Skip to main content
Log in

Assessment of soybean inhibitor as a biopesticide against melon fruit fly, Bactrocera cucurbitae (Coquillett)

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

In the current study, the soybean trypsin–chymotrypsin inhibitor (Bowman–Birk Inhibitor, SBBI) was tested against Bactrocera cucurbitae (Coquillett), a major pest of cucurbit crops. Bioassays conducted using different concentrations (12.5, 25, 50, 100 and 200 ppm) revealed a detrimental effect of the inhibitor on the growth and development of the second instar larvae of the melon fruit fly. SBBI prolonged the larval and total development period and reduced the percentage pupation and emergence. Enzymatic assays of proteases conducted at three time intervals using the LC40 (59 ppm) concentration of SBBI showed an inhibitory effect on trypsin activity, whereas an increase was observed in the activity of chymotrypsin, elastase and leucine aminopeptidase. Among the enzymes involved in detoxification, antioxidant and general metabolism, an increase was observed in the activity of catalases, and acid and alkaline phosphatases at most treatment intervals. The activity of esterases was induced only with prolonged treatment whereas that of glutathione S-transferases was suppressed in larvae treated with SBBI. The findings revealed the potential of SBBI to disrupt the growth of the melon fruit fly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allwood AJ, Chinajariyawong A, Drew RAI, Hamacek EL, Hancock DL, Hengsawad C et al (1999) Host plant records for fruit flies (Diptera: Tephritidae) in South-East Asia. Raffles Bull Zool Suppl Issue 7:92

    Google Scholar 

  • Azzouz H, Cherqui A, Campman EDM, Duport G, Jouanin L, Kaiser L et al (2005) Effects of plant protease inhibitors, oryzacystatin I and soybean Bowman–Birk inhibitor, on the aphid Macrosiphum euphorbiae (Homoptera: Aphididae) and its parasitoid Aphelinus abdominalis (Hymenoptera: Aphelinidae). J Insect Physiol 51:75–86

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU (1974) Methods of enzyme analysis, vol 1. Academic Press, New York, p 438

    Google Scholar 

  • Bode W, Huber R (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204:433–451

    Article  CAS  PubMed  Google Scholar 

  • Bolter C, Jongsma M (1995) Colorado potato beetle (Leptinotarsa decemlineata) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate. J Insect Physiol 41:1071–1078

    Article  CAS  Google Scholar 

  • Broadway RM, Duffey SS (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32:827–833

    Article  CAS  Google Scholar 

  • Casu RE, Pearson RD, Jarmey JM, Cadogan LC, Riding GA, Tellam RL (1994) Excretory/secretory chymotrypsin from Lucilia cuprina: purification, enzymatic specificity and amino acid sequence deduced from mRNA. Insect Mol Biol 3(4):201–211

    Article  CAS  PubMed  Google Scholar 

  • Casu RE, Eisemann CH, Vuocolo T, Tellam RL (1996) The major excretory/secretory protease from Lucilia cuprina larvae is also a gut digestive protease. Int J Parasitol 26(6):623–628

    Article  CAS  PubMed  Google Scholar 

  • Chaubey SN, Bhatt RS (1987) Changes in the levels of nucleic acid, protein, total free amino acid and glycogen and activity of acid phosphatases in the eggs, during normal embryonic development of rice moth, Corcyra cephalonica, Stainton (Lepidoptera: Pyralidae). Insect Biochem 18:443–447

    Article  Google Scholar 

  • Chien C, Dauterman WC (1991) Studies on glutathione S-transferases in Helicoverpa (= Heliothis) zea. Insect Biochem 21:857–864

    Article  CAS  Google Scholar 

  • Christeller JT, Laing WA, Shaw BD, Burgess EPJ (1990) Characterization and partial purification of the digestive proteases of the black field cricket, Telleogryllus commodus (Walker): elastase is a major component. Insect Biochem 20:157–164

    Article  CAS  Google Scholar 

  • Christeller JT, Laing WA, Markwick NP, Burgess EPJ (1992) Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and protease inhibitor interactions. Insect Biochem Mol Biol 22:735–746

    Article  CAS  Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • Giri AP, Harsulkar AM, Ku MSB, Gupta VS, Deshpande VV, Ranjekar PK et al (2003) Identification of potent inhibitors of Helicoverpa armigera gut proteinases from winged bean seeds. Phytochemistry 63:523–532

    Article  CAS  PubMed  Google Scholar 

  • Gomes CEM, Barbosa AEAD, Macedo LLP, Pitanga JCM, Moura FT, Oliveira AS et al (2005) Effect of trypsin inhibitor from Crotolaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiol Biochem 43:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Gupta JN, Verma AN, Kashyap RK (1978) An improved method for mass rearing for melon fruit fly Dacus cucurbitae Coquillett. Indian J Entomol 40:470–471

    Google Scholar 

  • Johnston KA, Lee MJ, Brough C, Hilder VA, Gatehouse AMR, Gatehouse JA (1995) Protease activities in the larval midgut of Heliothis virescens: evidence for trypsin and chymotrypsin-like enzymes. Insect Biochem Mol Biol 25(3):375–383

