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Abstract

This article constructs and demonstrates an alternate probabilistic approach (using
incidence rate restricted model), compared with the deterministic mathematical models
such as SIR, to capture the impact of healthcare efforts on the prevalence rate of the
COVID-19’s infectivity, hospitalization, recovery, and mortality in the eastern, central,
mountain, and pacific time zone states in the USA. We add additional new properties
for the incidence rate restricted Poisson probability distribution. With new properties,
our method becomes feasible to comprehend not only the patterns of the prevalence
rate of the COVID-19’s infectivity, hospitalization, recovery, and mortality but also to
quantitatively assess the effectiveness of social distancing, healthcare management’s
efforts to hospitalize the patients, the patient’s immunity to recover, and lastly the
unfortunate mortality itself. To make regional comparisons (as the people’s movement
is far more frequent within than outside the regional zone on daily basis), we group the
COVID-19 data in terms of eastern, central, mountain, and pacific zone states. Several
non-intuitive findings in the data results are noticed. They include the existence of
imbalance, different vulnerability, and risk reduction in these four regions. For exam-
ple, the impact of healthcare efforts is high in the recovery category in the pacific states.
The impact is less in the hospitalization category in the mountain states. The least
impact is seen in the infectivity category in the eastern zone states. A few thoughts on
future research work are cited. It requires collecting rich data on COVID-19 and
extracting valuable information for better public health policies.
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1 Introduction

In this frightening time of COVID-19, professionals in the field of public health are
drowning with lots of data. Not much practical findings are extracted from the data
either in favor of the current public health policies such as lockdown, no travel,
masking the face, no public interactions in shopping, and in restaurants or in need
new policies to reduce if not total elimination of the COVID-19’s incidence rate. This
article, using modeling as an approach, addresses whether a significant reduction in the
parametric space of the incidence rate has occurred due to various current public health
policies cited above with respect to each one of the four categories: infectivity,
hospitalization, recovery, mortality. Mathematical models are the generally convenient
vehicle to grasp the dynamics of the epidemics and uncertainty that prevent or spread
the epidemics in the population (see Okabe and Shudo [8] for details). Once the
significant factors that spread the epidemics are identified and quantified, that would
assist the policymakers to formulate accurate decisions to reduce first and eliminate
later the epidemics (see Yang et al. [15] for details). Though several variations exist, the
basic model that describes the transitions of a population in an epidemic to susceptible,
infectious, and recovery state based on ordinary differential equations (connecting the
contact and cure rates) is called the SIR model. The SIR model does not incorporate the
uncertainty principle. Sometimes, an extended version of the SIR is recognized as a
compartment model in the literature of infectious diseases (see Tolles, Luong [13] for
details). The ideas behind the SIR model originated from Kermack and McKendrick [6]
which discussed an epidemic of an infectious disease in a large population. The SIR
model perhaps oversimplifies a complex epidemic process like COVID-19. It assumes
a homogeneously mixing population, meaning that all individuals in the population are
assumed to have an equal probability of meeting one another. This assumption does not
match human social structures, in which most of the contact occurs within limited
vicinity or networks. In addition, the parameters in a traditional SIR model do not allow
quantification of uncertainty as model parameters, although no model is perfect in so
far as predicting closely the incidence rate of the epidemics and/or offering some help
to formulate viable public health policy. Recently, using the SIR model, Ambrosio and
Aziz-Alaoui [1] took into consideration the daily fluxes between New Jersey (NJ) and
New York (NY) states to notice a decrease in the COVID-19 incidences due to their
lockdown policies. They also noted that a wave in NJ occurred following the NY wave,
illustrating the mechanism of spread from one attractive hot spot to its neighbor.
Therefore, we offer a viable alternative approach based on probabilistic principles to
deal with uncertainty in the spread and reduction of the COVID-19 incidences in US
states.

Our approach is new, novel, and interesting from the view of extracting and
interpreting pertinent data informatics for the sake of better public health. Our approach
helps the administrators and policymakers to formulate and adapt refined healthcare
public policies to reduce the incidences of the COVID-19 because of the interpretable
parameters and computable expressions of the IRRP model. The US data are portioned
into four regions (eastern including District of Columbia, central, mountain, and pacific
time zone states, Alaska and Hawaii are added to the pacific states) to compare the
regional performances and/or differences. Some factors like population density, reac-
tion time to shut down the state, or even the temperature could affect the prevalence rate
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directly. Also, the people’s movements are more frequent within than out of the regions
on daily basis and it is a reason for the partitioning of data in terms of time zones. Even
inside these four time zones, the data are highly imbalanced. There is no significant
outlier in any time zone and hence, our results based on the mean and variance are
robust. However, the manuscript discovers some fascinating differences and similarities
among the four regions including non-intuitive findings about the existence of imbal-
ance, different vulnerability, and risk reduction.

