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Abstract
In functional data analysis, it is often of interest to discover a general common pat-
tern, or shape, of the function. When the subject-specific amplitude and phase vari-
ation of data are not of interest, curve registration can be used to separate the varia-
tion from the data. Shape-invariant models (SIM), one of the registration methods, 
aim to estimate the unknown shared-shape function. However, the use of SIM and of 
general registration methods assumes that all curves have the shared-shape in com-
mon and does not consider the existence of outliers, such as a curve, whose shape is 
inconsistent with the remainder of the data. Therefore, we propose using the t dis-
tribution to robustify SIMs, allowing outliers of amplitude, phase, and other errors. 
Our SIM can identify and classify the three types of outliers mentioned above. We 
use simulation and an empirical data set to evaluate the performance of our robust 
SIM.

Keywords  Outliers · Functional data analysis · Registration · Mixed-effect model · 
Robust estimation

1  Introduction

Data that are observed repeatedly from subjects at different times can be assumed to 
be generated from underlying smooth functions. Functional data analysis (Ramsay 
and Silverman 2005) is concerned with the underlying curves.

If we are interested in discovering a general pattern or shape exhibited by the 
function that underlies the functions of all the subjects, then the aim of data analysis 
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becomes the estimation of the unknown shared-shape function from the observed 
data. A naive approach to achieving that objective is simply to take the cross-sec-
tional mean of smoothed observations. However, repeatedly observed data often 
contain variation along the horizontal and vertical axes, making the estimation of 
the shared-shape difficult. The variations along the horizontal and vertical axes are 
often referred to as the amplitude and phase variation, respectively.

Curve registration, also called curve alignment in biology, is a method for sepa-
rating the amplitude and phase variation from observed data when they are not of 
interest in data analysis. One possible objective of registration is to compare all 
of the curves without the uninteresting variation. In this case, registration can be 
considered as a pre-processing step of data analysis, in the sense that curves are 
transformed to enable all transformed curves to be as similar as possible, with those 
transformed (registered) curves then used for the subsequent data analysis. Another 
possible objective of registration is to estimate the unknown shared-shape function 
with the uninformative variation removed. In this case, the registration itself can be 
considered as a statistical analysis, in the sense that we are interested in a “true” 
shared-shape function and in estimating it from observed data. Though these objec-
tives can be overlapping and many registration methods can achieve both objectives, 
we focus in this paper on the second objective for registration.

There is substantial literature on registration. Examples include landmark regis-
tration (Kneip and Gasser 1992; Kneip and Engel 1995), continuous monotone reg-
istration (Ramsay and Li 1998), registration by a self-modeling warping function 
(Gervini and Gasser 2004), and Fisher-Rao metric-based registration (Srivastava 
et al. 2011). There is also other work in this area such as Sakoe and Chiba (1978), 
Gervini and Gasser (2005), James (2007), Telesca and Inoue (2008), Raket et  al. 
(2014) and Earls and Hooker (2017).

Self-modeling nonlinear regression, commonly known as the use of a shape-
invariant model (SIM), is also considered to be a curve registration method (Lawton 
et al. 1972; Kneip and Gasser 1988), and can be used to achieve the second objec-
tive above. There is also substantial previous work on SIMs, including a method 
using kernel density estimation (Kneip and Engel 1995), nonparametric maximum 
likelihood estimation (Rønn 2001), considering a more flexible time transforma-
tion (Brumback and Lindstrom 2004), and simultaneously registering and clustering 
curves (Gaffney and Smyth 2005; Liu and Yang 2009; Zhang and Telesca 2014; 
Szczesniak et al. 2014). In addition, many studies such as Lindstrom (1995), Ke and 
Wang (2001), Rønn (2001) and Gaffney (2004) define a SIM model as a nonlin-
ear mixed-effect model, for which the shared-shape function is considered as fixed 
effects and other subject-specific variation as random effects.

