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Abstract
In this paper, we research the Schur convexity, Schur geometric convexity and Schur 
harmonic convexity of the Bonferroni harmonic mean. Some inequalities identified 
with the Bonferroni harmonic mean are set up to represent the utilizations of the 
acquired outcomes.

Keywords Bonferroni harmonic mean · Schur’s condition · Majorization 
relationship · Inequality

Mathematics Subject Classification Prime 4600

1 Introduction

Arithmetic, Geometric and Harmonic means are three important means, which have 
been extensively used in the information aggregation [5, 6, 7, 11, 12, 17, 18, 19, 35, 
36]. For a collection of real numbers ai(i = 1, 2,… n), the Arithmetic mean (AM), 
the Geometric mean (GM) and the Harmonic mean (HM) are defined by:

AM ai(i = 1, 2… n) =
1

n

n∑
i=1

ai

BM ai(i = 1, 2… n) =
1

n

n∏
i=1

an
i
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respectively. The fundamental characteristic of arithmetic mean is that it focuses on 
the group opinions, while geometric mean gives more importance to the individual 
opinions and harmonic mean is the reciprocal of arithmetic mean, which is a con‑
servative average to be used to provide for aggregation lying between the max and 
min operators and is widely used as a tool to aggregate central tendency data [30].

In the existing literature, the harmonic mean is generally considered as a fusion tech‑
nique of numerical data information. However, in many situations the input arguments 
take the form of triangular fuzzy numbers because of time pressure, lack of knowledge, 
and peoples limited expertise related with problem domain. Therefore, “how to aggre‑
gate fuzzy data by using the harmonic mean?” is an interesting research topic and is 
worth paying attention too. So Xu [30] developed the fuzzy harmonic mean operators 
such as fuzzy weighted harmonic mean (FWHM) operator, fuzzy ordered weighted 
harmonic mean (FOWHM) operator and fuzzy hybrid harmonic mean (FHHM) opera‑
tor and applied them to MAGDM. Wei [25] developed fuzzy induced ordered weighted 
harmonic mean (FIOWHM) operator and then based on the FWHM and FIOWHM 
operators, presented the approach to MAGDM. H. Sun and M. Sun [23] further applied 
the BM operator to fuzzy environment, introduced the fuzzy Bonferroni harmonic 
mean (FBHM) operator and the fuzzy ordered Bonferroni harmonic mean (FOBHM) 
operator and applied the FOBHM operator to multiple attribute decision making.

The Bonferroni mean operator was initially proposed by Bonferroni [2] and was 
also investigated intensively by Yager [32].

Definition 1.1 [2] Let p, q > 0, p + q ≠ 0 and let ai(i = 1, 2,… n) be a collection of 
non‑negative numbers. If

then BMp,q is called the Bonferroni mean (BM) operator. It has important applica‑
tion in multi criteria decision‑making [1, 13, 14, 29,  31, 32].

Beliakov et al. [1] further extended the BM operator by considering the correla‑
tions of any three aggregated arguments instead of any two.

Definition 1.2 [1] Let p, q, r > 0, p + q + r ≠ 0 and let ai(i = 1, 2,… n) be a collec‑
tion of non‑negative numbers. If

HM ai(i = 1, 2… n) = n
�

∑n

i=1

1

ai

(1.1)BMp,q
(
a1, a2,… an

)
=

(
1

n(n − 1)

n∑
i,j=1,i≠j

x
p

i
x
q

j

) 1

p+q

(1.2)GBMp,q,r
(
a1, a2,… an

)
=

(
1

n(n − 1)(n − 2)

n∑
i,j,k=1,i≠j≠k

x
p

i
x
q

j
xr
k

) 1

p+q+r
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then GBMp,q,r is called the generalized Bonferroni mean (GBM) operator. In par‑
ticular, if r = 0, then the GBM operator reduces to the BM operator. However, it is 
noted that both BM operator and the GBM operator do not consider the situation 
that i = j or j = k or i = k, and the weight vector of the aggregated arguments is not 
also considered. To overcome this drawback, Xia et al. [29]. defined the weighted 
version of the GBM operator.