Whether it is a natural or human manufactured, a mystic pathogenic coronavirus
(also known as COVID-19) was detected to have caused respiratory infections in
humans as early as 24 January 2020, in Wuhan city (capital of the Hubei province),
China [5]. The name coronavirus is derived from the Latin word “corona” meaning
“crown.” The government of China reported that there were 1287 coronavirus cases,
causing 41 death among them (see [16] for details). The first coronavirus case was
traced to have happened sometime during December 2019 (see [14]).

When the World Health Organization [7] was informed by China, this deadly
coronavirus was given the name COVID-19 as deadly disease of the year 2019. First,
it was falsely mentioned that the COVID-19 was contagious from dead or alive animals
and the virus did not spread from a human to another human [9].

How does coronavirus spread? The COVID-19 is a single-stranded RNA. Even after
a full recovery from treatment in a hospital, a person could get inflicted by the
coronavirus again, according to Japan’s Broadcasting Corporation Nippon Hoso
Kyokai (NHK). This dampens the hope of the drug or vaccination discovery process.
Even with the availability of effective vaccination, everyone needs to be annually
vaccinated. However, as of now, there is no vaccination or preventive medicine to
consume to avoid coronavirus. The best people can do is to practice social distancing,
lockdown, no travel, masking face, no public interactions in shopping, in restaurants,
etc. to prevent COVID-19’s spread.

There is no perfect diagnostic either to determine the existence of coronavirus in a
person. The high body temperature, dry cough, lack of smelling odor or tasting food,
shortness of breath, and/or respiratory distress are primitive symptoms. Any diagnostic
of the above symptoms exhibited much more false negatives and false positives to
frustrate the healthcare professionals to recommend quarantine the potential coronavi-
Tus cases.

Despite this pandemonium, China discovered that on 25 March 2020, an estimated
81,285 persons contracted the coronavirus and 3287 of them died. Alarmed by this
rapid increase, the Chinese government quarantined the people in Wuhan city in the
beginning and in Hubei province later based on an unproven knowledge that the
incubation time between the exposure and disease onset was estimated to be 2 to
14 days [2].

There was (in fact, even now) no specific effective anti-viral medicine to treat
COVID-19. Seeing the coronavirus infectivity gets out of the manageable situation,
the people were advised to wash their hands using soap, not to touch their eyes, nose or
face, wear a facial mask, and stay away from each other by 6 ft to maintain a social
distancing to avert the spread of this contagious virus.

On 30 January 2020, the Center for Disease Control (CDC) in the USA came to
know the first COVID-19 case in Chicago as he returned 17 days earlier from Wuhan
city in China. Subsequently, five more COVID-19 cases occurred in the USA. On 31
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January 2020, the President of the USA signed an executive order to deny entry to
anyone originating or traveling through China.

After noticing 12,307 COVID-19 cases with death of 259 persons worldwide as of 1
February 2020, the WHO declared COVID-19 a pandemic as it is a global health
emergency. The pandemic spread to almost all continents now on earth. Some nations
resorted quickly to quarantine the COVID-19 suspected cases and others imposed a
severe curfew. Many nations, including the USA, adapted social distancing of people
from each other first and totally shutting down the nation later. Consequently, the
commercial sectors, travels, parks, schools, and universities were locked down in the
USA and in almost 198 nations around the world.

As of today (17 May 2020), the prevalence of COVID-19 cases is more than
4,425,485 and at least 302,059 deaths have occurred already worldwide. The numbers
are staggering and changing daily. The gravity of the health hazards and the fear of
death cannot be adequately described. The day to day activities were crippled. The
productivity reached near zero everywhere on earth.