Though the use of SIMs and other registration methods allows the presence of 
subject-specific amplitude and phase variation in data, they assume that all rel-
evant curves have the shared shape. In other words, they do not consider the exist-
ence of “outliers” in data. Outliers can be generally defined as observation values, 
whose data are inconsistent with the others (Welsh and Richardson 1997). In this 
paper as outliers, we consider a curve, whose shape is different from the remainder 
of the data, or one having considerably large amplitude or phase variation. If the 
data contain such outliers, those outliers will negatively affect the estimation of the 
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shared-shape function. Especially, Gaussian distributions, which are quite sensitive 
to outliers, are often used for SIMs.

Consequently, in this paper, we address this issue by proposing a new kind of 
SIM that is more robust to outliers. Specifically, we use a mixed-effect model type 
SIM and assume a t distribution for the subject variation such as amplitude, phase, 
and other errors including the shape, allowing the existence of outliers for each com-
ponent. The characteristic feature of our method is the formulation of our SIM to 
enable it to be related easily to a linear mixed-effect model (LMM, e.g., Verbeke 
1997), with the result that we can utilize the advantages of an LMM using a t distri-
bution. Specifically, our SIM can provide useful information for identification and 
classification of three types of outliers, amplitude, phase, and other errors. In addi-
tion, using the hierarchical structure of a t distribution, we derive an efficient expec-
tation maximization (EM)-type algorithm to estimate parameters (Dempster et  al. 
1977; Meng and Rubin 1993; Liu and Rubin 1994), which can be considered as a 
simple iteratively reweighted least squares, and also, allows to efficiently estimate 
the robust tuning parameter along with other parameters.

The remainder of this paper is organized as follows. In Sect. 2, we introduce our 
proposed model and derive the EM algorithm for estimating parameters. In addition, 
we show how our model can be used to separate amplitude, phase, and other errors, 
which can be used to identify outlier types. In Sects. 3 and 4, we use simulation and 
an empirical data set, respectively, to evaluate the performance of our model.

2 � Robust shape‑invariant model

In this section, we propose a new method, robust SIMs, for estimating the shared-
shape function without being affected by outliers. Various means of formulating an 
SIM have been proposed (Lawton et  al. 1972; Rønn 2001; Gaffney 2004). In this 
paper, we choose the SIM defined in Liu and Yang (2009) as the base model to 
robustify, because using that SIM enables us to relate our model to LMMs more eas-
ily. As a result of this relationship, we can derive some properties that are useful for 
parameter estimation and identification of outlier types.

2.1 � Definition of robust shape‑invariant model

Suppose that we observed n pairs (tim, yim) that tim is the mth timepoint 
(i = 1,… , n ;m = 1,… ,Mi) , and that yim is the observed value of subject i at the 
mth timepoint. We propose the following model:

(1)
yim =�i +

p∑

j=1

�j
(
bj(tim) + �ib

�
j
(tim)

)
+ �im,

�i
i.i.d.
∼ t(0, �2

1
, hi), �i

i.i.d.
∼ t(0, �2

2
, hi), �im

i.i.d.
∼ t(0, �2

3
, hi).
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Here, bj (j = 1,… , p) denotes the given basis functions, and b′
j
 is the first derivative 

of bj . Note that we can use any basis functions. In this paper, we use a B-spline basis 
(De Boor 1978), because it allows flexible modeling of curves. As different argu-
ments (i.e., timepoints tim ) can be specified in bj , subject-varying timepoints can be 
handled in our model. �j is an unknown coefficient for the jth basis. �im indicate an 
observation error at the mth timepoint of subject i. �i and �i represent the shift varia-
tions along the horizontal and vertical axes, respectively. Similar to Liu and Yang 
(2009), we refer to �i and �i as the amplitude and phase variation, respectively. 
t(�, �2, hi) indicates t distribution, where � , �2 , and hi indicate the mean, variance, 
and degrees of freedom of the t distribution, respectively. Assuming that all random 
variables �i, �i and �im are t-distributed, the model (1) can be robust to outliers in 
�i, �i and �im (Lange et al. 1989; Welsh and Richardson 1997). In this paper, outliers 
in �i , �i and �im are called �i outliers, �i outliers and �im outliers, respectively.