Definition 1.3 [29] Let p, q, r > 0, p + q + r ≠ 0 and let ai(i = 1, 2,… n) be a collec‑
tion of non‑negative numbers with the weight vector w =

(
w1,w2, …wn

)T such that 
wi ≥ 0, i = 1, 2,… n and 

∑n

i=1
wi = 1. If

then GWBMp,q,r is called the generalized weighted Bonferroni mean (GWBM) 
operator.

Some special cases can be obtained as the change of the parameters as follows:

Case 1 If r = 0 then the GWBM operator reduces to the following:

which is the weighted Bonferroni mean (WBM) operator.

Case 2 If q = 0 and r = 0 , then the GWBM operator reduces to the following:

GWBMp,q,r
(
a1, a2,… an

)
=

(
n∑

i,j,k=1,i≠j≠k

wiwjwkx
p

i
x
q

j
xr
k

) 1

p+q+r

GWBMp,q,0
(
a1, a2,… an

)
=

(
n∑

i,j,k=1,i≠j≠k

wiwjwkx
p

i
x
q

j

) 1

p+q

=

(
n∑

i,j=1,i≠j

wiwjx
p

i
x
q

j

n∑
k=1

wk

) 1

p+q

GWBMp,q,0
(
a1, a2,… an

)
=

(
n∑
i=1

wiwjx
p

i
x
q

j

) 1

p+q

GWBMp,0,0
(
a1, a2,… an

)
=

(
n∑

i,j,k=1,i≠j≠k

wiwjwkx
p

i
x
q

j

) 1

p

=

(
n∑
i=1

wix
p

i

n∑
j=1

wj

n∑
k=1

wk

) 1

p
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which is the generalized weighted averaging operator. Further in this case, let us 
look at the GWBM operator for some special cases of p.

1. If p = 1 , the GWBM operator reduces to the weighted averaging (WA) operator.
2. If p → 0 , then the GWBM operator reduces to the weighted geometric (WG) 

operator.
3. If p → +∞ , then the GWBM operator reduces to the max operator.

To aggregate the triangular fuzzy correlated information, based on the BM and 
weighted harmonic mean operators, H. Sun and M. Sun [23] developed the fuzzy 
Bonferroni harmonic mean operator. Since this operator considers the weight vector 
of the aggregated arguments, we redefine this operator as fuzzy weighted Bonferroni 
harmonic mean operator.

Definition 1.4 (42). Let âi =
[
aL
i
, aM

i
, aU

i

]
(i = 1, 2,… n) be a collection of triangu‑

lar fuzzy numbers, let 
(
w1,w2,…wn

)T be the weight vector ai(i = 1, 2,… n) where 
wi > 0, i = 1, 2,… n and 

∑n

i=1
wi = 1 . If

where p;q ≥ 0, then FWBHMp,q is called the fuzzy weighted Bonferroni harmonic 
mean (FWBHM) operator [10, 3].

In particular, considering the triangular fuzzy numbers. Let â
i
=

[
a
L

i
, a

M

i
, a

U

i

]
(i = 1, 2,… n) reduce to the interval numbers âi =

[
aL
i
, aM

i

]
(i = 1, 2,… n) then the 

FWBHM operator (10) reduces to the uncertain weighted Bonferroni harmonic 
mean (UWBHM) operator as follows:

GWBMp,0,0
(
a1, a2,… an

)
=

(
n∑
i=1

wix
p

i

) 1

p

FWBHMp,q
�
�a1, �a2,… �an

�
=

1
�∑n

i,j=1
(wiwj)∕â

p

i
â
q

j

� 1

p+q

=

⎡⎢⎢⎢⎣
1

�∑n

i,j=1

�
w
i
w
j

�
∕
�
â
L

i

�p�
â
L

j

�q� 1

p+q

,

1

�∑n

i,j=1

�
w
i
w
j

�
∕
�
â
M

i

�p�
â
M

j

�q� 1

p+q

,

1

�∑n

i,j=1

�
w
i
w
j

�
∕
�
â
U

i

�p�
â
U

j

�q� 1

p+q

⎤⎥⎥⎥⎦

UWBHMp,q
�
�a1, �a2,… �an

�
=

1
�∑n

i,j=1
(wiwj)∕â

p

i
â
q

j

� 1

p+q
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If w =
(
1∕n

, 1∕n
,… 1∕n

)T

 then the UWBHM operator reduces to the uncertain Bon‑

ferroni harmonic mean (UBHM) operator as follows:

If aL
i
 = aU

i
= ai for all, then the UBHM operator reduces to the weighted Bonferroni 

harmonic mean (WBHM) operator as follows:

In the Case w =
(
1∕n

, 1∕n
,… 1∕n

)T

 then the WBHM operator reduces to the Bon‑

ferroni harmonic mean (BHM) operator as follows:

In recent years, the Schur convexity of functions relating to special means is a very 
significant research subject and has attracted the interest of many mathematicians. 
As supplements to the Schur convexity of functions, the Schur geometrically convex 
functions and Schur harmonically convex functions were investigated [8, 21, 26, 27].

=

⎡
⎢⎢⎢⎣

1
�∑n

i,j=1

�
wiwj

�
∕
�
âL
i

�p�
âL
j

�q� 1

p+q

,
1

�∑n

i,j=1

�
wiwj

�
∕
�
âU
i

�p�
âU
j

�q� 1

p+q

⎤
⎥⎥⎥⎦

UBHMp,q
�
a1, a2,… an

�
=

1
�
1∕n2

∑n

i,j=1
(wiwj)∕â

p

i
â
q

j

� 1

p+q

=

⎡⎢⎢⎢⎣
1

�
1∕n2

∑n

i,j=1

�
wiwj

�
∕
�
âL
i

�p�
âL
j

�q� 1

p+q

,
1

�
1∕n2

∑n

i,j=1

�
wiwj

�
∕
�
âU
i

�p�
âU
j

�q� 1

p+q

⎤
⎥⎥⎥⎦

WBHMp,q
�
a1, a2,… an

�
=

1
�∑n

i,j=1
(wiwj)∕a

p

i
a
q

j

� 1

p+q

(1.4)
BHMp,q

�
a1, a2,… an

�
=

1
�
1∕n2

∑n

i,j=1
(1∕a

p

i
a
q

j

� 1

p+q
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In [9]. the authors discussed the Schur convexity, Schur geometric convexity, 
Schur harmonic convexity and Schur m‑power convexity of the geometric Bonfer‑
roni mean.

This motivated us to determine the Schur convexity, Schur geometric convex‑
ity, Schur harmonic convexity and Schur m‑power convexity of the Bonferroni har‑
monic mean.

Our main results are as follows.

Theorem  1.1 For fixed non‑negative real numbers p, q with p + q ≠ 0 , if 
x = (x1, x2,… xn) then BHMp,q(x) is Schur concave, Schur geometric convex and 
Schur harmonic convex on Rn

++
∶= (0,+∞)n.

Theorem  1.2 For fixed non‑negative real numbers p, q with p + q ≠ 0 , if 
x = (x1, x2,… xn) then (x) is Schur m ‑ power convexity on Rn

++
.

1. If m < 0, then BHMp,q,r(X) is Schur m‑power convex;
2. If m > 0, then BHMp,q,r(X) is Schur m‑power concave;
3. If m = 0, then BHMp,q,r(X) is Schur m‑power convex (concave);

2  Preliminaries

We begin with recalling some basic concepts and notations in the theory of majori‑
zation. For more details, we refer the reader to [2, 32].

Definition 2.1 Let x = (x1, x2, x3 … , xn) . and y =
(
y1, y2, y3 … , yn

)
∈ Rn.

1. x is said to be majorized by y (in symbols x ≺ y.),
∑k

i=1
x[i] ≤

∑k

i=1
y[i] for 

k = 1, 2, 3,… , n − 1 .  and 
∑n

i=1
Xi =

∑n

i=1
yi where x[1] ≥,… ,≥ x[n] and 

y[1 ] ≥ … ≥ y[n ] are rearrangement of x and y and y in a descending order.
2. 𝛺 ⊆ Rn is called a convex set, if 

(
�x1 + �y1, �x2 + �y2,… , �xn + �yn

)
∈ � , for 

any x and y ∈ � , where � and � ∈ [0, 1] with � + � = 1.
3. Let 𝛺 ⊆ Rn , the function � ∶ � → Rn is said to be schur convex function on � if 

x ≺ y on � implies �(x) ≤ �(y) . � is said to be a Schur concave function on � , if 
and only if −� is Schur convex function.