The research theme of this article is therefore to construct an approach to detect how
effective the social distancing, locking down the nation, etc. have been to reduce the
prevalence of COVID-19, to detect how efficiently the infected cases have been
hospitalized by the local/state/federal agencies, to detect how optimally the COVID-
19 patients recover in the treatment, and lastly to detect how best the COVID-19
mortality is disposed of. For this purpose, we construct an approach based on the
incidence of restricted Poisson chance principles and derive much needed algebraic
expressions to detect the abovementioned goals. To check whether our novel approach
works, we involve the prevalence of COVID-19 cases, the number of them hospital-
ized, the number of recovered cases from coronavirus, and how many died in the 50
states and the District of Columbia (DC). The data are drawn from a public domain
webpage http:/kff.org. For optimal data analyses, we grouped the data in terms of
eastern, central, mountain, and pacific time zone states because we need enough
samples to estimate the sampling errors to make a statistical assessment. Of course,
the Alaska and Hawaii states were included in the pacific zone, while the DC is
included in the eastern zone.

Utilizing the derived core analytic expressions, we analyze and interpret the
data evidence to compare and contrast the operational efficiencies in all the four
zones with respect to social distancing, adapting hospitalizations, offering optimal
treatment for recovery, and the pattern of inevitable mortality due to either the
ugly virality of the coronavirus and/or individual’s lack of strong immunity to
resist. We believe that the approach and research findings (not thorough or
complete in any sense) for the US regions will form a basis to come forward
with a viable, consistent, robust future healthcare delivery of services, drugs, and
facilities.

2 Realistic Underlying Probability Model for COVID-19-Driven
Healthcare System

Of course, a pandemic like COVID-19 does not follow a mathematical regulation or its
precision. We, the healthcare management analysts, postulate a chance-oriented model
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only for the sake of easy comprehension of its complex outcomes. Several critics of
apriority model selection argue that all models are wrong. Their point of view also
makes sense. Sometimes, some model works. If a model works, then why not benefit
from it?

One such model for the COVID-19-driven health system could be the incidence rate
restricted Poisson (IRRP). The IRRP distribution was originally presented by
Shanmugam [10]. It fits our scenario here because the rates in all categories (they are
infectivity, hospitalization, recovery, and mortality) receive an impact due to practical
restrictions with respect to COVID-19. If the IRRP works, it helps to learn and interpret
the patterns and predictability of the COVID-19 as they are illustrated in the article.
Also, we will be knowledgeable enough to present a feasible reform for the optimal
healthcare delivery to deal with any future contingency due to pandemics like this
COVID-19.

The COVID-19 data for fifty-one US states (including the DC) in http://kff.org
are categorized in terms of the confirmed corona cases, y,, the number hospitalized,
Vo, the number recovered, y;, and the number of mortality, y, due to corona. These
are nonnegative Poisson random variables (RV) with positive prevalence rates ¢, >
0, 6,>0, 6;>0, and 04> Orespectively. The core idea in our approach is based on
recognizing the existence of impacts on the prevalence rate due to the imposed
restrictions. The impact is here quantified as an unknown parameter, § > 0. In other
words, without the restrictions, the domain for the prevalence rate in every category
would have been (0, o) with the existence of restrictions and their impact, the
prevalence rate is upper bounded to be in the domain (0, §) in the sense 0 <0 <80+ §
in every category. The social distancing, closure of transportation, closing of
schools, shops, industries, curfew, etc. are restrictions on the COVID-19’s infec-
tivity. Making extra beds in a hospital, quickly constructing new hospitals, swift
transferring COVID-19 infected cases to nearby hospitals, etc. are a few examples
of impacting the hospitalization rate. Importing additional physicians, nurses,
medicines, drugs, and ventilators to some hospitals in which there is an overcrowd-
ing of COVID-19 patients are impacts on the recovery. The final but not least
important is the COVID-19’s mortality rate which is impacted by the vitality and
individual’s strong immunity to resist, to fight the ugly virality of the coronavirus.
Smaller an estimated & amount would refer to a stronger impact due to the imposed
restrictions and vice versa. It is in this framework; we bring in the IRRP model (1)
below to educate us.