In robust SIM, the parameters � and �r ( r = 1, 2, 3 ) are estimated given (tim, yim) 
(i = 1,… , n ;m = 1,… ,Mi) . Especially, in robust SIM, the number of basis func-
tion p must be pre-specified.

In addition, in the t distribution, the degrees of freedom hi can be considered as 
a tuning parameter for robustness: with smaller hi , the degree of downweighting 
of subjects having large distances increases (Lange et al. 1989). In practical situa-
tions, hi is not allowed to be different for each subject, because it requires to esti-
mate a large number of parameters, and thus would result in an unstable result. 
Therefore, in this paper, we specify hi in three ways. The first approach [case (i)] 
assumes a common pre-specified hi = h for all i = 1,… , n . The second approach 
[case (ii)] estimates a common h from the data. In the third approach [case (iii)], 
we pre-specify a small number of groups of subjects (say V groups), and estimate 
V degrees of freedom, h̄1,… , h̄V , for each group. In this case, using estimated 
h̄1,… , h̄V , each hi is specified as follows:

where giv = 1 if subject i belongs to the vth group, and the other elements are 0. We 
call giv (v = 1,… ,V ; i = 1,… , n) group indicators. Setting V = 1 and giV = 1 for all 
i in expression (2) yields case (ii) above. The method for estimating the degrees of 
freedom as well as other parameters are explained in Sect. 2.3, and the performances 
of all cases are investigated in Sect. 3.

To understand the model (1), consider the following SIM introduced in Liu 
and Yang (2009):

(2)hi =

V∑

v=1

givh̄v,

(3)

yim = �i + �(tim + �i) + �im

= �i +

p∑

j=1

�jbj(tim + �i) + �im,
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where �(t) =
∑p

j=1
�jbj(t) is an unknown shared-shape function modeled using 

B-spline basis functions. To handle both �i and �i in the same space as yim , similar to 
Liu and Yang (2009), the first order Taylor expansion is applied to each B-spline 
function as follows:

Replacing bj(tim + �i) in (3) with the right-hand side of (4), with the t distribution 
assumption for all random variables, we obtain the robust SIM in (1). This approxi-
mation is reasonable, because mostly, we can assume that the shift in phase tends 
to be small compared to the time scale considered, see Liu and Yang (2009) for the 
details.

Thus, the model (1) can be interpreted as follows. We assume that the observed data 
yim (m = 1,… ,Mi) consist of an unknown shared-shape function �(t) and that there 
is also other subject variation in the data, viz., the amplitude variation �i , phase varia-
tion �i , and other errors �im . This �im can be considered to contain not only observation 
errors, but also the shape difference from the shared-shape that cannot be explained by 
the simple shift variation �i and �i.

Moreover, applying the Taylor expansion has the advantage that the resulting model 
(1) includes all random variables �i , �i and �im in the separate terms linearly related to 
yim . This makes it easier to relate our model to LMM, as explained in later subsections.

2.2 � Relationship to the linear mixed‑effect model

Assume that observations of n subjects are given, and define (Mi × 1) vector yi = (yim) 
and �i = (�im) , and (Mi × p) matrix Bi = (bj(tim)) and Di = (b�

j
(tim)) , and (p × 1) vector 

� = (�j) (i = 1,… , n ;m = 1,… ,Mi ; j = 1,… , p) . Then, robust SIM (1) can be 
rewritten as

Here, 1Mi
 is a Mi × 1 vector with all elements 1. If �i = 0 , (5) can be considered as 

an LMM using the t distribution (Welsh and Richardson 1997; Pinheiro et al. 2001; 
Song et al. 2007), with � and �i as fixed and random effects. However, owing to the 
existence of �i , robust SIM is not a direct extension of LMM, in the sense that there 
is the cross term of fixed effect � and random effect �i . Nevertheless, as a result of 
the Taylor expansion, we can still utilize the key property of LMM: we can derive 
an efficient EM-type algorithm and we can easily decompose the subject variation, 
�i , �i and �im , into separate components, which can be used to identify outlier types. 
These will be explained in detail in Sects. 2.3 and 2.4, respectively.

