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Abstract
The COVID-19 epidemic created, at the time of writing the paper, highly unusual and uncertain socio-economic conditions. 
The world economy was severely impacted and business-as-usual activities severely disrupted. The situation presented the 
necessity to make a trade-off between individual health and safety on one hand and socio-economic progress on the other. 
Based on the current understanding of the epidemiological characteristics of COVID-19, a broad set of control measures has 
emerged along dimensions such as restricting people’s movements, high-volume testing, contract tracing, use of face masks, 
and enforcement of social-distancing. However, these interventions have their own limitations and varying level of efficacy 
depending on factors such as the population density and the socio-economic characteristics of the area. To help tailor the 
intervention, we develop a configurable, fine-grained agent-based simulation model that serves as a virtual representation, 
i.e., a digital twin of a diverse and heterogeneous area such as a city. In this paper, to illustrate our techniques, we focus our 
attention on the Indian city of Pune in the western state of Maharashtra. We use the digital twin to simulate various what-if 
scenarios of interest to (1) predict the spread of the virus; (2) understand the effectiveness of candidate interventions; and 
(3) predict the consequences of introduction of interventions possibly leading to trade-offs between public health, citizen 
comfort, and economy. Our model is configured for the specific city of interest and used as an in-silico experimentation aid 
to predict the trajectory of active infections, mortality rate, load on hospital, and quarantine facility centers for the candidate 
interventions. The key contributions of this paper are: (1) a novel agent-based model that seamlessly captures people, place, 
and movement characteristics of the city, COVID-19 virus characteristics, and primitive set of candidate interventions, and 
(2) a simulation-driven approach to determine the exact intervention that needs to be applied under a given set of circum-
stances. Although the analysis presented in the paper is highly specific to COVID-19, our tools are generic enough to serve 
as a template for modeling the impact of future pandemics and formulating bespoke intervention strategies.

Keywords  Covid19 pandemic · Digital twin of city · Agent based simulation · Simulation based control · What-if analysis

Introduction

In the midst of a pandemic like COVID-19, one of the key 
priorities of the public health administration is to understand 
the dynamics of the transmission of the pathogen (World 
Health Organization 2020; Organization et al. 2020) and use 
that knowledge to design effective control measures to keep 
its impact on public health within manageable and tolerable 
limits. In case of COVID-19, while the characteristics of 
the virus (i.e., mode of transmission and the typical trajec-
tory of infection in an individual) are known to an extent 
from the existing research (World Health Organization 2020; 
Asadi et al. 2020; Cai et al. 2020; Wang et al. 2020; He et al. 
2020a, b), the dynamics of its transmission and spread in a 

 *	 Vinay Kulkarni 
	 vinay.vkulkarni@tcs.com

	 Souvik Barat 
	 souvik.barat@tcs.com

	 Ritu Parchure 
	 ritu@prayaspune.org

	 Aditya Paranjape 
	 aditya.paranjape@tcs.com

1	 Tata Consultancy Services Research, Pune, India
2	 Prayas Health Group, Pune, India

https://orcid.org/0000-0002-4677-1957
http://orcid.org/0000-0003-1570-1339
https://orcid.org/0000-0002-3164-3215
http://crossmark.crossref.org/dialog/?doi=10.1007/s41403-020-00197-5&domain=pdf


324	 Transactions of the Indian National Academy of Engineering (2021) 6:323–353

123

heterogenous population is not fully understood. It is known, 
though, that the spread of infection is related to people’s 
movement, the nature of the area where people congregate 
(open-air versus closed), and number and frequency of 
proximal contacts. It is also known the demographic factors 
and comorbidity play a role in the spread of infection as 
well as its lethality. Therefore, the primary non-pharmaceu-
tical intervention (NPI) of the public health authorities has 
been to restrict people’s movement to varying degrees, i.e., 
through the so-called lockdowns. In addition to saving lives, 
lockdowns have been the primary instruments for managing 
the load on local healthcare systems.

The economic impact of the lockdowns imposed in 2020 
has been recorded as being amongst the most adverse phe-
nomena to impact the world economy (Fernandes 2020). 
Until the pandemic is brought under control through large-
scale availability of medication or vaccines, the administra-
tors need to decide whether or not lockdowns are needed, 
and their nature and duration. As such, there is no universal 
formula for answering these questions. This is because the 
dynamics of the spread of COVID-19 depend heavily on 
individual localities: their demographic profile, the preva-
lent social etiquette, the capacity of their healthcare systems, 
whether or not people comply with the administrative rec-
ommendations, etc. Therefore, devising effective tools and 
models (possibly on a continuously changing basis) to help 
administrators take decisions at a local level is an urgent 
requirement in the midst of the pandemic.

Use of statistical and mathematical models to understand 
the spread of a pathogen and to explore effective control 
measures is a well-established decision-making aid (Heth-
cote 1989; Marathe and Vullikanti 2013). A wide range of 
modeling, data visualization, and interpretation techniques 
have been developed to predict the spread of COVID-19 
and to explore the efficacy of NPIs (Wynants et al. 2020). 
While some models have been found to be useful for explor-
ing NPIs in a specific geography, others have been found 
wanting for their accuracy of prediction (Holmdahl and 
Buckee 2020). We believe that a universal model to pre-
dict the efficacy of NPIs for all geographies, countries, and 
cities across the world is a difficult proposition. Instead, a 
purpose-specific, locality-based, fine-grained model address-
ing a set of relevant aspects of interest can play a crucial role 
in decision-making for controlling the pandemic.

Contribution

In this paper, we develop a purpose-specific, configurable, 
extensible model of a city (referred to as a purposive digital 
twin of a city) which can be considered as a virtual envi-
ronment to explore various hypotheses or interventions that 
policy-makers and public health practitioners might want 

to assess. Principally, we consider a city as an exceedingly 
complex system (Grieves and Vickers 2017), leverage the 
benefits of agent-based modeling paradigm (Macal and 
North 2009) [in compliance with epidemiological COVID-
19 specific models (Silva et al. 2020; Rockett et al. rock-
ett2020revealing; Agrawal et al. 2020; Kerr et al. 2020)], and 
rely on bottom–up simulation techniques to observe coarse-
grained emergent properties of the system.

As shown in Fig. 1, the digital twin captures four aspects 
of interest: 

1.	 Epidemiological aspect: Virus characteristics (Wang 
et al. 2020; He et al. 2020a, b).

2.	 Demographic aspect of the city: People archetypes, 
household structure, age, gender, and comorbidity of 
the population.

3.	 Stochastic and context-specific socio-spatio-temporal 
movements of the population: Movements specific to 
place, people, archetype, or profession during business-
as-usual circumstances as well as under specific inter-
ventions.

4.	 NPIs (referred to as interventions in this paper): These 
include administrative interventions (such as closure of 
offices, shops, and schools or restrictions on business-as-
usual movements of people), healthcare-specific inter-
ventions (such as testing, contact-tracing, and quaran-
tine strategies) and interventions to promote appropriate 
social etiquettes (such as mask usage and social-distanc-
ing).

Unlike SIR/SEIR models (Li and Muldowney 1995; Agrawal 
et al. 2020), we do not explicitly model global behavioral 
patterns and infection spread dynamics using a set of differ-
ential or difference equations. Instead, we start by classifying 

Fig. 1   Schematic of the digital twin of a city and the aspects of inter-
est
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a city into a set of locality types (e.g., a residential area for 
well-to-do people with some shops and offices or a busy 
marketplace with low-income group residences and an 
office area). Thus, a locality type captures the people, place, 
and mobility characteristics succinctly. Each locality type 
is specified in terms of the necessary and sufficient agent 
types, each of which captures the state and the behavior of 
a real individual and their interaction with other individu-
als at a fine-grained level. Agent behavior is probabilistic, 
reflecting the choice of actions available with an individual 
to respond to an event of interest. Locality-level behavioral 
patterns emerge from the behavior of individual agents and 
their interaction with other agents. These behavioral pat-
terns provide fine-grained information regarding who can 
come in proximal contact with whom in a given time frame. 
Combining this information with virus characteristics and 
with the health-related parameters and comorbidities of indi-
vidual agents, we can determine how the infection spreads in 
a given locality using simulation. City-level infection spread 
can thus be arrived at inductively and can be used by the 
public health authorities to assess healthcare requirements 
and plan their intervention accordingly.

It is well known that different localities may require dif-
ferent kinds of intervention to control the spread of infection. 
The fine-grained nature of our model allows us to predict the 
efficacy of intervention techniques for individual localities, 
considering the differences between individual localities, 
and thus arrive at a bespoke optimal intervention for indi-
vidual localities. For example, it is expected that a densely 
populated slum may require a strict lockdown and institu-
tional quarantine centers where mildly infected patients can 
stay for 14 days, whereas a residential area for well-to-do 
people with some shops and offices can allow freer move-
ment with mildly infected patients being quarantined inside 
their homes. By exploiting the simulatable nature of our city 
digital twin, we can validate of efficacy of such interventions 
in a quantitative manner.

Furthermore, while lockdowns or restrictions on business 
operations can mitigate the infection rates in some areas, 
these interventions hamper the growth or revival of an 
economy. A pragmatic solution, in all probability, will thus 
involve a set of locality-specific interventions that provide 
an acceptable trade-off between the spread of the infection 
and economic growth. The nature of this trade-off may vary 
from time to time, depending on the state of the pandemic, 
and socio-economic and political factors. The simulatable 
nature of city digital twin can provide a quantitative means 
of arriving at the desired trade-off.

We specify agent types using an actor-based language1. 
We populated the city digital twin as a set of interacting 
agents using the data available with city authorities and 
public health service agencies. We applied a robust con-
struction, validation, and exploration methodology that has 
been extensively used for analyzing complex systems (Barat 
et al. 2017, 2019; Kulkarni et al. 2019). Authors from Prayas 
Health Group2 validated all assumptions related to epide-
miological and demographic aspects. Authors from Tata 
Consultancy Services Research3 ensured correctness of city 
digital twin from a modeling perspective.