' )’i_l 7{9_[} Vi
P(y) = (Heia-) (9,@ ) fyite"syi=0,1,2,... 0000 = 1,2,3(1)

When the restrictions are weaker or non-existent, it would imply that 6 — o, and the
model (1) becomes a disastrous Poisson scenario in which the prevalence rate. 6
could be unbounded in its vicinity (0, ). The characteristic property of the
(disastrous) Poisson situation would echo in the relationship between its expected
value and variance and that relationship is E(y) = Var(y). Otherwise (that is, with a
finite amount of impact due to the restrictions), there would arise an imbalance
between the expected value and the variance as shown below in (2). That is,
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E(y,) = (1 +%> _ZVar(y,-) (2)

-2
where the imbalance factor, (1 +%) approaches value one (see Fig. 1 for the

imbalance equation) as J; moves to infinite for i =1, 2, 3. The parameters 8, 5,, 03,
and d4, therefore, portray the impact level due to the restrictions on COVID-19’s
infectivity, hospitalization, recovery, and mortality rates. When the imbalance
factor attains one, the configuration in Fig. 1 will unbend to look like a 3-
dimensional plate. The maximum likelihood estimate (MLE) of the prevalence rate

o~ -3 o~ = o~
is 0 = , /% and the i t ter is 0 = vE 0.
1S \/; an c 1mpac parame €r 1S {\/E—ﬁ

) is interpreted as a measure of effective diag-

0
O;+0;
nostic to confirm the coronavirus, a measure of sufficiency to hospitalize, a measure of
appropriate recovery treatment, and a measure of inevitable mortality withi=1, 2, 3, 4
respectively. R

In a data analysis, one wonders whether the MLE § of the impact parameter is
statistically significant. To answer the above question, we must deal with the bivariate
stochasticity of the correlated sample mean and variance. Only when the sample is
drawn from a Gaussian population (see [12]), the sample mean and variance are
stochastically independent. Otherwise, they (sample mean, y and variance sf{) are

Alternately, the proportion, (

correlated. When the sample mean is less (greater) than the variance, it is recognized
as overdispersion (underdispersion) in data informatics. Realize our COVID-19 data
are drawn from an IRRP, not a Gaussian population. After algebraic simplifications
(see in Appendix at the end of this article), we have an expression to find the p value for

the MLE 6 to be significantly low enough to cap the incidence rate and it is

Fig. 1 Imbalance factor
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Yy
e

p valuex® {
Y

né/(1 +5)} (3)

The asymptotic (as n — o) statistical power is the probability of accepting a true
alternative hypothesis H: d = §*, where 6* is a chosen value to assess the impact and
it is

power~1—® 4)
l+—+=
0

after algebraic simplifications.

Ideally, every healthcare management desires to have zero COVID-19 in each
category. Its complement is then to have one or more cases. The probability of noticing
one or more cases in any category among the corona confirmation, hospitalization,

recovery, and mortality category (see the Appendix for details) is S,[1,6,0]=

—0 [67{#}71] 2 7{i} . . . . 2 -
e Pr <X2df < 20e 7 ) after algebraic simplifications, where x;, is the

chi-squared random variable with m degrees of freedom. Now, we define the odds of
attaining the ideal situation of no incidence amid the best possible healthcare impact

9 [[{ﬁ} —1}
1-5,(1.08] _ e
S,[1.0.0] ~ {0
y[1,0.0] Pr (X%d/<2¢9e {9+5})

odds of attaining the ideal situation of no incidence amid no restriction is odds;—.~

due to the restrictions is oddssz, = —1. The counterpart

1

—————1. Hence, the constant one adjusted odds ratio (OR) to attain the ideal
pr(x3, <26)
situation under restrictions compared with no restriction is
1 4 oddssze {0
OR = 7:9{1— {o+5}} 5
I + oddss_ ¢ ®)

The vulnerability change (see the Appendix for its derivation and the Fig. 2 for its
dynamics) under the restrictions is

{0 +07}
2{52 +(6+ 9)2}

VulnerabilityChange = (6)
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When the impact parameter, § — oo, the vulnerability (6) approaches 50% which
portrays equally likely among the mutually complementary possibilities by a random
chance, synonymous to flipping a coin. The needed reduction in the tail value at risk is

Pi=[1-0| || 21 (7)

3 Comparison of COVID-19 in US Four Time Zones

It is worth matching the IRRP model (1) and the data analytics of COVID-19 data as
reported in http://kff.org for all US states. We grouped the data in terms of the time
zones (see Tables 1, 2, 3, and 4 for the eastern, central, mountain, and pacific zones) on
the assumption that the restrictions in each category vary in the zones.