(4)bj(t + �i) ≈ bj(t) + �ib
�
j
(t), (j = 1,… , p)..

(5)yi = (Bi + �iDi)� + �i1Mi
+ �i.
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2.3 � Parameter estimation

In robust SIM, parameters � = (�, �2
1
, �2

2
, �2

3
, h) , where h = (h1,… , hn) are estimated 

given yi (i = 1,… , n) . From (1), we can say

That is, yi has the following probability density function f (yi):

The corresponding log-likelihood function, an objective function for estimating 
parameters in robust SIM is defined as

Since this objective function cannot be solved analytically, we use the EM algorithm 
(Dempster et  al. 1977), an iterative algorithm for obtaining maximum likelihood 
estimators. Specifically, the EM algorithm consists of two steps: 

E-step	� given the kth current estimator �(k) , the auxiliary function of (6) which we 
call the Q-function, denoted by Q(� ;�(k)) is calculated.

M-step	� The parameters �(k) are updated by maximizing the Q-function.

 When the degrees of freedom are unknown, the EM algorithm converges very slowly 
(e.g., Liu and Rubin 1994). Therefore, we suggest adopting the two extensions of EM 
algorithm shown in Liu and Rubin (1995), namely, a multi-cycle version of the ECM 
algorithm, and the ECME algorithm. The ECM algorithm (Meng and Rubin 1993) 
replaces the M-step of the EM algorithms by several computationally simpler condi-
tional maximization (CM) steps, whereas multi-cycle ECM computes the E-step before 
each CM-step. The ECME algorithm (Liu and Rubin 1994) maximizes either the 

yi ∼ t(Bi�, Vi, hi)

where Vi = �2
1
1Mi

1
T
Mi

+ �2
2
Di��

TDT
i
+ �2

3
IMi

.

f (yi) =

Γ

(
hi+Mi

2

)
|Vi|−1∕2

(�hi)
Mi∕2Γ(hi∕2)(1 + d2

i
∕hi)

(hi+Mi)∕2

where Γ(a) = ∫
∞

0

ta−1 exp(−t) dt

d2
i
= (yi − Bi�)

TV−1
i
(yi − Bi�).

(6)
log L(� ; y) =

n∑

i=1

[
−

Mi

2
log�hi − logΓ

(
hi

2

)
+ logΓ

(
hi +Mi

2

)

−
1

2
log |Vi| +

hi +Mi

2
log hi −

hi +Mi

2
log(hi + d2

i
)

]
.
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Q-function or the actual log-likelihood function in each CM-step, whereas the ECM 
algorithm only maximizes the Q-function in the CM-step. When estimating the degrees 
of freedom in t distributions, the log-likelihood is maximized instead of the Q-function. 
Both the multi-cycle ECM and ECME algorithms can be computationally faster than 
EM, and to estimate parameters in t distribution, ECME is reportedly faster than ECM 
(Liu and Rubin 1995), because (unlike ECM) it allows a closed form of the log-likeli-
hood function to be maximized.

To estimate parameters using the ECM or ECME algorithm, we need to derive 
Q-function. As the Q-function, the conditional expectation of the log-likelihood func-
tion for complete data is used. “The complete data” indicates that augmented data of 
the observed data and “missing data” that are not actually observed but assumed to be 
observed. In our case, yi are observed data, while �i and �i are considered as missing 
data. However, since all data are t-distributed, the resulting log-likelihood would still be 
complicated. Therefore, we use the gamma-normal hierarchical structure of the t distri-
bution to derive the Q-function (e.g., Lange et al. 1989; Liu and Rubin 1995).