    Article  CAS  Google Scholar 

  • Jongsma MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 43(10):885–895

    Article  CAS  PubMed  Google Scholar 

  • Kapin MA, Ahmad S (1980) Esterases in larval tissues of gypsy moth, Lymantria dispar (L): optimum assay conditions, quantification and characterization. Insect Biochem 10:331–337

    Article  CAS  Google Scholar 

  • Katzenellenbogen B, Kafatos FC (1971) General esterases of silk worm moth moulting fluid: preliminary charaterization. J Insect Physiol 17:1139–1151

    Article  CAS  Google Scholar 

  • Kaur H, Kaur AP, Sohal SK, Rup PJ, Kaur A (2009) Effect of soybean trypsin inhibitor on development of immature stages of Bactrocera cucurbitae (Coquillett). Biopestic Int 5:114–124

    Google Scholar 

  • Lindroth RL (1989) Differential esterase activity in Papilio glaucus subspecies: absence of cross-resistance between allelochemicals and insecticides. Pestic Biochem Physiol 35:185–191

    Article  CAS  Google Scholar 

  • Mannaerts GP, Van Veldhoven PP (1993) Metabolic pathways in mammalian peroxisomes. Biochimie 75:147–158

    Article  CAS  PubMed  Google Scholar 

  • Mc Intyre RJ (1971) A method for measuring activities of acid phosphatases separated by acrylamide gel electrophoresis. Biochem Genet 5:45–50

    Article  Google Scholar 

  • Mc Manus MT, Burgess EPJ (1995) Effects of the Soybean (Kunitz) trypsin inhibitor on growth and digestive proteases of larvae of Spodoptera litura. J Insect Physiol 41(9):731–738

    Article  CAS  Google Scholar 

  • Newitt R, Hammock B (1980) In vivo and in vitro effects of epofenonane on juvenile hormone esterase activity in tissues of last stadium larvae of Trichoplusia ni. Insect Biochem 19:557–571

    Article  Google Scholar 

  • O’Brien ML, Tew KD (1996) Glutathione and related enzymes in multi drug resistance. Eur J Cancer 32A:967–978

    Article  PubMed  Google Scholar 

  • Pham-Delègue MH, Girard C, Le Métayer M, Picard-Nizou AL, Hennequet C, Pons O et al (2000) Long-term effects of soybean protease inhibitors on digestive enzymes, survival and learning abilities of honeybees. Entomol Exp Appl 95:21–29

    Article  Google Scholar 

  • Pompermayer P, Lopes AR, Terra WR, Parra JRP, Falco MC, Silva-Filho MC (2001) Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis. Entomol Exp Appl 99:79–85

    Article  CAS  Google Scholar 

  • Rockstein M (1956) Phosphatases of house fly, Musca domestica (L.). Bull Brooklyn Entomol Soc 51:9–17

    Google Scholar 

  • Shukla S, Arora R, Sharma HC (2005) Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume pod borer, Helicoverpa armigera. Plant Biotechnol 22(1):1–6

    Article  CAS  Google Scholar 

  • Singh SV, Mishra A, Bisan RS, Malik YP, Mishra A (2000) Host preference of red pumpkin beetle, Aulacophora foveicollis and melon fruit fly, Dacus cucurbitae. Indian J Entomol 62:242–246

    Google Scholar 

  • Sivori JL, Casabe N, Zerba EN, Wood EJ (1997) Induction of glutathione S- transferase activity in Triatoma infestans. Memórias do Instituto Oswaldo Cruz 92:797–802

    Article  CAS  PubMed  Google Scholar 

  • Srivastava BG (1975) A chemically defined diet for Dacus cucurbitae (Coq.) larvae under aseptic conditions. Entomol Newsl 5:24

    Google Scholar 

  • Steffens R, Fox FR, Kassell B (1978) Effect of trypsin inhibitors on growth and metamorphosis of corn borer larvae Ostrinia nubilalis (Hübner). J Agric Food Chem 26:170–174

    Article  CAS  Google Scholar 

  • Telang M, Srinivasan A, Patankar A, Harsulkar A, Joshi V, Deshpande V et al (2003) Bittergourd proteinase inhibitors: potential growth inhibitors of Helicoverpa armigera and Spodoptera litura. Phytochemistry 63:643–652

    Article  CAS  PubMed  Google Scholar 

  • Whitmore D Jr, Whitmore E, Gilbert LI (1972) Juvenile hormone induction of esterases: a mechanism for the regulation of juvenile hormone titre. Proc Natl Acad Sci 69:1592–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Rose RL, Hodgson E, Roe RM (1996) Biochemical mechanisms and diagnostic microassays for pyrethroid, carbamate and organophosphate insecticide resistance in the tobacco budworm, Heliothis virescens. Pestic Biochem Physiol 56:183–195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge use of the services and facilities provided by Guru Nanak Dev University, Amritsar, India to conduct the research work successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satwinder K. Sohal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Kaur, A., Kaur, A.P. et al. Assessment of soybean inhibitor as a biopesticide against melon fruit fly, Bactrocera cucurbitae (Coquillett). J Plant Dis Prot 124, 445–451 (2017). https://doi.org/10.1007/s41348-017-0108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-017-0108-6

Keywords

Navigation