The COVID-19 data exhibit overdispersion consistently in all four regional inci-
dences and it is the data evidence that the prevalence rate of COVID-19 is not of a

regular Poisson type but rather IRRP. Notice that the mean y is less than the variance, Sf

in all four categories of the four zones, which is indicative of the validity of the IRRP
(1). The MLE of the prevalence rate, 6 and the impact, 0 are displayed in Tables 1, 2, 3,
and 4. The prevalence rate is highest in the eastern zone and the lowest in the mountain
zone for the COVID-19 infectivity. The prevalence rate is diverse and highest in the
castern states rather than in other zones (see Fig. 3 for details).

The impact is largest in the recovery category of the pacific states and smallest in the

mortality category of the eastern states. The estimated impact, 5 shows the widest

Fig. 2 Vulnerability change
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Table 1 COVID-19 report for eastern time zone

State Cases Died Recovered Hospitalized
Connecticut 27,700 2257

Delaware 4734 152 1275

District of Columbia 4323 224 660

Florida 33,690 1268 5589
Georgia 26,237 1131 5186
Indiana 17,835 1007

Kentucky 4708 240

Maine 1095 53 631 170
Maryland 21,742 1047 1432 4559
Massachusetts 62,205 3562 5942
Michigan 41,379 3789

New Hampshire 2054 66 980 259
New Jersey 118,652 7228

New York 304,372 18,321

North Carolina 10,509 378

Ohio 18,027 975 3533
Pennsylvania 45,763 2292

Rhode Island 8621 266

South Carolina 6095 244

Tennessee 10,735 199 5338 1045
Vermont 866 49

Virginia 15,846 552 2322
Average 35,781 2059 1719 3178
Variance 4,314,004,644 16,129,699 3,245,602 5,296,115
0 103.04 23.26 39.57 77.86
0 029 0.26 0.93 1.95
Imbalance 0.000008 0.0001 0.0005 0.0006
p value 0.000001 0.000002 0.000001 0.000001
power 0.93 0.92 0.93 0.93
Odds ratio 65.02 14.60 24.67 48.50
Vulnerability Change 0.000008 0.00013 0.00055 0.00063
Reduction in tail value at risk 0.29 0.26 0.91 1.91

variance in the recovery category compared with other categories (see Fig. 4). For the
regular Poisson distribution (that is, § = c in the IRRP (1), the impact factor is one. The
impact factor in all zones of infectivity and of mortality is less than one. The eastern
and central zones have less than one impact in the recovery category. The impact factor
is less than one in the hospitalization category in the mountain zone and the pacific
zones only. However, the least impact has occurred in the infectivity category of the
eastern zone. These findings confirm what we heard in the media about COVID-19 in
the USA.
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Table 2 COVID-19 report for central time zone

State Cases Died Recovered Hospitalized
Alabama 7019 269 978
Arkansas 3281 61 1339 414
Tllinois 52,918 2355

Towa 7145 162 2697

Kansas 4238 129 523
Louisiana 28,001 1862

Minnesota 5136 343 2172 1044
Mississippi 6815 261

Missouri 7582 329

Nebraska 4281 70

North Dakota 1067 19 458 85
Oklahoma 3618 222 2401

South Dakota 2449 17 1573 173
Texas 28,087 782 13,353

Wisconsin 6854 316 1512
Average 11,233 480 3428 676
Variance 201,822,753.5 481,367.2 19,716,349 269,977.6
0 83.79 15.14 45.19 33.79
5 0.62 0.49 0.60 1.77
Imbalance 0.00005 0.0009 0.0001 0.002

p value 0.00005 0.00008 0.00006 0.00007
Power 0.65 0.63 0.78 0.86
Odds ratio 52.74 9.39 28.34 20.72
Vulnerability change 0.00005 0.00106 0.00017 0.00276
Reduction in tail value at risk 0.62 0.47 0.59 1.69

The p value (3) is the probability of the null hypothesis H,: § = to be true. The
p values are smaller in all categories (infectivity, mortality, recovery, and hospitaliza-
tion) in every zone (see Fig. 5 for details). Note that not only smaller p values identify
the best match of the IRRP (1) but also that there is a finite and significant impact due
to the imposed restrictions. The p values are smaller in all categories across the zones

consistently. The statistical power (4) of accepting the true value of §* = Sis displayed
in all four categories for all zones. The power is at least 0.63 and it increases to as much
as 0.93. See Fig. 6 for details on the statistical power to accept the true alternative

hypothesis H, : 6" = 3 across the categories. The high power suggests that the meth-
odology based on IRRP (1) works excellent to recognize the significant impact due to
the restrictions when it occurs.