In this paper, we show how our fine-grained digital twin 
model can be used to predict and control the spread of 
COVID-19 virus in Pune City4. We specify (1) the epidemi-
ological aspect using data published in peer-reviewed medi-
cal journals; (2) the demographic and movement aspects 
from official data available with Pune Municipality Corpora-
tion (PMC) and from the census data; and (3) interventions 
imposed in different localities/wards in the city from March 
25, 2020 till date. The digital twin is first validated by corre-
lating simulation results with the official data available with 
PMC and fine-tuned by interpreting various key parameters. 
The validated digital twin is then used to predict the spread 
of COVID-19 and estimate the load on the healthcare infra-
structure for various candidate interventions. At the time of 
writing the paper, we note that our predictions continue to 
closely match the actual, recorded statistics as the epidemic 
unfolded in Pune5.

While COVID-19 is part of the central theme of this 
paper, we recall how it has been widely advocated that the 
world needs to ensure a high level of preparedness for future 
pandemics, especially those caused by respiratory pathogens 
[see, for instance, Nuzzo et al. (2019)]. In this context, this 
paper must be seen not just as an exposition of our work 
on COVID-19 but as the presentation of a more general 
framework that is equally applicable to other pandemics 
and locales.

Organization

The remainder of this paper is organized as follows. Sec-
tion 2 reviews different types of models, their capabilities, 
and limitations, justifying the need for a city digital twin. 
Section 3 presents technical details of our model. Section 4 
describes how the model is configured and used for PMC. 
Section 5 evaluates the approach. Section 6 summarizes the 
paper and suggests directions for future work.

1  http://www.esl-lang.org.

2  https​://www.praya​spune​.org/healt​h.
3  https​://www.tcs.com/creat​ing-a-syste​m-of-syste​ms.
4  https​://en.wikip​edia.org/wiki/Pune.
5  https​://india​nexpr​ess.com/artic​le/citie​s/pune/pune-peak-load-on-
criti​cal-healt​hcare​-to-be-susta​ined-until​-oct-end-65620​08/.

http://www.esl-lang.org
https://www.prayaspune.org/health
https://www.tcs.com/creating-a-system-of-systems
https://en.wikipedia.org/wiki/Pune
https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008/
https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008/
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Exploration of the State‑of‑the‑Art

Statistical and mathematical models (Marathe and Vul-
likanti 2013) often play a significant role in pandemic-
related decision-making (Rhodes et al. 2020). For example, 
variants of susceptible-infected-recovered (SIR) models 
(Bailey et al. 1975) have been used for projecting infection 
transmission, understanding the load on medical infrastruc-
ture, and exploring control mechanisms for pandemics like 
HIV (Hallett et al. 2014), Hepatitis C (Martin et al. 2011), 
Severe Acute Respiratory Syndrome (SARS) (Lipsitch et al. 
2003), H1N1 (Ferguson et al. 2006), and Ebola (Chretien 
et al. 2015).

Categorically, these models can be broadly divided into 
two types—(1) statistical models backed by experimental 
and/or historical data, and (2) computational models that 
faithfully represent the context under consideration. Com-
putational models can be further divided into compartmental 
and agent-based (or microsimulation) models.

Statistical models (Simonsen et al. 2013; Samsuzzoha 
et al. 2013; COVID et al. 2020) predict the spread of a 
pathogen by estimating key epidemiological parameters, 
e.g., basic reproduction number (referred to as R

0
 ) and the 

doubling time, from historical and real-time data collected 
from a specific area. These models are found to be useful 
only for the areas from where the data are collected and ana-
lyzed (Peng et al. 2020; Holmdahl and Buckee 2020) This is 
because, as explained in the previous section, the transmis-
sion of a pathogen depends significantly on local social fac-
tors. In the context of COVID-19, the construction of such 
statistical models for a specific city or country is a difficult 
proposition due to the unavailability of necessary data and 
lack of veracity of the available data: while data pertaining 
to hard-facts such as the number of deaths and the number 
of hospitalized people are known fairly accurately, the same 
cannot be said of the number of asymptomatic and mildly 
symptomatic patients in the geography under consideration.

SEIR Models

Compartmental models, chiefly the many variants of 
SIR and SEIR (Li and Muldowney 1995) models, rep-
resent different stages of infection (i.e., Susceptible, 
Exposed, Infected, Recovered, and Dead) as a set of com-
partments, and define the flow rules from one compartment 
to another in terms of differential or difference equations. 
In essence, compartmental models are constructed over an 
aggregated, homogenous population using a top–down mod-
eling methodology. Among the wide variations and exten-
sions of SIR model, the classic susceptible-exposed-infec-
tious-recovered (SEIR) model has been widely adopted for 
COVID-19 (Prem et al. 2020; Agrawal et al. 2020; Keeling 

et al. 2020; Teimouri 2020; Guan et al. 2020; Radulescu and 
Cavanagh 2020). It has been extended along two dimensions: 
(1) types of compartments, where stages such as asympto-
matic, mild symptomatic, severe, hospitalized, quarantined, 
etc. augment the traditional compartments of SIR and SEIR 
models, and (2) stochasticity and temporal delays are added 
in the transition dynamics to model the uncertainty in aggre-
gated movement from one compartment to other. For exam-
ple, Giordano et al. (2020) use an extended SEIR model to 
capture eight distinct compartments: Susceptible, Infected, 
Diagnosed, Recognized, Ailing, Healed, Threatened, and 
Extinct stages of infection. The effects of various social-
distancing interventions to control transmission and reduce 
the burden on healthcare system have been studied using 
an age-structured SEIR model (Prem et al. 2020) which is 
further extended to explore contact-tracing (Keeling et al. 
2020; Agrawal et al. 2020).

From a modeling perspective, the key limitations of 
SEIR-based models are twofold: (1) inclusion of realistic 
(e.g., socio-economic) features requires a large number of 
compartments and parameters, increasing the difficulty of 
calibrating and validating the model parameters (Kerr et al. 
2020), and (2) SEIR models are inherently unable to capture 
heterogeneities such as demographic and geographic char-
acteristics (e.g., slum, well-to-do locality, housing societies 
etc.), household structure and dynamics (which is associ-
ated with almost 60–70% of total infection), and professional 
archetypes (Radulescu and Cavanagh  2020). The accuracy 
of SEIR-based models for COVID-19 is also questionable 
due to two key reasons. First, these models consider the esti-
mated reproduction number [so-called R

t
 ] to calculate the 

aggregate movement of population from the ‘susceptible’ 
compartment to the ‘exposed’ or ‘infected’ compartments 
(i.e., S → E or S → I). The computation of R

t
 depends on his-

torical or live data, and is specific to individual geographic 
areas. Finally, the movement from I (i.e., Infected) to R (i.e., 
recovered or dead) is grossly aggregated in SIR and SEIR 
models, usually ignoring the effect of demographic charac-
teristics (e.g., age, comorbidity, and gender) of individuals.

Agent‑Based Models

Agent-based modeling (ABM) can address some of the 
inherent limitations of SEIR/SIR models as it is capable of 
capturing the inherent heterogeneity of most populations. 
It allows individual (and heterogeneous) micro-elements 
within a given population or area to interact with each other 
(thus accurately reflecting the reality) to produce emergent, 
verifiable macro-behavior.

The ABM paradigm has been used as an aid to understand 
the spread of COVID-19 and the impact of interventions 
such lockdowns, contact-tracing, and social-distancing. For 
example, ABM has been used to understand the efficacy 



327Transactions of the Indian National Academy of Engineering (2021) 6:323–353	

123

of social-distancing and school closure in Australia (Chang 
et al. 2020). An agent-based simulator for an influenza epi-
demic has been repurposed to estimate the likelihood of 
human-to-human transmission of COVID-19 in a synthetic 
Singaporean population (Koo et al. 2020). Here, the authors 
showed how and why some interventions such as quarantine, 
school closure, and workplace distancing are more effective 
for the Singaporean population as compared to local contain-
ment and strict lockdowns. ABM has been used to assess 
public health measures or non-pharmaceutical interventions 
(NPIs) for reducing the contact rates (and thereby reducing 
the transmission of the virus) in the UK (Ferguson et al. 
2020). A similar study has been conducted for the Indian 
cities of Mumbai and Bangalore in Agrawal et al. (2020).

ABM is also used for several micro-level analyses: a 
three-layer agent network (that includes school, household, 
and a joint workplace community as layers) with a stochas-
tic behavioral model was adopted to represent a synthetic 
population of Boston Metropolitan Area and to simulate 
the efficacy of social-distancing and contact-tracing (Aleta 
et al. 2020). A similar synthetic population of a metropolitan 
area in the United States was constructed by considering 
four place archetypes (i.e., household, school, work, and 
other) to understand the efficacy of NPIs, such as work-
from-home, liberal leave, home isolation, self-isolation, 
and home isolation with household quarantine of ascertained 
cases (Chao et al. 2020). Kerr et al. (2020) have developed 
an open source agent-based simulator called Covasim to 
explore a wide set of interventions such as physical distanc-
ing, hygiene measures, and testing-related interventions that 
include symptomatic and asymptomatic testing, contact-
tracing, and quarantine. Conceptually, it captures (1) age 
and population size-specific demographic information, (2) 
transmission networks of four social population archetypes 
(viz., households, schools, workplaces, and communities), 
and (3) age-specific disease severity (or age-specific epi-
demiological aspect, in the context of Fig. 1). ABMs have 
also been reportedly6 used in collaboration with local health 
agencies and policy-makers to interventions such as reo-
pening of schools in the United Kingdom, fever-screening 
in Nigeria, partial workplace and community reopening in 
Australia, and epidemic projections for Eswatini and in the 
American states of Oregon, Colorado, and Washington.