Specifically, letting �i = (�i, �i)
T and combining all distribution assumptions for yi , 

and �i in (1), it can be shown that

where �i|�i is independent of �i|�i . Here, X ∼ gamma(a, b) indicates that the random 
variable X is distributed as a gamma distribution with parameters a, b, defined by 
the density function for a > 0, b > 0 and x > 0:

In addition, this decomposition indicates that introducing a latent random variable 
�i results in yi and �i having a Gaussian distribution. Then, (yi, �i, �i) are called the 
complete data. Using this hierarchical structure, the joint density for the complete 
data can be decomposed as

Consequently, the conditional expectation of the log-likelihood for the complete 
data will be

yi|�i, �i
i.i.d.
∼ N

(
(Bi + �iDi)� + �i1Mi

,
�2
3

�i
IMi

)

�i|�i
i.i.d.
∼ N

(
0,

1

�i

(
�2
1

0

0 �2
2

))
, �i

i.i.d.
∼ gamma

(
h

2
,
h

2

)
,

f (x) =
ba

Γ(a)
xa−1 exp(−bx).

f (yi, �i, �i) = f (yi | �i, �i)f (�i | �i)f (�i).

(7)

Q(� ;�(k))

=

n∑

i=1

E�(k) [log L(� ; yi, �i, �i, �i) | yi]

=

n∑

i=1

E�(k) [log L(�, �
2
3
; yi, �i, �i, �i)

+ log L(�2
1
; �i, �i) + logL(�2

2
; �i, �i) + logL(hi ; �i) | yi] + const,
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where

and Xi = Bi + �iDi.
To simplify the notation, let u1i = yi − �i1Mi

− Xi� , u2i = �i , u3i = �i , Z1i = IMi
 , 

Z2i = 1Mi
 , Z3i = Di� , and � = (�1, �2) , where �1 = (�, �2

1
, �2

2
, �2

3
) and �2 = (h) . 

Using these notations and the Q function in (7), we now describe the multi-cycle 
version ECM and ECME algorithms. Note that as the E-steps and CM steps for 
updating �1 are identical in both algorithms, the CM steps of the multi-cycle ECM 
and ECME algorithms differ only in their �2 updates. In addition, in the following 
algorithm, the degrees of freedom are assumed to be estimated, while the extension 
to the case, where hi is fixed [i.e., case (i)] is straightforward. 

Initialization:	� Given yi and ti = (ti1,… , tiMi
) ( i = 1,… , n ), determine 

basis functions bj ( j = 1,… , p ) and p. When estimat-
ing h , the group indicator gi1,… , giV should also be given. 
Then randomly generate initial values for parameters 
�(0) = (�(0), �

(0)2

1
, �

(0)2

2
, �

(0)2

3
, h(0)) , and set the number of itera-

tion to k = 0 and convergence criterion �.
E-step 1:	� Given the current estimate �(k) at the kth iteration, the Qfunc-

tion is obtained by computing 

(8)
2 log L(�, �2

3
; yi, �i, �i, �i) = −Mi log �

2
3

−
�i

�2
3

(yi − �i1Mi
− Xi�)

T(yi − �i1Mi
− Xi�)

(9)2 logL(�2
1
; �i, �i) = − log �2

1
−

�i�
2
i

�2
1

(10)2 log L(�2
2
; �i, �i) = − log �2

2
−

�i�
2
i

�2
2

(11)
2 log L(hi ; �i) =

n∑

i=1

{
hi

2

[
log

(
hi

2

)
+ log �i − �i

]
− log �i

− log

[
Γ

(
hi

2

)]}

(12)
𝜏
(k)

i
=E�(k) [𝜏i | yi] =

h
(k)

i
+Mi

h
(k)

i
+ d

(k)2

i

where d
(k)2

i
=(yi − Bi�

(k))TV
(k)−1

i
(yi − Bi�

(k))
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 and for r = 1, 2, 3

CM-step 1:	� Fix �(k)

2
 , and update �(k+1)

1
 by maximizing conditional expecta-

tion of (8),...,(10), which leads to 

E-step 2:	��� Given the current estimate, define �(k+1∕2) = (�(k+1), �
(k+1)2

1
.