The odds ratio for having corona free safe situation attests to the fact that the
imposed restrictions in each category have yielded desirable and significant impacts
across all zones compared with what would have been without those restrictions. These
findings offer great comfort and relief to those in governing agencies and the healthcare
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Table 3 COVID-19 report for mountain time zone

State Cases Died Recovered Hospitalized
Arizona 7962 330 1169
Colorado 15,284 777 2697

Idaho 1984 60 1121 175
Montana 453 16 392 61

New Mexico 3411 123

Utah 4672 46 1939 390
Wyoming 559 7 373 56

Average 4904 194 956 758
Variance 27,765,910.3 78,323.14 550,499.6 1,076,514

9 65.16 9.66 39.85 20.11

) 0.87 0.50 1.73 0.54
Imbalance 0.00017 0.002 0.0017 0.0007

p value 0.004 0.005 0.004 0.004
Power 0.78 0.71 0.85 0.72

Odds ratio 40.87 5.92 24.56 12.51
Vulnerability change 0.00018 0.00273 0.00188 0.00074
Reduction in tail value at risk 0.86 0.48 1.66 0.53

management professionals who came up with the restrictions to begin with for the sake

of good public health.

Table 4 COVID-19 report for pacific time zone

States Corona cases Died Recovered Hospitalized
Alaska 355 9 252 36
California 48,917 1982

Hawaii 618 16 526 70
Nevada 4998 243

Oregon 2510 103 578
Washington 14,070 801

Average 11,911.33 525.66 389 228
Variance 354,269,334.3 596,393.5 37,538 92,164

0 69.06 15.60 39.59 1134

5 0.40 0.47 448 0.59
Imbalance 0.00003 0.0008 0.01 0.002

p value 0.0075 0.008 0.008 0.009
Power 0.68 0.70 0.90 0.73
Odds ratio 43.51 9.69 23.47 6.95
Vulnerability change 6.96672 E-09 3.41 E-06 5.33 E-06 1.74 E-05
Reduction in tail value at risk 912.31 93.34 138.18 53.50
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Fig. 3 Prevalence, 9

The estimated imbalance factor across the categories (see Figs. 7, 8, and 9 for
details) in every zone confirms that the IRRP (1) fits better than a simple Poisson in the
COVID-19 data. The expected value is clearly tilted from the variance. Only when the
estimated imbalance factor is unity, the regular Poisson distribution (in which 0 = ) is
appropriate. The regular Poisson is synonymous with no restriction.

The vulnerability changes to contract coronavirus, to be hospitalized, or to die are
significantly lesser under the restrictions than what it would have been (that is, 50% in
every category across the zones) without any imposed restriction. Only in the eastern
zone, the vulnerability change to corona infectivity is remarkably low due to the
imposed restrictions.

A comparative discussion of the results in these four time zones is worthwhile for
COVID-19-related public health policymakers and the administrators of such policies.
One would anticipate that the USA is one nation, ought to have the same health
policies, at least with respect to COVID-19. Has it happened that way?

First, let us discuss the incidence rate (@) of COVID-19 and it is highest in the
eastern zone, next high in the central zone, next high in the pacific zone, and the least in

the mountain zone. Smaller the estimated value of the restriction rate (3) portrays better

Impact
s [T e CT MT PT
cases

4
2
hospitalize L) deaths

recovery

Fig. 4 Impact, s
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p value
——ET =——CT MT PT
cases
0.01
0.005
hospitaliz b . deaths
e
recovery

Fig. 5 p value for H,: =

effectiveness in the implementation of social distancing and/or face making. The most
effective to the least effective is the eastern zone, pacific zone, central zone, and
mountain zone in the incidence of COVID-19.

Next, let us discuss the death rate due to COVID-19. Among many other things, it
reflects how vulnerable the people ought to have been in a zone with respect to dying
due to COVID-19 once they contract it. The death rate (0) is highest in the eastern zone,
next high in the pacific zone on par with the central zone, but least in the mountain
zone. The effectiveness (g) of guarding from death is best in the eastern zone, next in
the central zone on par with the pacific zone, but least in the mountain zone.