Overall, agent-based modeling demonstrates its ability 
to model the inherent heterogeneity of the population and 
household structures, age-specific variation of epidemiologi-
cal characteristics, and microscale variations of intervention 
policies. It also helps to simulate how a situation can emerge 
from the interactions of multiple heterogeneous agents with 
relatively known temporal, spatial, and spatio-temporal 

behavioral patterns i.e., movements of individuals, contact 
propensity, disease progression probability, and mortality. 
While it shows a clear benefit over statistical and compart-
mental model, the key limitation of this model is inherent 
computational complexity—it is computationally expensive 
and difficult to scale as all individual elements, such as citi-
zens, places, transport infrastructure, and their individual-
istic behaviors, need to be modeled and simulated. Moreo-
ver, this calls for fairly detailed understanding of individual 
elements at least at archetype level. Therefore, agent-based 
model is well suited for analyzing localized contexts such as 
a locality or a city as opposed to entire country.

ABM in the Indian Context

In our view, existing agent-based models (Kerr et al. 2020; 
Chang et al. 2020; Koo et al. 2020) for pandemic control fall 
short of addressing the high level of heterogeneity associ-
ated with India, e.g., the Indian population includes a wide 
range of professional archetypes with a uniquely rich set of 
characteristics and local variations, a large variety of places 
where people come together, a large variety of reasons for 
different groups of people to come together, place-specific 
movement characteristics, and a large set of possible local 
interventions. Most of the agent-based models reported in 
literature consider three professional archetypes (namely: 
office-goers, school students, and others), age structure (clas-
sification at 5–10 year intervals), and two levels of interac-
tion patterns, namely: interactions at home and interactions 
at public place, where public places include office, school, 
and other place.

Agent-based model proposed by TIFR and IISc (Agrawal 
et al. 2020; Harsha et al. 2020) have considered several het-
erogeneous demographic characteristics while analyzing the 
Indian cities of Mumbai and Bangalore. Their model consid-
ers house, school, college, office, factory, shop, commute 
medium (mainly train), and community space along with the 
other typical demographic aspects, such as age, gender, and 
comorbidity. The key limitations of their model are three-
fold: (1) they have considered the mean size of households 
in their final computation, which fails to bring out the key 
differences in the household structure of slums, residential 
areas for well-to-do people, households with senior mem-
bers, etc.; (2) household infection, place-specific infection, 
and severity-specific counts (i.e., number of asymptomatic, 
symptomatic, and severely infected individuals) are com-
puted using a set of aggregated equations (Agrawal et al. 
2020) thus generalizing individualistic behaviors to an 
extent, and (3) a generalized and simple temporal model 
is used to specify the physical movement of individuals, 
thereby ignoring the daily and weekly temporal variations 
such as those in the crowding seen in public spaces, in the 
load on the public transport during various time of a day 6  Optima Consortium for Decision Sciences http://optim​amode​l.com.

http://optimamodel.com
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(e.g., office/school/factory hours), in public gathering at 
places of worship at specific times on a given day, or in the 
weekend crowding at malls.

Since our primary objective is to capture Indian cities , 
we consider fine-grained India-specific specializations along 
demographic aspect, movement aspects, and intervention 
aspects. We keep the epidemiological aspect unchanged 
from that reported in the literature (i.e., person-to-person, 
aerosol-based, and fomite-based transmissions). 

1.	 Demographic: Wide range of household structures with 
varying areas, a wide range of family size from two to 
ten members, a wide range of professions (e.g., office-
goers, workers, shop owners, drivers, housemaid, house-
wife, bank employee, school, and college students), a 
wide range of transport infrastructure, age range from 
0 to 80 +, genders, and comorbidities such as hyperten-
sion, diabetes, and chronic pulmonary diseases (CPDs).

2.	 Movement and contact: People’s movements and con-
tact are complex, uncertain, and they exhibit significant 
heterogeneity along social, spatial, and temporal dimen-
sions. For example, the movements and the contact pro-
pensity of office-goers can be different when they are in 
office, at home, in a shopping mall, or at a local shop. 
The footfall at all of these places is strongly dependent 
on the time of the day as well as the day of the week. 
Similarly, the contact rate of any given office-goer (or 
any other archetype) may differ significantly depend-
ing on their choice of commute (e.g., own car, shared 
cab, or public transport). We capture this heterogeneity 
by introducing a large (and extensible) list of places in 
our simulator, such as school, college, (large or small) 
office, factory, marketplace, shopping mall, local shop, 
wholesale market, place of worship, etc.

3.	 Intervention: The availability of such fine-grained ele-
ments in our digital twin model allows us to explore 
several micro-level temporal interventions (that are seen 
in the lockdown and the unlock process in India), such 
as time-dependent curfew, partial time-dependent clo-
sure of non-essential shops, closure of places of worship, 
limitations on public gathering, restrictions imposed on 
domestic help, etc.

In the next section, we present the details of our meth-
odology and a fine-grained model for a city-specific digital 
twin.

Methodology: Digital Twin of a City

General Principles

We visualize a city as a complex, dynamic system of systems 
(Boardman and Sauser 2006), whose macro-behavior (i.e., 
how a pandemic unfolds in the city with/without interven-
tions) emerges from the behavior of its constituent micro-
elements and their interactions, as shown in Fig. 2. Each of 
these constituent micro-elements has its own state, charac-
teristics, and stochastic socio-spatio-temporal behavior.

From a system theoretic perspective, we characterize each 
micro-element as modular (i.e., encapsulates its own state, 
properties/characteristics, behavior and historical states/
traces), reactive (i.e., interacts with other elements), com-
posable (i.e., can be combined to form a larger element, e.g. 
place), autonomous (i.e., can act pro-actively without wait-
ing for an external stimulus), and adaptive (i.e., can change 
its behavior over time). Moreover, these elements exhibit 
probabilistic spatio-temporal characteristics. It is cognizant 
of spatial relationship to exhibit place-specific behavior and 
to assess proximity with surrounding elements. Its behavior 
is cognizant of time and of progression of time.

We realize these micro-elements as extended forms of 
‘Agents’ (Barat 2018), where the canonical form of agent/
actor abstraction (Agha et al. 1997; Macal and North 2009) 
is extended to capture the desired composability, uncer-
tainty, spatio-temporal characteristics, and adaptation. An 
extended form of composition is considered for representing 
places like household, office, sub-area representing slum, 
and area for well-to-do population. We also consider relevant 
commuting means (e.g., bus, shared cab, and private cabs) 
of individual as a composite agent, since it has its own state 
(i.e., number of individuals and infected area), characteris-
tics (i.e., area and capacity), and behavior (e.g., shared cab 
has one driver and passengers join and move out of vehicle).

Fig. 2   Key concepts and relationships for the actor model
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Individual Citizens

A citizen has its own state about infection (e.g., susceptible, 
exposed, mildly infected, severely infected, and recovered) 
and location (e.g., staying at home or visiting workplace). 
They have individualistic characteristics, such as age, gen-
der, comorbidity, and profession (e.g., office-goers, worker, 
students, and housewife). From behavioral perspective, 
each citizen may move from one place to other as the day 
progresses. These movements are uncertain and exhibit 
spatio-temporal characteristics—essentially a movement of 
an individual is a function of place, profession, and state 
of the individual. For example, a healthy office-goer may 
go to office during the weekdays and may have some pro-
pensity to shop for groceries or at a mall, and visit recrea-
tional places during weekends. In a given place, a citizen 
may move within that place and may come in contact with 
other citizens for a varying time and proximity. The same 
citizen is likely to exhibit significantly different movement 
pattern when unwell (the aforementioned adaptive property 
of agents). Here, we consider that all citizens are rational; 
emotive and psychological aspects of individual are not con-
sidered in this paper.

Epidemiological Aspect

From an epidemiological perspective, an infected citizen 
emits virus not only when sneezing and coughing but even 
while breathing normally. This leads to possible infection 
transmission either through person-to-person or through 
person-to-surface area-to-person (within a stipulated time). 
The transmission probability of person-to-person (through 
aerosol), person-to-surface-area, and surface-area-to-person 
(fomite infection) depends upon the virus characteristics 
which may change as virus mutates—we are not consider-
ing virus mutation in this paper.

Places

A place has a state (i.e., collective state of the individuals 
who are in the place), a set of properties or characteristics 
(such as area, operating hours and professions of permitted 
citizens), and behavior. The behavior of a place typically 
emerges from the behavior of its constituent micro-elements, 
i.e., citizens visiting/staying there. Infectiousness of these 
citizens, duration of their stay at the place, and plausible 
proximity of possible contacts play a role in virus spread 
dynamics of the place.

Digital Twin of a City

Holistically, a city is virtually represented as a digital twin 
by mimicking the state, the characteristics, and the behavior 

of all relevant constituent elements as interacting agents. The 
constructed digital twin is then used for understanding the 
spread of virus by simulating the behavior of the constituent 
agents and their interactions.

All agents of the constructed digital twin are first instanti-
ated to the same states as reality and an estimated number 
of infected citizens are introduced in the digital twin. The 
behavior of all agents is simulated by triggering a sequence 
of discrete events that represent an hour (e.g., a simula-
tion tick). We simulate the digital twin for pre-defined time 
epochs to understand how the pandemic unfolds in the city. 
This is compared with the real-life data for the same time 
epoch when the simulation is carried out post facto. The city 
digital twin thus validated is then used to check effectiveness 
of a candidate set of interventions through simulations.

The interventions (e.g., temporal restriction on move-
ments, closure of specific places and commuting means, 
isolation of infected citizens through testing and contact-
tracing, and mask adoption) are specified by introducing 
parametric changes in the characteristics and behavioral 
aspects of the agents. We adopt a systematic well-established 
three-step modeling and simulation methodology (Sargent 
2013) to construct the digital twin of a city and use it for 
quantitative analysis. The steps are: (1) construction of a 
purposive digital twin of a city (a generic model for Indian 
cities), (2) contextualization and validation, for a specific 
city, and (3) experimentations and what-if scenario playing. 
These are explained in the following sections.