��(k+1)2

2
, �

(k+1)2

3
, h(k)) . Then, calculating (12) using �(k+1∕2) 

instead of �(k).
CM-step 2:	� Fix �(k+1)

1
 , and update �(k+1)

2
= h(k+1) by maximizing either func-

tion below: 

�(multi-cycle version of ECM)	� Obtain h(k+1) by maximizing conditional expecta-
tion of (11), that is 

(ECME)	 Obtain h(k+1) by maximizing (6), which leads to 

(13)V
(k)

i
=�

(k)2

1
1Mi

1
T
Mi

+ �
(k)2

2
Di�

(k)�(k)TDT
i
+ �

(k)2

3
IMi

(14)

E�(k) [uri | yi, �i] = �(k)2
r

ZT
ri
V

(k)−1

i
(yi − Bi�

(k))

V�(k) [uri | yi, �i] = �(k)2
r

IMi
− �(k)4

r
ZT
i
V

(k)−1

i
Zi

E�(k) [u
T
ri
uri | yi, �i] = tr(V�(k) [uri | yi, �i]) + E�(k) [uri | yi, �i]TE�(k) [uri | yi, �i].

(15)
�(k+1) =

(
𝜏
(k)

i

𝜎
(k)2

3

E�(k) [X
T
i
Xi� | yi, 𝜏i]

)−1
𝜏
(k)

i

𝜎
(k)2

3

E�(k) [X
T
i
(yi − 𝛼i1Mi

) | yi, 𝜏i]

𝜎2(k+1)
r

=
1

n

n∑

i=1

E�(k) [u
T
ri
uri | yi, 𝜏i], (r = 1, 2, 3).

h̄(k+1)
v

= argmax
h

n∑

i=1

giv

{
h

2

(
log

h

2
+ E�(k+1∕2) [log 𝜏i | yi] − 𝜏

(k+1∕2)

i

)

− logΓ
(
h

2

)}
, (v = 1,… ,V).

h̄(k+1)
v

= argmax
h

n∑

i=1

giv

{
− logΓ

(
h

2

)
+ logΓ

(
h +Mi

2

)
+

h

2
log h

−
h +Mi

2
log

(
h + d

(k+1∕2)2

i

)}
.
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Convergence test	� Compute logL(�(k+1)) , the value of the objective func-
tion (6) using updated parameters and, for k > 1 , if 
logL(�(k+1)) − logL(�(k)) < 𝜖 , terminate; otherwise, let 
k = k + 1 and return to E-step 1.

 Note that CM-step 2 is simpler in ECME than in multi-cycle ECM, because 
E�(k+1∕2) [log �i | yi] in CM-step 2 of multi-cycle ECM does not have closed form. In 
addition, “Appendix” provides a more detailed expression of (15).

From these updating formulas, this algorithm can be considered as iteratively 
reweighted least squares (Lange et al. 1989), and 𝜏i can be interpreted as a weight for 
the subject i on estimation. This weight is determined by the Maharanobis distance 
d2
i
 in (13); for a subject, whose distance is larger, that is, whose observations are 

more distant from the mean, the weight of the subject on estimation decreases.

2.4 � Decomposition of amplitude, phase and other errors

Though the principal objective of robust SIM is to estimate the shared-shape func-
tion without being affected by outliers, we can also use our robust SIM to identify 
subjects having outlying observations: subjects having very large Maharanobis dis-
tances di calculated using (13) compared to others could be considered as outliers.