If we wish to discuss comparatively the recovery from COVID-19 among the zones,
notice that there are missing data in recovery information across the zones in the USA.
The results, based on the available data information, point out that the recovery rate (6)
is equally best among the eastern, mountain, and pacific zones but worst in the central

zone. The effectiveness (3) to recover from the COVID-19 is best in the eastern zone,

power
s [T e CT MT PT
cases
hospitalize € deaths
recovery

Fig. 6 Statistical power with H,, : 5 =3
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Odds ratio

s E T e CT MT PT

cases

60
49

hospitalize 0 deaths

recovery

Fig. 7 Odds ratio

the next best is in the central zone, bad in the mountain zone, and worst in the pacific
zone.

Lastly, we will take up the reality of hospitalization to treat COVID-19 infections in
the USA. In hospitalization, there is missing information for some states in all zones.
Realize that any variation among the zones is reflective of disparities among hospital

facilities and/or available medical professionals. The hospitalization rate (@) to treat the
COVID-19 case is highest to lowest occur in the eastern zone, central zone, mountain

zone, and pacific zone respectively. However, the effectiveness (3) of the administra-
tive policies to hospitalize a COVID-19 case is best to worst occurred respectively in
the mountain zone on par with the pacific zone, the eastern zone almost on par with the
central zone.

The abovementioned similarities and differences could not have been noticed
without our IRRP model to analyze and interpret the COVID-19 data across the zones
in the USA. One would have thought that the USA as a nation comprising of
homogeneous people and practices, at least with respect to the COVID-19 epidemics
but it is not so. Our IRRP model and the results based on it indicate otherwise and that
is the take-home lesson for the healthcare policymakers and the administrators of such
policies. We all can learn from each other no matter in which zone we live and practice
in the USA.

Imbalance factor

e FT e CT MT PT
cases
0.01
0.005
hospitalize ory deaths

recovery

Fig. 8 Imbalance factor
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Vulnerability
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Fig. 9 Vulnerability change

4 Conclusion and Thoughts for Future Work

Many of the non-trivialities we noticed in the interpretation of the COVID-19 data
would have remained unknown without charting out our approach. The IRRP (1) and
the derived analytic expressions based on IRRP (1) are worthy enough to capture and
comprehend the importance of the restrictions like social distancing to reduce (if not a
total elimination) the COVID-19 infectivity. The lessons we learned from analyzing
and interpreting the data evidence to deal with pandemics like COVID-19 will equip us
to be ready for any future pandemic. The predictability in any category for any zone is
feasible via building appropriate regression or structural equation models if the perti-
nent data on the covariates such as gender, age, race, socioeconomic status, and health
insurance status are collected and made available.

The findings based on our approach impact healthcare efforts as they are noticed in
the recovery category in the pacific states, in the hospitalization category in the
mountain states, and in the infectivity category in the eastern states. If data have been
collected on related variables, one could elaborate on the underlying reasons for such
variations between the time zones and also help us to demonstrate the predictive power
of the IRRP model.

The potential health policy implications of the work done in this article include the
implications of the excellent and consistent data evidence on the significant reduction
of the COVID-19’s prevalence rate by an upper bound across all regions and it is a
relief to the healthcare professionals such as physicians, nurses, lab assistants, and
paramedical in ambulance services.

It is interesting to notice that the number of COVID-19 cases increased in Florida,
Texas, and California while the number decreased substantially in New York, New
Jersey, and Pennsylvania.

Does our model in harmony with this turning changes? Florida, Texas, and Califor-
nia were a member of the eastern, central, and pacific zone states. Our IRRP model
pointed out that the estimated incidence rate of COVID-19 was highest in all these three
zones. New York, New Jersey, and Pennsylvania were uniquely within the eastern zone
which had the highest incidence rate. Recall that the effectiveness of controlling the
spread of COVID-19 was the best only in the eastern zone. What must have happened
in New York, New Jersey, and Pennsylvania was the spillover lag effect of most
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effectiveness. Being a part of the least effective central and pacific zone (as we pointed
out in early discussion), Texas and California continued to experience increased
COVID-19 incidences. California and Florida relaxed the social distancing too fast
and too liberal. Our data analysis did not involve any direct information pertinent to
these changes and hence, our IRRP model could not address this issue. The quick
reopening up the state from the lockdown and/or social distancing ought to have
created super-spreaders (who have the potential to connect with a great number of
people) via some social events (such as sport, music, religious gathering, recreation
parks). Such information has not entered the current IRRP modeling process and hence,
the model is limited in that sense to explain the resurgence or the second wave.
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Appendix

The expected value of the IRRP distribution (1) is

® n Y ’{”—i‘} !
goy,.<1+ l ) bie " S ) fyile”

6+ 0,

E(y,) = yi)yz'P(yi) =

Y,

= {1 + ?}01-—)9,-, whend;—o0.