Constructing the City Digital Twin

We visualize a city digital twin as an extensible parameter-
ized agent model that captures four interrelated aspects, 
namely, demographic, movements, epidemiological, and 
interventions, as highlighted in Fig. 1. Figure 3 depicts the 
meta-model of city digital twin.

Demographic Aspect

To support the wide spectrum of demographic heterogene-
ity of typical Indian cities in city digital twin, we consider 
variations of area specific population density, household 
structure and family size, occupational archetypes of local 
population, and three commonly considered demographic 
factors, namely: age, gender, and comorbidity of individuals.

As shown in Fig. 3, a city is a collection of administrative 
units or Wards, where each ward can be visualized as a set 
of Localities with unique characteristics in terms of 
Citizens, Households, and Commercial Places. 
The citizens have three properties namely age, gender, 
and comorbidity, where we consider three comorbidi-
ties, namely: Hypertension, Diabetes, and Chronic 
Obstructive Pulmonary Disease (COPD) that 
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majorly influence severity of infection. A citizen belongs to 
a specific citizen Archetype as shown in the figure.

We have 21 types of household structures and 15 citizen 
archetypes. The household structures range from 2-mem-
ber family (1M1F, i.e., 1 Male and 1 Female) to 12-mem-
ber family (3M3F4C2S, i.e., 3 Male, 3 Female, 4 Children, 
and 2 Senior Citizens) that cohabit a house having specific 
area, which is a parameter for contextualization. Citizen 
archetypes cover a wide range that include commonly used 
archetypes, as seen in other agent-based models, such as 
Kid, College Student, Senior Citizen, and Office-goers. The 
list contains a set of unique and representative occupational 
archetypes. For example, a Bank Staff is different than 
Office-goers as they interact with other bank staffs and 
also with bank customers; a Cab Driver keeps interact-
ing with varying number of passengers for different time 
span throughout the day; and a Housemaid visits multiple 
households and interacts with a fixed set of family members 
for close to 1 h or more in a day. Similarly, small shop keep-
ers (e.g., Staff of Small Shop) interact with custom-
ers for short intervals, Wagers mostly work in congested 
places, and Hairdressers come in extended contact with 
their customers. Therefore, they have different propensity 
of getting and spreading infection while going about their 
daily routines.

Like household and citizen archetype, Commercial 
Place is also an extensible model element with 19 default 
commercial places, as shown in Fig. 3. Each commercial 
place has specific area (property of model element Place), 
and operating hours. These places have time-varying citizen 
visiting patterns and population densities over a day and 
over weekends. Therefore, they contribute differently in 

spreading infection (specific details are discussed in move-
ment aspect).

Demographically, we visualize a city as a set of proto-
typical wards. Each ward is a combination of well-to-do 
and slum localities with representative set of households 
(with different structure and area), citizens (with different 
age, gender, comorbidities, and archetype), and commer-
cial places. For example, a locality can be formed using 
two offices, three schools, hundreds of local shops, tens of 
barber shops, hundreds of clinics, and thousands of house-
holds with varying number of family members. Citizens 
from well-to-do localities may stay in relatively bigger 
houses with few family members as compared to slum area. 
Predominantly, the citizens from well-to-do area are office-
goers, bank employees, health worker, and from other white-
collar professions. On the other hand, slum areas are densely 
populated, and have smaller houses with bigger families. 
Typically, the citizens from slum area are engaged in profes-
sions (e.g., daily worker, drivers, housemaid, and restaurant 
staffs) that demand long working hours, may take them to 
crowded places, and do not have a fixed workplace.

In addition, we capture the distribution of commuting 
means (i.e., own car, bus, or shared cab) of the individuals 
in a locality. City administration and municipal corporation 
offices maintain record about ward count, number of locali-
ties in a ward, locality-specific population (including their 
age and gender), number of commercial places along with 
their types, number of registered public and private vehicles, 
and public transport infrastructure. For information related 
to comorbidity, guestimates available with healthcare organ-
izations can be used.

Fig. 3   Meta-model of city 
digital twin



331Transactions of the Indian National Academy of Engineering (2021) 6:323–353	

123

Movements

Business-as-usual movements of citizens can be broadly 
classified into movements within a Place (e.g., within 
office, school, and mall) and movements between places 
(e.g., home to car, car to office, office to shop, and shop to 
home). These movements depend on the demographic fac-
tors as well as the state of the citizens and are stochastic in 
nature. The key factors are: citizen archetype (who is the 
person), place archetypes (where the person is), and current 
time (when).

The movement within a place is inherently random; how-
ever, we adopt a rationalistic view to define movement pat-
terns and movement frequency of an individual at a specific 
place. Essentially, they are functions over the tuple <citizen 
archetype, place archetype>. For example, a doctor stays in a 
specific location during the clinic hours; and visiting citizens 
(patients) wait in a waiting area for specific time (a range of 
time interval) and go to doctor’s place before moving out 
of the place. Similar pattern is seen in hospital, bank, and 
barber shops. However, they may have different area and 
population density at a specific time; therefore, number and 
frequency of proximal contacts may differ significantly for 
different places. The movements within place for all <citi-
zen archetype and place archetype> tuple are defined in our 
digital twin. While most of the combinations follow well-
defined patterns, some movements are specified as random 
movements.

Movement between places can be further divided into 
three sub-categories, namely: (a) deterministic movements 
conforming to fixed pattern and time, (b) stochastic move-
ments conforming to a fixed pattern, and (c) random move-
ments. Deterministic movements conforming to fixed pattern 
and time primarily conform to three factors time of the day 
and week, state of the individual (mainly health- and infec-
tion-related state), and operating hours of the (commercial) 

place. The examples of such types of movements are: office-
goers going to office, students going to school, shop keepers 
going to shop, housemaid going to houses, and barbers going 
to barber shop. We use event–condition–action (ECA) para-
digm to specify movement for professional place for each 
archetype. We further consider distribution of commuting 
means (defined in demographic aspect) to mimic commut-
ing dynamics. The movements for professional places and 
utilization of commuting means conform to well-defined 
temporal patterns, which local administration has realistic 
guesstimate.

Stochastic movements conforming to a fixed pattern, such 
as movements to grocery shops, clinics, bank and ATM, 
eateries, barber shops, and wholesale market, are probabil-
istic in nature and conform to a repetitive pattern (daily, 
weekly, monthly, or other time interval) for each citizen 
archetype. We augment probabilistic actions in event–con-
dition–action paradigm to specify this type of movements. 
Here, local administration is usually unawre of individual 
level movements, but they have reasonable understanding 
about the average footfall of each of the places (i.e., average 
footfall in bank, ATM, and clinic) in a day. We consider 
this information to validate assumption about probabilistic 
event–condition–action specification.

Random movements, such as visit to worship place, mall, 
community space, other localities, or other households (as 
guest), exhibit significant uncertainty. We use probabilistic 
event–condition–action where triggering event and action 
both are probabilistic in nature. We use heuristics (validated 
by local administration and/or public health organization, 
such as Prayas) to specify the involved probabilities and pat-
tern for each archetype.

Due to all types of movements at different places, citizens 
make contacts with other citizens; we define a contact as a 
colocation of two or more citizens in a Surface Area of 
a place. Each citizen maintains (remembers) all its contact 

Fig. 4   Epidemiological dynam-
ics



332	 Transactions of the Indian National Academy of Engineering (2021) 6:323–353

123

using contactTrace attribute of citizen (we use this 
attribute to realize contact-tracing, which is described as 
Intervention aspect).

Epidemiological Aspect

We define infection dynamics by comprehending established 
facts and peer-reviewed literatures on COVID-19 virus. 
Here, we focus on two types of dynamics, namely: infection 
transition dynamics over infection stages, and virus trans-
mission dynamics. Existing literature (He et al. 2020a, b; 
Kucharski et al. 2020) considers four prominent stages of a 
COVID-19-infected citizen, namely: susceptible, exposed, 
infected, and removed, as shown in Fig. 4. All citizens 
(irrespective of their age, gender, and other demographic 
characteristics) who are not yet infected are considered as 
susceptible. As shown in the figure, a susceptible citizen can 
be exposed to the virus either through aerosol or fomite. An 
exposed citizen becomes infectious after a time delay—typi-
cally after 3 days (this time delay is a parameter in our digi-
tal twin). In this stage, a citizen can remain asymptomatic 
or may develop mild symptoms. Subsequently, some mild 
symptomatic citizens may develop severe symptoms neces-
sitating hospitalization. Age, gender, and comorbidities of 
individual are the primary factors for progression of infec-
tion in the individual (Guan et al. 2020). All asymptomatic 
and mildly symptomatic citizens recover after a time delay 
(a parameter in the digital twin). In addition, the medical 
treatment available also determines progression of severely 
symptomatic individuals or citizens. We assume that all 
severely symptomatic citizens undergo testing and get admit-
ted to a special Hospital for COVID-19 patients, as shown 
in Fig. 3 (Covid Hospital). Recovered patients resume 
business-as-usual activities or are removed from the digital 
twin in case of death.

The transition time delays and transition propensity for 
citizens with various age, gender, and comorbidities are 
parameters in our digital twin. Table 1 depicts the transi-
tion propensities and Table 2 presents transition propensi-
ties, delays, and ranges (a synthesis of infection transmission 
dynamics (Chen et al. 2020; Guan et al. 2020; Chen and Li 
2020).

We capture two types of virus transmission dynam-
ics—(1) transmission at Household and transmission at 
Commercial Places (of the classification presented in 
Fig. 3). The household transmission to a susceptible citizen 
is computed based on three factors: (1) hourly household 
transmission rate (a model parameter), (2) citizens, i.e., fam-
ily members, visitors, and housemaid, in the household at 
specific hour of the day, and (3) infection-related states of 
individuals in the household.