Furthermore, using the relationship with LMM explained in Sect.  2.2, we can 
also identify which outlier type, �i , �i or �i the subject has. Specifically, as we allow 
a randomness in the �i , �i and �i component, a subject identified as having outli-
ers can include outliers in either one component or several. Then, there could be a 
situation in which we want to identify subjects having only �i outliers, that is, sub-
jects whose shape is inconsistent with others, or only �i outliers, that is, those having 
amplitude outliers. In that case, decomposing di , where � and �i , �i are replaced with 
those current estimates, enables us to see the distance from the mean for each com-
ponent separately.

Specifically, letting the current estimates as 𝛼̂i = E�(k) [𝛼i | yi, 𝜏i] , 𝛽i = E�(k) [𝛽i | yi, 𝜏i] 
and �̂i = E�(k) [�i | yi, 𝜏i] , the Maharanobis distance can be decomposed as follows 
(Pinheiro et al. 2001; Matos et al. 2013):

This decomposition indicates that the subject’s difference from the shared-shape 
function can be separated into three components, amplitude, phase, and other errors. 
Through this decomposition, we can check how distant each component is from the 

(16)

�d2
i
= (yi − Bi�)

TV̂
−1

i
(yi − Bi�)

=
𝛼̂2
i

𝜎2
1

+
𝛽2
i

𝜎2
2

+
�̂T
i
�̂i

𝜎2
3

= d2
i1
+ d2

i2
+ d2

i3
.
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mean separately, and consequently, can identify subjects having outliers in a particu-
lar component.

Note that this type of decomposition had originally been performed in the LMM 
framework (Pinheiro et al. 2001), in which the distance is decomposed into the ran-
dom effect �i and other error �i components. However, in this paper, this idea is 
extended to the further decomposition of random effects into amplitude and phase 
components, enabling us to handle the shift variation along the horizontal and verti-
cal axes separately.

3 � Simulation study

In this section, we describe a simulation we conducted to evaluate the performance 
of robust SIM compared to the existing methods.

3.1 � Data generation

The model in (3) was used to generate artificial data. Specifically, we first gener-
ated simple “true shared-shape data”, as shown in Fig. 1, using p = 5 and order 4 
B-spline basis functions with an interior knot between 0 and T (where T was set 
to 100). Next, we decided the timepoints tim ( m = 1,… ,Mi ; i = 1,… , n ) for 
each i = 1,… , n , by randomly selecting Mi from {5,… , 15} , and ti1,… , tiMi

 from 
{1,… , T} . Then, we added subject variation �i = (�i, �i) and �i , using the following 
mixture Gaussian distribution:

�i ∼ (1 − c)N(0,�) + cN(0, s�) where �i = (�i, �i), � = diag(�2
1
, �2

2
)

�i ∼ (1 − c)N(0, �2
3
IMi

) + cN(0, s�2
3
IMi

), (i = 1,… , n),
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Fig. 1   Artificial true shared-shape function in the simulation study, which is generated using p = 5 
B-spline basis functions
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where c denotes the proportion of subjects having outlying observations, and s 
denotes the scale of the variance in these subjects. That is, a proportion c of the 
subjects were assumed to follow a distribution with a large variance, so would likely 
include outlying observations in �i , �i and �i , that are distant from the mean. In addi-
tion, we fixed variances to �2

1
= 5, �2

2
= 10 and �2

3
= 5.

3.2 � Setting and evaluation

In this simulation, we considered a full factorial design with c = 0.2, 0.5 , s = 5, 10 
and n = 30, 60 . We also considered a “non-noisy situation”, with no outlying obser-
vations (i.e., c = 0 and s = 1 ). For each combination of all 2 × 2 × 2 + 2 cases ( +2 is 
for non-noisy situation in n = 30 and 60), we randomly generated 50 different data 
sets. For each data set, we applied the method and evaluated.