The variance of the IRRP distribution (1) is £(y?)—{E (y)}* and it, after simplifica-

3
tions, becomes Var(y;) = (1 + %) 0;—0;, whend;—oo.

Of interest in scrutinizing the data evidence, whether the MLE of the impact
parameter statistically small involves dealing with the correlated sample mean and
variance. Only in the case of normally distributed data, the sample mean and variance
are independent [4]. Let p; > be the correlation between the sample mean and sample

variance. Utilizing the formulas in Blumenfeld [3], we obtain that

7 E(ﬂ@, 5) Var(s§|07 5) pysz \/Var(ﬂ@, 5) Var(s§|0, 5)
E<2|0,5> = 1+ - 2
55 E(s210,0) E(s210,0) {£(s2160.5)}
and
wo{od) <[k olon) el R o 0
v o) [ [eGma)] |e(se)]  e(veo)e(ens) |
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where E(30,6) = E(]6,0), E(s;w,(s) = (1+9°% and
Var (10, 6) = Var(y|0, 9)/n, Var(s§|0, 5):(1 + %)GG/n, and
o {EGI0.0)) ~ [ 00+5) : : _

Pys2 \/{E@&,&)}2+{E(s§|a,(s)}2 (D) The survival function, S, [m,6,0] = Pr

[y>m|0, 8] for the IRRP distribution (1) is
_o % YN (0 Y et 3 (1420DY (el
Sy[m, 0,6 = e )Zm (1 +m) (9@ [ ]) /yl=e y;m <1 + 9+§> (98 [ ]) /!
)12
- " ge {7} "’
] Pr(x%mdf < 20e {m»}) +%Pr<><§[m—2]df < 20e {H+A})

B
0e 1713

~e

due to the relationship (see [12]) between the chi-squared distribution function and the
cumulative Poisson probabilities indicated. With ¢ =1, an interesting particular result
0 [ei{#} —1]
S,[1,0,0]=e
one or more counts.
The constant adjusted odds of having no count are the ratio

{#s}
oo D

Pr <X§df< 26e7{W05}

Pr (ngf < ZGef{Woﬁ}) describes the probability of noticing

1 4+ oddssz = Pr(y = 016,6)/Pr(y=>1|6,9)] = ) In no restriction sit-

uation (that is, =), the constant adjusted odds are 1 4 odds;—,, = S —

pr(x2,<20)
Hence, the odds ratio (OR) between under restrictions versus no restriction situation
is OR = ﬁ%ﬁ@{l*é{%}}, after algebraic simplifications. See Shanmugam and

Chattamvelli [11] for details about the application of the odds and odds ratio in data
5,[2.0.] Pr (X‘ZW‘< Zéei{ﬂ_iﬁ})
analytics. The discrete hazard rate,h(1|0,6) = 1_5}1[119’5] =1- - in
e Pr(x;d/<29ei{m})
—1- Pr(Xﬁdf<2()) ;
Pr (ng/~< 20)
restriction situation. The desirable reduction, R;in the hazard rate due to restrictions is
{0
Pr(xfw < 20) _ Pr (Xzzuf‘< 20e {€+6})

Pr (ngf < 29) Pr (ngf< 29ei{%} )

a category is defined as Vulnerability; = %—0.5 =

under restrictions compared with such quantity, /(1|60 = o) n no

. A measure of vulnerability change under restrictions in

{7-(5+0)*} .
W. The tail
value at risk (TVaR;) is commonly used in the business world and it can be fitting here
to describe the risk at an outbreak of pandemic like COVID-19. It is

S (-1)Pry]d, 0] o (]
=1 e

TVaR = Elyly=1,6,6] = 1 4~ = .
Pr[)/i 1 |9; (5] Pr (X%df < 29e_{m}>
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-1
whose ideal target amount is {Pr(x%df < 2067{ﬁ})} in a perfect healthcare

system. The value at risk, TVaRs ; under restrictions is reduced by a percent

,{ﬁ}
*)\,‘ e (i“ -1

e from that of the value at risk,7VaRs _., at the outbreak of COVID-
19. The estimable reduction in the reduction of tail value at risk in a category is

therefore 5‘1‘3’ 1—5(\/%—1) ‘
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