Transmission from an infected citizen to a susceptible cit-
izen in a commercial place can happen when the susceptible 

citizen is within the proximity (where proximity distance is 
a model parameter) of an infected citizen for a specific time 
span (a model parameter). Essentially, a susceptible citizen 
is in same Surface Area (defined by unitProximity 
attribute with 2 m 2 as default value) of a Place with an 
infected citizen (see Fig. 3 for model element description). 
A transmission at commercial place is a function of: (1) 
hourly transmission rate, (2) individuals in proximal contact, 
and (3) infection-related states of all individuals in proximal 
contact.

A fomite infection is a two-step process, as shown in 
Fig. 4. An infected person infects surface area with a prob-
ability as she sneezes/coughs/breaths. This surface area stays 
infected for a span of time (a parameter named infec-
tionRemainActive with value range 3–36 h) during 
which a susceptible citizen coming in proximal contact may 
get exposed to the virus (a parameter in digital twin).

We consider attack rates (i.e., infection probability) dur-
ing incubation and infectious phase are 5% and 27%, respec-
tively, as default values. Similarly, the rate of transmission 
through fomite are 5% and 15%, respectively, for incubation 
and infectious phases (Li et al. 2020). 

Interventions

In India, a nationwide stringent lockdown was imposed on 
March 25, 2020. Different forms of lockdowns continued 
till May 2020 and then a gradual unlock started in a phased 
manner. Initially, all commercial places except few essential 
services were closed, which restricted more than 95% of the 
business-as-usual activities including offices, schools, col-
leges, non-essential shops, and factories. Household visits 
for housemaids, workers, and relatives were also restricted 
during the initial phases. We visualize these interventions, 
termed as Intervention Strategy, as a collection 
of changes in the form of business-as-usual activities, test-
ing uptake, and behavioral characteristics of the citizens, 
e.g., wearing masks. We define a coherent set of interven-
tions as intervention strategy indicating necessary changes 
on model elements of city digital twin (shown in Fig. 3) for 
a span of (simulation) time, as shown in Fig. 5. We con-
sider interventions along three dimensions: administrative 
intervention, health care-related intervention, and social 
intervention. Administrative interventions are related to cit-
izen movements and (partial) closure of places. Examples 
are (1) complete or partial closure of commercial places, 
such as offices, schools, and malls, (2) total or time-bound 
restriction of movements in and out of a locality (or a ward 
or a city, etc), (3) restriction of non-essential movement 
in a locality (or a ward or a city, etc), and (4) total ban or 
part-capacity operation of public transport and shared cabs. 
Introducing these interventions amounts to changing values 
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of appropriate model parameters of city digital twin model 
elements (shown in Fig. 3) suitably. For example, isOpen 
attribute of Place is used for opening and closing a place; 
operatingHours attribute of Commercial Place is 
used for partial time-dependent closure of places. Similarly, 
isOpen attribute of Household is considered to prohibit 
guest and housemaids in the households, isOpen attribute 
of Locality is used for defining containment zones, and 
isOpen attribute of Ward is used for closing boarders. 
The allowed passengers of Cab and Bus can be changed by 
changing capacity (of Commercial Place) attribute to 
an allowed number. We also have a provision to introduce 
sanitization of a place where a percentage of contaminated 
Surface Area can be considered as clean surface area 
as result of sanitization.

Subsequently, it reduces the change of fomite-related 
infection (see infection transmission logic of epidemiologi-
cal aspect). From health care perspective, testing of severely 
infected citizens and admitting them to Covid hospital are 
mandatory responsibilities for city administrators as dis-
cussed in epidemiologic aspect. Interventions from health 

care standpoint include testing of mildly infected citizens 
(in addition to severely infected citizen), contact-tracing, and 
isolation of detected mildly infected citizens. The change 
in testing uptake is realized by (randomly) testing a certain 
percentage (a parameter) of mildly infected citizens. This 
mimics the scenario of encouraging citizens to undergo 
Covid testing who are experiencing Covid-like symptoms. 
Essentially, we control testing uptake of a city/ward/locality 
by tweaking the percentage of mildly symptomatic citizens 
in our model.

 Contact-tracing is realized by testing a percentage of 
contacts of citizens, who are tested positive. We first com-
pute who all have shared same surface area from infectious 
stage to testing time of an infected citizen (through con-
tactTrace attribute of Citizen model element), and 
then, we select a specific percentage of citizens (contact-
tracing percentage—a parameter) for contact-tracing. One 
can change uptake of contact-tracing by changing contact-
tracing percentage in the model.

The isolation of citizens is achieved through home 
quarantine and institutional quarantine. In our model, the 
home quarantine is realized by (temporarily) muting all 
daily movements of the citizen and confining all household 
members at home using isOpen parameter of House-
hold. Institutional quarantine is like hospitalization, 
where citizens are sent to institutional quarantine center 
till citizen recovers from the infection. Who can avail 
home quarantine and who should go to quarantine facility 
is a locality-specific administrative-decision—typically, 
citizens from well-to-do localities may avail home quar-
antine and citizens from slum area avail quarantine centers 
we use an attribute of locality model element named as 

Table 2   Transition temporality

Transition Duration

Exposed to infectious 48–72 h
Asymptomatic to recovered 14 days
Mildly to severely symptomatic 6 days
Mildly symptomatic to recovered 21 days
Severely symptomatic to recovered 23–28 days
Severely symptomatic to dead 17–29 days

Fig. 5   Intervention meta-model and relationship with core model
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isolationOption to indicate (a) if isolation should 
be enforced the citizens of a locality, and (b) what kind 
of isolation (i.e., home or institutional quarantine) should 
be enforced.

We consider two types of social interventions in our 
model: mask usage and social-distancing. The efficacy of 
the mask is realized through a set of model configurations 
and parameterizations. 

1.	 Our model recognizes an extensible list of mask types 
with precise efficacy of spreading and protecting virus. 
Three mask types are added as default model elements, 
namely: N95 with efficacy 95%, medical mask with effi-
cacy 70%, and cloth mask with efficacy 25% (Tian et al. 
2020).

2.	 We use parametric model elements to capture archetype-
specific distributions of mask type adoption. For exam-
ple, one can specify all healthcare staff use N95; adop-
tions of N95, medical mask, and cloth mask among the 
senior citizens are—20%, 40%, and 40%. These adoption 
distributions help to set the value of maskType attribu-
tion of individual Citizen in our model.

3.	 The transmission dynamics from an infected citizen to 
susceptible citizen is cognizant of the efficacy of the 
mask (as shown in Fig. 4). Essentially, the probability of 
infection spread is adjusted based on (a) mask usage of 
susceptible citizen, (b) mask usage of collocated infected 
citizen, and (c) mask types of the both citizens.

Likewise, the social-distancing is realized using a paramet-
ric model element to capture archetype-specific adoption of 
social-distancing norm. We realize this norm by ensuring a 
citizen, who is following social-distancing norm, will try to 

avoid collocating in a Surface Area with others if there 
is any free surface area in a Place.

Contextualization and Validation

A digital twin of a city is realized by implementing meta-
model shown in Fig. 3 as a set of parametric agent types, 
where agent types: (1) structurally conform to the meta-
model relationships; (2) encapsulate necessary variables to 
capture states, characteristics, and historical traces; and (3) 
mimic business-as-usual behaviors using probabilistic event-
condition-action rules. To use this digital twin for a specific 
city, all agents need to be contextualized and validated with 
respect to a specific city.

Contextualization

Contextualization of city digital twin is a process of instan-
tiating the meta-model of Fig. 3 in terms of the requisite 
number of agents leading to a purposive simulatable model 
of the city. The model comprises demographic configura-
tion, movement configuration, and instantiation of all agents 
to their representative states. Demographic configuration 
defines number of wards of a city, localities within each 
ward, locality-specific households, and commercial estab-
lishments (e.g., offices, factories, schools, shops, etc.), 
number of citizens in each locality, and their demographic 
characteristics. Movement configuration specifies movement 
characteristics embellished with appropriate probabilities 
and parameters. An agent has multiple state variables; how-
ever, infection state is of primary importance. Infection can 
be introduced in a locality by changing infection state of (a 

Fig. 6   A screenshot of the simulator, showing the ward-level agents and localities in the early phase of a simulation
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limited number of) its citizens from the default ‘Susceptible’ 
state to ‘Exposed’ state. We capture all configuration and 
instantiation parameters in spreadsheets for ease of use.

Simulation

Contextualized digital twin can be simulated. We have cho-
sen the simulation time ‘tick’ to be an hour. Figure 6 shows 
a screenshot of the visualization environment accompany-
ing our simulator. A ward is represented here as 1.5 × 1.5 
km

2 block. Blue color dots denote susceptible citizens. As 
business-as-usual activities take them to various places thus 
bringing in contact with other citizen agents and infected 
surfaces, they get exposed (denoted by magenta colored 
dots) and may get infected (denoted by orange colored dots 
for mildly symptomatic and red colored dots for severely 
symptomatic) based on duration and frequency of proximal 
contacts, and age, gender, and comorbidities of the agents. 
Thus, macro-behavior of entire city in terms of infection 
transmission, as illustrated in Fig. 7, emerges over time from 
the micro-behavior of various agents.

Simulation continues for the desired time epoch several 
months in our case by repeating simulation tick  specific 
number of times. Thus, simulation gives an estimate of the 
likely spread of infection over the time epoch along with 
fine-grained information such as age, gender, comorbidi-
ties, hotspots, etc. The candidate set of interventions for 
controlling the pandemic are experimented with by setting 
up suitable what-if scenarios and simulating for them using 
real data. Table 3 depicts the decide rata used to check effec-
tiveness of these interventions. Simulation run generates the 
necessary data for computing the desired KPIs, as shown 
in Fig. 8.

Validation

The confidence on simulation-based estimations depends on: 
(1) how faithfully does the digital twin represent the city 
ward, (2) methodological rigor, (3) accuracy of the technol-
ogy used, and (4) how close the simulation results are with 
respect to the reality. We use well-established techniques of 
simulating business- and mission-critical systems to estab-
lish faithfulness of the constructed digital twin with respect 
to the reality (Sargent 2013). They are: 

1.	 Conceptual model validation that determines the theo-
ries and assumptions is reasonable for the intended pur-
pose.

2.	 Computerized model validation that ensures all concep-
tual elements is appropriately represented using a robust 
implementation technology.