Definition 2.2 [22] Let x = (x1, x2, x3 … , xn) . and y =
(
y1, y2, y3,… , yn

)
∈ Rn

+
.

1. 𝛺 ⊆ Rn is called geometrically convex set, if (x∝
1
y
�
1
,… , x�

n
y�
n
) ∈ Rn for any x and 

y ∈ � , where �, � ∈ [0, 1] with � + � = 1.

2. Let 𝛺 ⊆ Rn
+
 the function � ∶ � → R+ is said to be schur geometrically convex 

function on � if (log x1, log x2 … log xn)(log y1, log y2 … log yn) on � implies 
�(x) ≤ �(y) . � is said to be a Schur geometrically concave function on � if and 
only if −� is Schur geometrically convex function.
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Definition 2.3 [4] Let x = (x1, x2, x3 … , xn) and y =
(
y1, y2, y3,… , yn

)
∈ Rn

+
.

1. A set 𝛺 ⊆ Rn . is said to be a harmonically convex set, if

for any x and y ∈ � , and λ ∈ [0, 1].

2. A function � ∶ � → R+ . Is said to be a Schur‑harmonically convex function on 
� , if 1

x
≺ 1

y
 implies �(x) ≤ �(y) . � is said to be a Schur harmonically concave 

function on � . If and only if −� is a Schur‑harmonically convex function.

Lemma 2.1 Let 𝛺 ⊆ Rn be symmetric with non empty interior convex set and let 
� ∶ � → R+ be continuous on � and differentiable on �0 . Then � is Schur convex 
(concave) if.

holds for any x =
(
x1, x2, x3 … , xn

)
∈ �0.

Lemma 2.2 Let 𝛺 ⊆ Rn be a symmetric geometrically convex set with non empty 
interior �0. Let � ∶ � → R+ be continuous on � and differentiable on �0 . Then � 
is Schur gemetrically convex (concave) function x =

(
x1, x2, x3 … , xn

)
∈ �0 if and 

only if � is symmetric on � and

Lemma 2.3 Let 𝛺 ⊆ Rn be symmetric harmonically convex set with non empty inte-
rior �0 Let � ∶ � → R+ be continuous on � . and differentiable on �0 Then � . is 
Schur harmonically convex (concave) function x =

(
x1, x2, x3 … , xn

)
∈ Ω0 . if and 

only if � is symmetric on � and.

holds for any x =
(
x1, x2,… , xn

)
∈ �0.

(
x1y1

�x1 + (1 − �)y 1

,
x2y2

�x2 + (1 − �)y 2

,… ,
xnyn

�xn + (1 − �)y n

)
∈ �

(x1 − x2)

(
��(X)

�x1
−

��(X)

�x2

)
≥ 0(≤ 0).

(x1 − x2)

(
x1
��(X)

�x1
− x2

��(X)

�x2

)
≥ 0(≤ 0).

(x1 − x2)

(
x2
1

��(X)

�x1
− x2

2

��(X)

�x2

)
≥ 0(≤ 0).
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Lemma 2.4 [20, 29] Let � ∶ Ω → R+ be continuous on Ω and differentiable on Ω0 . 
Then � is Schur m-power convex on function x =

(
x1, x2,… , xn

)
∈ Ω0 if and only if 

� is symmetric on � and

and

Lemma 2.5 Let
(
x1, x2,… xn,

)
∈ R+

n
 and An(x) =

1

n

∑n

i=1
xi . Then

Lemma 2.6 If xi > 0, i = 1, 2,… n, , for any non negative constant c satisfying 
0 ≤ c < 1

n

∑n

i=1
xi one has

3  Proof of main results

The Bonferroni harmonic mean (BHM) is defined by

Taking the natural logarithm gives

(2.4)
xm
1
− xm

2

m

[
xm−1
1

��(x)

�x1
− xm−1

2

��(x)

�x2

]
≥ 0 if m ≠ 0

(2.4)
(
log x1 − log x2

)[
xm
1

��(x)

�x1
− xm

2

��(x)

�x2

]
≥ 0 if m = 0

u = An(x),An(x),……An(x)
�������������������������������

≺ (x1, x2, ..xn)

n

= x

�
x1∑n

i=1
xi
,…

xn∑n

i=1
xi

�
≺

�
x1 − c∑n

i=1
(xi − c)

,…
xn − c∑n

i=1
(xi − c)

�
.

