimate the difference of entropies

Ent(Xi ) − Ent(Yi ) = 2
(

Ent(Xi ) − Ent(Zi )
)+ kd(Gi ) ≤ kd(Gi ).

By symmetry we then have

|Ent(Xi ) − Ent(Yi )| ≤ kd(Gi ).

Adding above inequalities for all i we have

|Ent∗(X ) − Ent∗(Y )|1 ≤ kd(G ) = k(X ,Y ).

By the additivity of entropy we also obtain the 1-Lipschitz property of the entropy
function with respect to the asymptotic entropy distance κ. ��
Proposition 3.9 (Slicing Lemma) Suppose G is a complete poset category and we
are givenX , X̂ ,Y , ˆY ∈ Prob〈G〉—fourG-diagrams andU , V ,W ∈ Prob—three
probability spaces, that are included into the following three-tents diagram

X̂ W Ŷ

X U V Y

such that the two-fan (U ← W → V ) is minimal. Then the following estimate holds

k(X ,Y ) ≤
∫

W
k(X |u,Y |v)d pW (u, v)
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+[[G]] · kd(U ← W → V )

+
∑

i

[

Ent(U |Xi ) + Ent(V |Yi )
]

.

Proof Since the two-fan (U ← W → V ) is minimal the probability space W could
be considered having underlying set to be a subset of the Cartesian product of the
underlying sets of U and V . For any pair (u, v) ∈ W with a positive weight consider
an optimal two-fan

Guv =
(

X |u
πX←− Zuv

πY−→ Y |v
)

(24)

where Zuv = {

Zuv,i ; ρi j
}

. Let puv,i be the probability distributions on Zuv,i—the
individual spaces in the diagram Zuv . The next step is to take a convex combination
of distributions puv,i weighted by pW to construct a coupling X ← Z → Y .

First we extend the 7-vertex diagram to a fullΛ4-diagram ofG-diagrams, such that
the top vertex has the distribution

pi (x, y, u, v) := puv,i (x, y)pW (u, v)

as described in the Sect. 2.5.7.
If we integrate over y, we obtain

∫

y∈Y
d pi (x, u, v, y) = ((πX ,i )∗ puv,i )(x)pW (u, v).

Equation (24) implies that (πX ,i )∗ puv,i = pXi ( · |u) and therefore

∫

y∈Y
d pi (x, y, u, v) = pXi (x |u)pW (u, v).

In the same way,

∫

x∈X
d pi (x, y, u, v) = pYi (y|v)pW (u, v).

It follows that

X |uv = X |u and Y |uv = Y |v (25)

and

Ent(Xi |UV ) = Ent(Xi |U ) and Ent(Yi |UV ) = Ent(Yi |V ). (26)

The extended diagram contains a two-fan of diagrams F = (X ← Z → Y )

with sink vertices X and Y . We call its initial vertex Z = {XYi , fi j
}

.

123



Information Geometry (2018) 1:237–285 283

The following estimates conclude the proof the Slicing Lemma. First we use the
definitions of intrinsic entropy distance k and of kd(F ) to estimate

k(X ,Y ) ≤ kd(F )

=
∑

i

kd(Fi )

=
∑

i

[

2Ent(XYi ) − Ent(Xi ) − Ent(Yi )
]

.

Next, we apply the definition of the conditional entropy to rewrite the right-hand side

k(X ,Y ) ≤
∑

i

[

2Ent(XYi |UV ) + 2Ent(UV ) − 2Ent(UV |XYi )

− Ent(Xi |U ) − Ent(U ) + Ent(U |Xi )

− Ent(Yi |V ) − Ent(V ) + Ent(V |Yi )
]

.

We now use (26) and rearrange terms to obtain

k(X ,Y ) ≤
∑

i

[

2Ent(XYi |UV ) − Ent(Xi |UV ) − Ent(Yi |UV )

+ 2Ent(UV ) − Ent(U ) − Ent(V )

− 2Ent(UV |XYi ) + Ent(U |Xi ) + Ent(V |Yi )
]

.

By the integral formula for conditional entropy (7) applied to the first three terms we
get

∑

i

[

2Ent(XYi |UV ) − Ent(Xi |UV ) − Ent(Yi |UV )
]

=
∫

UV
k(X |uv,Y |uv)d pW (u, v)

However, because of (25) this simplifies to

∫

UV
k(X |uv,Y |uv)d pW (u, v) =

∫

UV
k(X |u,Y |v)d pW (u, v).

Therefore,

k(X ,Y ) ≤
∫

UV
k(X |u,Y |v)d pW (u, v) + [[G]] · kd(U ← W → V )

+
∑

i

[

Ent(U |Xi ) + Ent(V |Yi )
]

.

��
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