3.	 Operational validation that determines the simulation 
outputs is sufficiently close to reality.

4.	 Data validity that ensures the reliability and adequacy 
of inputs data.

Conceptual model validation is ensured by validating all 
aspect specific assumptions. Epidemiological assumptions 
and infection-related probabilities are introduced as per 
the data and results available in peer-reviewed literature. 
The correct interpretation of these properties is ensured 
by epidemiologists within our group. Demographic aspect 
and movement-related assumptions are ascertained using 
data available with city administration authority. We also 
took help of demographic expert within our group to vali-
date citizen movement-related assumptions. The candi-
date set of interventions can be obtained (as in the case of 
Pune) from the city’s administration authorities.

Fig. 7   Simulation dashboard for illustration
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Validity of computerized model is ensured bottom–up. 
A city is modeled as a set of interacting agent types to 
specify people, place, movement, virus characteristics, and 
candidate set of interventions. We used a robust agent/
actor technology named ESL (Clark et al. 2017) that has 
been used to model other complex system of systems such 
as a telecom company (for minimizing customer churn 
(Barat et al. 2020)) and a retail chain (for optimizing shop 
stock replenishment (Barat et al. 2019a, b)). Individual 
agent-type specification was first validated with domain 
experts for completeness, correctness, and consistency, 
and then tested on real data as part of the city digital twin. 
Thus, suitable modeling abstraction, rigorous model con-
struction, and robust technology ensure validity of the 
computerized model.

We contextualize digital twin for a city, introduce an 
amount of infection, and compare simulation results with the 
real observations to ensure operational validity. We chose 
death count as the metric to establish operational validity as 
it was reliably recorded on a daily basis.

To ensure data validity, we considered data from city 
administration authority as input. However, we acknowledge 
that limited data are available on the distribution of comor-
bidity and disease prognostic in Indian population. High 
fidelity data inputs on several socio-demographic can further 
improve simulation prediction. We consider it as a threat to 
internal validity (Onwuegbuzie 2000) of our approach.

What‑If Analysis

We followed an iterative human-in-the-loop simulation-
based approach, as shown in Fig. 9. We simulated the con-
textualized digital twin for the desired time epoch. The 
simulation results were interpreted to arrive at key metrics 
such as new cases (infections), deaths, load on hospital 
infrastructure (number of new admissions and nature of 
critical care required), load on quarantine centers (number 
of new mildly infected patients staying in small houses or 

Table 3   Key performance indicators (KPIs)

KPI Description Illustration

SEIR graphs for ward and localities Progression of active susceptible, exposed, active infected, cumulative recov-
ered and cumulative death counts for ward and localities

Figure 10a

New cases of infection, recovery and death Day wise new cases of mildly infected and asymptomatic cases, severely 
symptomatic, recovered and death

Figure 10d

Cumulative cases Cumulative cases of mild, severe and death cases Figure 10e
Load on hospitals Active cases in hospital and ventilators Figure 10b
Load on institutional and home quarantine Number of citizens who are under home quarantine and intuitional quarantine. Figure 10c
Load on testing (1) Number of severely infected citizen tested, (2) number of mildly infected 

citizens tested
Figure 10f

contact-tracing Number of citizens are traced and tested through contact-tracing Figure 10f
Testing efficacy % of positive cases for overall testing, household testing and contact-tracing Not shown
Demographic distribution of infected citizens Gender-specific distribution, age-specific distribution, medical history-specific 

distribution and occupational archetype-specific distribution of all infected 
citizens (based on cumulative numbers)

Not shown 
(similar to 
hospitali-
zation)

Demographic distribution of hospitalized citizens Gender-specific distribution, age-specific distribution, medical history-specific 
distribution and occupational archetype-specific distribution of hospitalized 
citizens (based on active numbers)

Figure 10j, k

Demographic distribution of death Gender-specific distribution, age-specific distribution, medical history- spe-
cific distribution and occupational archetype-specific distribution of death 
persons (based on commutative numbers)

Not shown 
(similar to 
hospitali-
zation)

Source of infections (1) Counts of transmission place (i.e., the place from where the virus is trans-
mitted), (2) counts of archetypes who spread the virus

Figure 10h, i

Way of transmission How virus is transmitted, i.e., either through aerosol at household, aerosol in 
the commercial places, or through fomite

Figure g

Infection fatality rate Infection fatality rate, cumulative death upon cumulative infected Not shown
Average infected family members at households Average % of infected family members at household for slum and well-to-do 

localities
Not shown

% of impacted households % of households where at least one family member is infected in slum and 
well-to-do localities

Not shown
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slums), and load on testing infrastructure (whom to test and 
when). Akin to design of experiment, we set up appropri-
ate what-if scenarios to ascertain efficacy of the candidate 
set of interventions to improve the pandemic situation in 

terms of the key metrics. We tried them out one-by-one and 
later in combinations. The fine-grained nature of digital twin 
representing a city ward helped ascertain identification of 
ward-specific interventions. This helped us to come up with 

Fig. 8   Snapshots from a simulation wherein no intervention was considered

Fig. 9   Human-in-the-loop and reinforcement learning-based what-if explorations
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ward-specific recommendations that were backed by data. 
The ward-level numbers were projected onto city level to 
obtain the big picture.

Case Study: Pune City

We applied our digital-twin-based approach to predict and 
control the spread of COVID-19 pandemic for Pune city7, 
a western state of Maharashtra in India. The urban area of 
Pune has a population around 4 million and a geographic 
area of approximately 330 km2 . The city is divided into 41 
administrative zones which are referred to as wards. We 
classified residential localities into two: (1) slum a densely 
populated (typically, upwards of 60,000 population per km2 ) 
area with small houses packed together each inhabiting a 
large number of people, and (2) well-to-do area consisting 
of apartments and houses with a reduced population density 
(mid-1000s per km2).

Based on the composition of residential areas and commer-
cial places, we classified Pune city wards into three prototypi-
cal wards: (1) residential ward: primarily well-to-do residential 
area with a small population living in slums and few busy 
small-size market areas (e.g., Sahakar Nagar and Kothrud); 
(2) market ward: primarily a densely populated busy market 
place with residential area comprising of well-to-do and slum 
localities (e.g., Bhavani Peth); and (3) office ward: primarily 
a business district comprising large modern office complexes, 
some small office buildings, shopping malls, and large modern 
residential complexes (e.g., Nagar Road and Aundh). Table 4 
presents details of the five wards which we used for analysis.

Contextualization

Description of the three prototypical wards in terms of the 
four aspects constituting the digital twin follows: 

1.	 Epidemiological aspects: The epidemiological char-
acteristics, i.e., transmission and transition dynamics 
along with infection probabilities, of COVID-19 are 

same across Pune, and they are same as rest of the India/
world. Hence, we consider default characteristics as dis-
cussed in Sect. 3.

2.	 Demographic aspects and movements: We consider the 
age, gender, and comorbidity-related heterogeneities are 
uniform across all three prototypical wards, as shown 
in Table 5. The heterogeneities of household structures 
and commercial places of three prototypical wards are 
highlighted in Tables 6 and 7.

3.	 Interventions: Pune city complies with all nationwide 
lockdown and unlock guidelines8. A stringent lock-
down was imposed on March 25, 2020 across all wards 
in Pune along with rest of the India. All commercial 
places except few essential services were closed, which 
restricted more than 95% of the business-as-usual activi-
ties including office, school, colleges, non-essential 
shops, and factories. Housemaid, workers and relatives 
to visit any household were also restricted during that 
time. Different forms of lockdowns continued till May 
2020, and then, relaxation/unlock started with varying 
movements and place closures, as illustrated in Table 8. 
All lockdown and unlock- based interventions in Pune 
are applied to all three prototypical wards to compre-
hend the spread of virus in different wards in Pune.

We initialized ward-specific digital twins with approximated 
infected citizens. We used heuristics based on reported infec-
tion counts from various wards in Pune during the second 
week of March to estimate initial infection counts of these 
prototypical wards.

We considered March 10 as the starting point of our anal-
yses and started with 100–120 infected citizens per 100K 
citizens in all three prototypical wards. However, we found 
some of the residential wards (e.g., Kothrud) and office 
wards (e.g., Aundh) had a smaller number of reported cases 
in the second week of March as compared to other wards. 
We mimicked this laggard infection behavior by introduc-
ing a sub-category characterized by fewer infections (20–25 
infected citizens per 100K citizens) on March 10.

Table 4   Area and population of few wards in Pune

Prototypical 
area

Ward Total area 
( km2)

Well-to-do 
area ( m2)

Slum area 
( m2)

Well-to-do 
population

Slum popula-
tion

Total popula-
tion

% population in 
slum

Residential 
area

Sahakar nagar 9.2 8,830,000 370,000 126,912 78,529 205,441 38.2246
Kothrud 16.26 15,424,257 835,743 103,524 141,742 245,266 57.79113

Market Area Bhavani Peth 2.9 2,380,802 519,198 157,936 106,851 264,787 40.35357
Office area Nagar road 29.1 28,586,850 513,150 186,489 76,408 262,897 29.06385

Aundh 40.75 40,262,827 487,173 268,804 72,540 341,344 21.25129

8  https​://en.wikip​edia.org/wiki/COVID​-19_pande​mic_lockd​own_in_
India​.7  https​://en.wikip​edia.org/wiki/Pune.

https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdown_in_India
https://en.wikipedia.org/wiki/COVID-19_pandemic_lockdown_in_India
https://en.wikipedia.org/wiki/Pune
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Validation

The city administrative organization, i.e., Pune Municipal 
Corporation (PMC), made available pandemic-related data 
for each ward on a daily basis. We used these data, aug-
mented suitably in consultation with demography and epi-
demiology experts, to initialize ward-specific digital twin 
and to validate the simulation results. In particular, the con-
ceptual validity of the assumptions related to the number 
of places and citizen archetypes are ensured by corrobo-
rating ward-specific data available with PMC. The close-
ness of archetype movements with/without interventions 
is validated by local demographic experts. We provided 
a graphical visualization aid of archetype movements, as 
shown in Fig. 10, to ensure the validity of movement-related 
assumptions. In cognizant with the data validity step, we 
considered official and reliable data sources to contextu-
alize Pune specific digital twin. For example, data shown 
in Table 4 are taken from PMC site, and data shown in 
Tables 5, 6 and 7 are derived from PMC data. For example, 
the population size and number of households at slum and 
well-to-do localities in respective wards are derived from 
PMC city sanitation plan, 2012, and Table 8 is constructed 
based on the actual interventions that are applied to Pune. 
As part of operational validity, we compared death count 
of Pune, as shown in Fig. 11. In addition to city-level death 
count, we also compared death counts of all 5 wards that 
we considered in our analysis.