BHMp,q(x) =
1

�
1∕n2

∑n

i,j=1
(1∕x

p

i
x
q

j

� 1

p+q

logBHMp,q(x) = log 1 − log

(
1∕n2

n∑
i,j=1

(1∕x
p

i
x
q

j

) 1

p+q

(3.1)logBHMp,q(x) = −
1

p + q
(log n2 + Q)



145

1 3

Schur convexity of Bonferroni harmonic mean  

Where

Partially differentiating the Eq. (3.1) with respect to x1 , we have

Partially differentiating the Eq. (3.1) with respect to x2 , we have

Q =

n∑
J=3

[
log

(
1

x
p

1
x
q

j

)
+ log

(
1

x
p

2
x
q

j

)]
+

n∑
i=3

[
log

(
1

x
p

i
x
q

1

)
+ log

(
1

x
p

i
x
q

2

)]

+

[
log

(
1

x
p

1
x
q

2

)
+ log

(
1

x
p

2
x
q

1

)]
+

n∑
i,j=3,i≠j

[
log

(
1

x
p

i
x
q

j

)]
.

�BHMp,q
(x)

�x1
=

BHMp,q
(x)

p + q

�
�x1

n∑
J=3

[
log

(
1

x
p

1
x
q

j

)
+ log

(
1

x
p

2
x
q

j

)]

+

n∑
i=3

[
log

(
1

x
p

i
x
q

1

)
+ log

(
1

x
p

i
x
q

2

)]

+

[
log

(
1

x
p

1
x
q

2

)
+ log

(
1

x
p

2
x
q

1

)]

�BHMp,q(x)

�x1
=

(n − 1)BHMp,q(x)

p + q

�
�x1

[
logx

p

1
+ logx

q

1

]

�BHMp,q(x)

�x1
=

(n − 1)BHMp,q(x)

p + q

p + q

x1
,

�BHMp,q(x)

�x1
=

(n − 1)BHMp,q(x)

x1
.

�BHMp,q
(x)

�x2
=

BHMp,q
(x)

p + q

�
�x2

n∑
J=3

[
log

(
1

x
p

1
x
q

j

)
+ log

(
1

x
p

2
x
q

j

)]

+

n∑
i=3

[
log

(
1

x
p

i
x
q

1

)
+ log

(
1

x
p

i
x
q

2

)]

+

[
log

(
1

x
p

1
x
q

2

)
+ log

(
1

x
p

2
x
q

1

)]
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Proof of Theorem 1.1 By Lemma 2.1, direct computation gives

This implies that Δ1 ≤ 0 for x ∈ Rn By Lemma 2.1, we conclude that BHM p,q(x) 
is Schur concave on Rn

++
.

In view of the discrimination criterion of Schur geometric convexity, we start 
with the following calculations:

This implies that Δ2 = 0 for x ∈ Rn

By Lemma 2.2, we conclude that BHM p,q(x) is neither Schur geometrically con‑
vexity nor Schur geometrically concave on Rn

++
.

Finally, we discuss the Schur harmonic convexity of BHM p,q(x).
A direct computation gives

This implies that Δ3 ≥ 0 for x ∈ Rn
n  . By Lemma 2.3, we conclude that BHM p,q(x) 

is Schur harmonically convex on Rn
++

.
This completes proof of Theorem 1.1.

Proof of Theorem 1.2 Now we discuss the Schur m‑power convexity of BHM p,q(x).
It is easy to see that BHM p,q(x) is symmetric on Rn

++
. Without loss of generality, 

we may assume that x1 ≥ x2
A direct computation gives

�BHMp,q(x)

�x2
=

(n − 1)BHMp,q(x)

p + q

�
�x2

[
logx

p

2
+ logx

q

2

]

�BHMp,q(x)

�x2
=

(n − 1)BHMp,q(x)

p + q

p + q

x2
,

�BHMp,q(x)

�x2
=

(n − 1)BHMp,q(x)

x2
.