Early Explorations

A nationwide lockdown was imposed from March 25, 2020 
in India, and thereafter, the government of India has issued 
a series of advisories on possible interventions for states 
and cities to follow. However, it was observed that a com-
mon set of interventions have resulted into different impact 
on different part of the state and city as the spread of virus, 
fatality rate, and load on hospitals depend on the local situ-
ation of the epidemic. The local administration had to care-
fully weigh the epidemic situation on the ground and the 
socio-economic advantages of opening up against the burden 
on hospital load. Our digital twin contextualized for Pune 
city allowed us to analyze different intervention strategies 
such as restricted/staggered timings of offices/shops/malls, 
intermittent lockdown for a shorter period, offices/shops/
restaurants with limited occupancy, etc., supplemented 
with necessary testing uptake. During the lockdown phase 
in Pune (i.e., March 25 to May 31), the main objective was 
to limit the spread of the virus so as to minimize the load 
on hospital infrastructure and to arrive at accurate enough 
estimate of number of ICU beds and ventilators. The key 
focus was to identify and isolate mildly infected and asymp-
tomatic citizens that can be safely isolated either at home or 
quarantine centers.

In the light of limited capacity for testing (around 
700–1000 per day) and inadequate number of quarantine 
centers in the early phase of pandemic, we focused on iden-
tifying locality-specific time-bound interventions so as to 
utilize the available public health infrastructure judiciously. 

Table 7   Demographic distribution

Citizen archetypes Age range (years) Gender distribution

Beautician 20–60 Male: 70%, female: 30%
College student 16–25 Male: 60%, female: 40%
Daily wage worker 18–55 Male: 80%, female: 20%
Driver 18–60 Male: 100%
Health Worker 18–60 Male: 40%, female: 60%
House maid 18–60 Female 100%
House wife 20–60 Female 100%
Market place staff 18–60 Male: 70%, female: 30%
Office-goer 18–60 Male: 70%, female: 30%
Restaurant staff 18–60 Male: 70%, female: 30%
School kid 5–16 Male: 50%, female: 50%
Senior citizen 60–90 Male: 50%, female: 50%
Small shop Staff 20–60 Male: 80%, female: 20%
Average 30–31 Male: 50%, female: 50%
Medical history distributions
School and college kid medical No medical history: 100%, hypertensive: 0%, diabetic: 0%, COPD: 0%
Senior citizen medical No medical history: 44%, hypertensive: 40%, diabetic: 20%, COPD: 6%
Other archetype No medical history: 62%, hypertensive: 25%, diabetic: 10%, COPD: 3%
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Some of the interventions explored were: (1) isolating 
localities having higher number of infections, (2) increas-
ing contact-tracing and household testing in localities having 
higher number of infections, and (3) enforcing intuitional 
quarantine for mildly infected patients staying in slum areas. 
We discuss some of the early what-if scenarios played out 
using the city digital twin.

Efficacy of Initial Lockdown

First, we wanted to ascertain whether the strict lockdown 
imposed on 25th March was indeed necessary or not. Fig-
ure 12 illustrates possible virus spread with/without inter-
ventions using SEIR graphs. Figure 12a shows the virus 
spread had there been no strict lockdown. Figure 12b shows 
effect of the first lockdown that was imposed on March 25, 

and Fig. 12c depicts the consequence of partial relaxations 
applied on May 4.

Efficacy of Increased Testing

As shown in Fig. 12, the predicted impact for allowing 
essential movements as part of lockdown 2 (see Table 8) 
was threefold increment of the infection situation at that 
point of time. Therefore, we analyzed how limited testing 
capacity can be effectively utilized to control such surge of 
infection count. The impact of increased testing for three 
prototypical wards is shown in Fig. 13. We also evaluated, 
active infection, and need for hospitalization of well-to-do 
and slum areas of all three prototypical wards under three 
different testing uptakes, as shown in Fig. 14.

Fig. 10   Archetype-specific business-as-usual movement, in the absence of interventions

Fig. 11   Simulated and actual 
death count for validation
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Fig. 12   Simulation under initial lockdown conditions

Fig. 13   Ward-specific SEIR graphs illustrating the impact of increased testing
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Simulation results indicate that increased testing is advan-
tageous but is not linear to infection spread. Increased test-
ing in densely populated wards (e.g., BhavaniPeth) during 

the early phase of epidemic showed far greater benefit com-
pared to low population density wards such as NagarRoad. 
Moreover, increased testing beyond certain degree is shown 

Fig. 14   Impact of increased testing uptake on well-to-do and slum areas of three prototypical wards

Fig. 15   Impact of infections under different interventions
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diminishing advantage. Therefore, the recommendation was 
to increase testing uptake in densely populated slum area 
significantly as compared to less density area.

Explorations for Unlock

In India, the unlock process, Unlock 1.0, was started from 
June 1. The second phase of unlock, Unlock 2.0, lasted 1–31 
July, and Unlock 3.0, Unlock 4.0, and Unlock 5.0 were put 
into effect in August, September, and October, respectively. 
However, Pune has seen restrictive/muted unlock as it was 
one of the top three cities in India with respect to number 
of infection. As shown in Table 8, Unlock 1.0 with lim-
ited opening of commercial places continued till July 12, 
a 10-day strict lockdown was imposed between July 13 
to July 23, and then, phased unlocks were imposed with 
adequate testing and contract tracing. Prior to implement-
ing these unlock strategies, several candidate interventions 
were evaluated and their efficacies with respect to death 
counts, peak load on critical health care (oxygen beds, ICU, 
ventilators, etc.) and load in institutional quarantine cent-
ers were predicted through what-if simulations on Pune city 
digital twin. As an illustration, the cumulative count and 
active count of infection under four different interventions 
are shown in Fig. 15.

Our analysis shows that different wards reach peak at 
different stages of epidemic. As shown in Fig. 16, wards 

with higher population density, like BhavaniPeth, reach 
peak as early as mid-July, whereas other wards see the peak 
in September and October. We also see from Fig. 16b that 
two residential wards, namely SahakarNagar and Kothrud, 
with more or less identical characteristics exhibit similar 
active infection pattern, but reach peak at different times as 
they were in different state in terms of initial infection when 
first lockdown started in March 25. City-level estimation 
of active infection, shown using red color line in Fig. 16b, 
exhibits quite a different pattern from the constituent wards. 
This justifies our claim that city-level situation is an aggre-
gation of ward-specific situations, and hence, analysis of 
city-level situation may lead to interventions that may not be 
effective at ward level. The trends on cumulative infections, 
shown in Fig. 16c, d, show that around 35–40% of crowded 
dense market ward population is infected by mid-August. In 
comparison, only 10–15% of population in residential wards 
(e.g., Kothrud and Aundh) is infected by mid-August. The 
model predicted that with the sequence of interventions, the 
peak load on critical health care (oxygen beds, ICU, ventila-
tors, etc.) remain sustained until end-October9, as shown in 
Fig. 17a.

Fig. 16   Infection situation in different prototypical wards under Unlock 3.0 intervention

9  https​://india​nexpr​ess.com/artic​le/citie​s/pune/pune-peak-load-on-
criti​cal-healt​hcare​-to-be-susta​ined-until​-oct-end-65620​08.

https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008
https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008
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Further analysis shows that majority of the infections, 
as high as 60%, are being seen to occur through household 
contacts. A comparison of virus spread in household and 
commercial places under no intervention and sequence of 
interventions till Unlock 3.0, shown in Fig. 17b, indicates 
that the virus spread at outside household is significantly 
controlled through the series of interventions.

Analysis of citizen archetypes and commercial places as 
sources of infection spread, shown in Fig. 18a, b, respec-
tively, indicates that long-duration interactions in enclosed 
and crowded places are likely to increase transmission 
risk. Correlation of Fig. 18a, b indicates that complete 
closure of schools and colleges and offices operating with 
reduced staffs helped to reduce the spread of virus by 

Fig. 17   Analysis outcome

Fig. 18   Citizen archetype and place-specific analysis

Fig. 19   Analysis of comorbidity and age
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respective archetypes (shown using error bars in Fig. 18a). 
Those closures also helped to reduce fomite-related infec-
tions significantly. The orange bar of Fig. 18b indicates 
place-specific propensity of spreading virus. It indicates 
bank, parlour, bus, office, and crowded market which has 
greater propensity of virus spread (i.e., additional precau-
tions need to be taken while visiting those places). School 
can be also categorized in similar characteristics when 
they are open. An analysis on comorbidity and age distri-
bution on death, shown in Fig. 19, indicate the impact of 
lockdowns and unlocks on different age groups and indi-
viduals with comorbidities. A representative sample of 
specific interventions explored through what-if scenario 
playing are listed below: 

1.	 Opening up: We undertook comparative analysis to 
assess the impact of opening up different places with 
load on hospitals for critical care admissions as the pri-
mary metric. The analysis showed that opening of offices 
is more detrimental than opening of shops, as shown in 
Fig. 20a.

2.	 Weekend lockdown: Weekend lockdown (allowing only 
essential services and imposing restriction on all other 
movements on weekend) has limited efficacy in reduc-
ing the burden, as shown in Fig. 20b. This efficacy will 
be further reduced if there is overcrowding during the 
weekdays.

3.	 Universal use of masks: Behavioral intervention as in 
use of mask was found significantly effective as com-
pared to no use of mask. Our simulations showed that 
load on hospital for critical care admissions reduced up 

Fig. 20   Summary of experimental outcomes

Fig. 21   A hypothetical experimental result of opening up places from January 2021
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to 25% when if 80% of population wore masks in public 
places, refer Fig. 20c.

4.	 Testing: Testing helped in slowing down the epidemic. 
The model results show that doubling the current testing 
rate is likely to reduce the hospital load up to 10% dur-
ing peak months. Screening of symptomatic cases was 
found to be a better strategy compared to increasing the 
contact-tracing efforts among non-household contacts. 
However, increased testing also increased the burden on 
institutional quarantining facilities and home isolation 
by 35–40% (refer Fig. 20d).

5.	 A hypothetical experimentation: Simulation results of a 
hypothetical experimentation of continuing Unlock 4.0 
till December 2020 and then opening up everything are 
shown in Fig. 21. The number of infections shoots up 
in mid-Jan climbing rapidly till mid-Apr before taper-
ing somewhat. There is commensurate surge in critical 
care admissions to hospitals that peaks from mid-Mar 
to mid-Apr. This indicates that a phased and carefully 
planned approach to opening up of schools, offices, and 
other public places is necessary even when the present 
infection level is negligible (see active infection level in 
December 2020, as shown in Fig. 21b).

Discussion

The present model provides information that would be useful 
to plan public health measures as well as prepare health care 
systems for impending case load. It provides a ward-level 
analysis of the unfolding situation in the city. As observed 
for Pune city, different wards (and sub-localities within 
wards) achieved peaks at different time points, owing to dif-
ferences in demographic profile, movement dynamics, and 
infection levels during early months of epidemic. The ward-
level picture can help in designing context-specific, flexible, 
and responsive public health strategies.

The model provides information on total number of active 
cases (both mild/moderate and severe cases) over a period of 
time. The insight becomes useful for planning to cope with 
additional health care demands—such as additional need for 
isolation beds, oxygen beds, Intensive Care Units, and ven-
tilators. When juxtaposed to the number of detected cases, 
it gives a fair idea of how many actual infections are being 
missed. It can help set realistic targets about how much 
testing needs to be expanded. The model can also provide 
outputs on positivity rates in household and non-household 
contacts across different wards/localities, and places where 
majority transmissions occur. Such granular information can 
help in better targeting (in terms of who to test, where to 
test) and optimal utilization of available resources.

The model shows that mask use and increased testing 
substantially reduce the burden on health care. These find-
ings are consistent with other prediction studies from India 

and elsewhere. The efficacy of these interventions in the 
present analysis assumed a high level of compliance. How-
ever, in real life, such high levels may be difficult to achieve. 
The model has the flexibility to not only consider different 
levels of testing uptake and mask use, but further complexi-
ties seen in real life. For example, one can set rules about 
who wears masks, how many people wear masks, and at 
what places people wear/not wear masks. Similarly, differ-
ent scenarios such as early vs late testing, different levels of 
testing uptake, and compliance levels of isolation of positive 
cases can be simulated in the model. Such detailed analysis 
can give a more realistic picture of possible benefits of NPI. 
It can help in advocating for the need for awareness and 
behavioral change interventions, which is possibly the most 
neglected aspect of COVID-19 responses in India.

Evaluation

Our city digital twin for COVID-19 is best seen as an aid to 
explore the efficacy and impact of candidate set of interven-
tions for controlling the pandemic. The simulatable nature 
of city digital twin makes it amenable to what-if and if-what 
scenario playing thus leading to data-driven justification-
backed decision-making. City administration found our 
predictions and analyses leading to control interventions 
useful. Our ward-wise (city-wide) prediction of COVID-
19 deaths, which is computed by corelating prototypical 
wards with actual wards and aggregating the death counts 
observed from prototypical wards, matches closely with the 
reality. The state of epidemic in Pune in terms of deaths, 
infections, and load on hospital in the months of September 
and October is unfolding the way which we predicted in 
August10. Our analyses of household infection and infections 
at other places correlate with Indian evidence on transmis-
sion dynamics of COVID-19 (Laxminarayan et al. 2020). 
Such close resemblance with reality on multiple dimensions 
of COVID-19 epidemic establishes the efficacy of our fine-
grained model to predict and control COVID-19 pandemic 
in Pune city. Given the parameterized nature of the model, 
we think that it can be easily configured to other comparable 
cities.

Useful Design Choices

Given the limited data and uncertain dynamics of the overall 
system, we had to make a set of well-founded choices to 
ensure that city digital twin is an accurate representation of 
ground reality. The key choices are discussed below: 

10  https​://india​nexpr​ess.com/artic​le/citie​s/pune/pune-peak-load-on-
criti​cal-healt​hcare​-to-be-susta​ined-until​-oct-end-65620​08/.

https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008/
https://indianexpress.com/article/cities/pune/pune-peak-load-on-critical-healthcare-to-be-sustained-until-oct-end-6562008/
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1.	 System theoretic view: System theoretic view to con-
ceptualize a city as a complex system of systems dis-
tinguishes our approach from popular compartmental 
model-based approaches. Our focus on capturing the 
existing heterogeneity in people, places, transporta-
tion, and health infrastructure, etc., so as to enable 
specification of individualistic micro-behavior led us to 
choose agent-based modeling paradigm. We extended 
the canonical agent-based modeling paradigm to help 
specify probabilistic and spatio-temporal behavior of 
individual agents. As a result, the emergent behavior 
of the complex system of system faithfully reflected the 
reality. We believe that these extensions stand out from 
prevalent agent-based approaches.

2.	 Aspects of interest: Our assumption to capture a city 
around four interrelated aspects, namely: epidemiologi-
cal aspect, demographic aspect, movement aspect, and 
intervention aspect, turned out to be necessary and suf-
ficient for prediction and control of virus spread. We 
believe that the separation of concerns and making 
dependencies therein explicit help manage the complex-
ity of virus spread dynamics. The extended agent-based 
modeling technology is rich to specify these aspects 
and their relationships at the desired level of granular-
ity, thus preventing oversimplification of the inherent 
complexity.

3.	 Citizen and place archetypes: The other key factor 
that helps us to differentiate from other agent-based 
approaches is the conceptualization of an extensive list 
of agent types to capture necessary heterogenous char-
acteristics of citizens and places. In our digital twin, 
an agent type encodes specific characterization in terms 
of demography (e.g., age and gender), profession (e.g., 
office-goers, Students, senior Citizen, housewife, health-
care professional, driver, housemaid, market staff and 
shop owners), place (e.g., apartment, slum, shop, office, 
clinic, hospital, and grocery store), transportation (e.g., 
bus, car and cab), health condition (e.g., diabetes, hyper-
tension, and chronic pulmonary disease), and so on. In 
particular, an agent type specifies business-as-usual 
behavior of a well-demarcated and well-defined subset 
of the heterogeneous population. Therefore, a collection 
of key representative agent types together can character-
ize an entire population of a city.

4.	 Proven methodology and technology: Finally, the use of 
proven model construction and validation methodology 
augmented with the ESL technology that has been found 
effective for analyzing complex business systems have 
together led to a robust and pragmatic approach.

Limitations

Every model has its limitations and this model is no excep-
tion. Like all other models, this model too relies on a set of 
assumptions; inaccurate assumptions may reduce the accu-
racy of the model prediction significantly. Some model 
parameters have significant uncertainty. Adverse impact of 
the uncertainty is contained to the extent possible by tak-
ing due precaution in analysis. Still, the input data should 
not be grossly incorrect. From technology perspective, 
the scalability of agent-based is an inherent limitation. 
At present, ESL technology infrastructure is capable of 
supporting a few million agents. Augmented with use of 
stratified sampling, the technology has catered to predict 
and control COVID-19 epidemic in large cities. However, 
scaling it to be able to cater to state and country level is 
not possible with standard computing power.

Future Directions

As our understanding of COVID-19 improves, we plan to 
incorporate the learnings from other ongoing COVID-19 
initiatives. It is relatively easy to introduce new arche-
types of citizens and places. This extension should also 
help to configure the digital twin for other comparable 
cities. Digital twin can be extended to cater to reinfec-
tion, mutated virus, and vaccine. How to strike a balance 
between control of epidemic and revival of economy is an 
important next step which we are considering.

Concluding Remarks

We presented a novel agent-based digital twin of a city to 
support simulation-based approach to predict and control 
COVID-19 epidemic. The defining characteristic of the 
city digital twin is a set of suitable agent types neces-
sary to capture heterogeneity in terms of people, places, 
transport infrastructure, health care infrastructure, etc. As 
a result, we are able to construct a fine-grained model of 
the city that is amenable to what-if and if-what scenario 
playing. We populated the city digital twin using data from 
the city administration, together with suitable augmenta-
tion. The fine-grained nature of digital twin enabled us to 
address the critical concerns such as the rate and the extent 
of the spread of the epidemic, demographic, and comor-
bidity characteristics of the infected people, load on the 
healthcare infrastructure in terms of specific needs such 
as number of admissions requiring critical care (supple-
mentary oxygen, ventilator support, intensive care, etc.), 
load on institutional quarantine centers, and so on. We 
set up appropriate what-if scenarios to identify the most 
effective intervention from the candidate set to control 
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epidemic as well as bring back normalcy. We vetted the 
simulation results against epidemic-related data released 
by city administration daily. Though the approach has been 
validated in the specific context of Pune city, we believe 
that the parameterized nature of our digital twin makes 
the approach applicable for other comparable cities with 
minor effort. We expect that the framework detailed in this 
paper can serve as a template for developing simulators as 
aids to decision-making should such epidemics occur in 
the future.
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