Δ1 =
(
x1 − x2

)(�BHMp,q(x)

�x1
−

�BHMp,q(x)

�x2

)
=

−(n − 1)BHMp,q
(
x1 − x2

)2
x1x2

≤ 0

Δ2 =
(
logx1 − logx2

)(
x1
�BHMp,q(x)

�x1
− x2

�BHMp,q(x)

�x2

)
= 0.

Δ3 =
(
x1 − x2

)(
x2
1

�BHMp,q(x)

�x1
− x2

2

�BHMp,q(x)

�x2

)
= (n − 1)BHMp,q

(
x1 − x2

)2
≥ 0.

Δ =

(
xm
1
− xm

2

m

)(
x1−m
1

�BHMp,q(x)

�x1
− x1−m

2

�BHMp,q(x)

�x2

)
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If m < 0, then Δ ≥ 0 . From Lemma 2.4, it follows that BHM p,q(x) is Schur m—
power convex for x ∈ Rn

++
.

If m > 0, then Δ ≤ 0 . From Lemma 2.4, it follows that BHM p,q(x) is Schur m—
power convex for x ∈ Rn

++
.

If m = 0, then by direct computation gives,

From Lemma 2.4, it follows that BHM p,q(x) is neither Schur geometrically con‑
vexity nor Schur geometrically concave for x ∈ Rn

++
.

The proof of Theorem 1.2 is completed.

4  Applications

Theorem 4.1 For fixed non‑negative real numbers p, q with p + q ≠ 0 , then for arbi-
trary x ∈ Rn

++
.

Proof From Theorem 1.2  BHMp,q(x) is Schur concave on Rn
++

.
Using Lemma 2.5, one has

Thus, we deduce from Definition  2.1 that 
 BHMp,q(x)(An(x),An(x),……An(x)) ≥ BHMp,q(x)(x1, x2, ..xn)

Which implies that

Theorem 4.1 is proved.

=

(
xm
1
− xm

2

)
(n − 1)BHM

m

[
1

xm
1

−
1

xm
2

]

=
−
(
xm
1
− xm

2

)2
(n − 1)BHM

mxm
1
xm
2

.

Δ =
(
logx1 − logx2

)(
x1
�BHMp,q(x)

�x1
− x2

�BHMp,q(x)

�x2

)
= 0

(4.1)An(x) ≥ BHMp,q(x)

An(x),An(x),……An(x)
�������������������������������

n

≺ (x1, x2, ..xn)

An(x) ≥ BHMp,q(x)
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Theorem 4.2 For fixed non‑negative real numbers p, q with p + q ≠ 0 , and let c be a 
constant satisfying 0 ≤ c < An(x), (X − c) = (x1 − c, x2 − c,… xn − c) then for arbi-
trary x ∈ Rn

++
.

Proof By the majorization relationship given in Lemma (2.6),

From Theorem (1.1)

i.e.,

which implies that

Theorem 4.2 is proved.

5  Conclusion

We prove the Bonferroni mean BHMp,q by introducing non‑negative parameters 
p, q under the condition of Schur concave, Schur geometric convex and Schur 
harmonic convex on Rn

++
.

As an application of the Schur convexity, we establish two inequalities for gen‑
eralized geometric Bonferroni mean BHMp,q . For details, we refer the interested 
reader to [15, 16, 24, 28, 33, 34] and the references therein

BHMp,q(X − c) ≤

(
1 −

c

An(x)

)
BHMp,q(x)

�
x1∑n

i=1
xi
,…

xn∑n

i=1
xn

�
≺

�
x1 − c∑n

i=1
(xi − c)

,…
xn − c∑n

i=1
(xn − c)

�
,

BHMp,q

�
x1∑n

i=1
xi
,…

xn∑n

i=1
xn

�
≥ BHMp,q

�
x1 − c∑n

i=1
(xi − c)

,…
xn − c∑n

i=1
(xn − c)

�

BHMp,q(x1, x2, … xn)∑n

i=1
xi

≥
BHMp,q(x1 − c, x2 − c… xn − c)∑n

i=1
xi − nc

BHMp,q(X − c) ≤ (1 −
c

An(x)
)BHMp,q(x)
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