To estimate a robust SIM, we need to pre-specify the applied basis functions and 
the way of handling the degrees of freedom hi . As basic functions, we used the p = 5 
B-splines shown in Fig. 1. To estimate hi , we considered all cases (i), (ii), and (iii) 
mentioned in Sect. 2.1. Specifically, in case (i), we fixed hi = h for all i = 1,… , n 
varying h as 1, 5, 10, or 20. In case (ii), h was estimated by a data-driven approach. 
In case (iii), where hi is estimated in groups, we allocated a proportion 1 − c of the 
subjects generated from a distribution with a smaller variance to group 1, and the 
remaining c proportion of the subjects to group 2. Note that as no outlying observa-
tions are generated in s = 1 and c = 0 situation, robust SIM (ii) and (iii) are equiva-
lent for this situation, so only (ii) is applied.

To evaluate the performance of our robust SIM, we examine the accuracy of esti-
mation for the true shared-shape function and compare it with several existing regis-
tration methods. In this simulation, we additionally applied following methods: (iv) 
SIM with a Gaussian assumption, that is, the model (1) in which a Gaussian distri-
bution is assumed for all �i , �i and �im (Gaussian SIM), (v) landmark registration 
(Kneip and Gasser 1992), (vi) continuous monotone registration (Lange et al. 1989), 
(vii) registration by a self-modeling warping function (Gervini and Gasser 2004), 
and (viii) Fisher–Rao metric-based registration (Srivastava et al. 2011). Methods (v) 
and (vi) were applied using the R package “fda”, method (vii) was implemented in 
Matlab code obtained from the author’s webpage1, and method (viii) was applied 
using the R package “fdasrvf”. To handle the subject-varying timepoints in these 
software packages, we first smoothed the observed data using the true B-spline basis 
functions, and applied the values of the smoothed function at the 1,… , T  timepoints 
in each method.

Landmarks must be specified in advance to apply (v). Here, two curving points in 
Fig. 1 are specified as landmarks, obtained as follows. Each observed datum yim is 
smoothed using the same B-spline basis functions, as shown in Fig. 1, and from the 
resulting smoothed functions fi ( i = 1,… , n ), the first landmark is set to be the time-
point �i1 = argmint∈{1,…,T}{f

�(t) = 0 ∧ f ��(t) > 0} , and the second is the timepoint 

1  https​://peopl​e.uwm.edu/gervi​ni/

https://people.uwm.edu/gervini/
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�i2 = argmint∈{1,…,T}{f
�(t) = 0 ∧ f ��(t) < 0} . Note that we assume that �i1 < �i2 for 

all i.
For (vi) and (vii), we must specify a “target function” to which all functions 

are aligned in registration. Here, we use a median function as a target. That is, we 
take the median of coefficients of smoothed data f1,… , fn , and use that median as 
the coefficient for the B-spline basis. For the hyperparameters in (vii), we specify 
the number of components to q1 = 2 and the number of basis functions as q2 = 6 , 
because Gervini and Gasser (2004) recommends q2 = 3q1 . for methods that require 
initial values for estimation, we used 50 initial random starts.

To evaluate the performance, we calculate the mean squared error (MSE). That 
is, letting 𝜙̂ be the estimated shared-shape function, MSE is defined as 
[
∑T

m=1
(𝜙̂(tm) − 𝜙(tm))

2∕T]1∕2 , where tm = 1, 2,… , T  . The 𝜙̂ in each method is con-
structed as follows. In (i) and (ii), we use 𝜙̂(tm) =

∑p

j=1
𝜂̂jBj(tm) (m = 1,… , T) , 

where 𝜂̂j ( j = 1,… , p ) are estimated coefficients. For other methods, we use 
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Fig. 2   Boxplot of MSE results of 50 data sets for non-noisy situation ( c = 0 , s = 1 ). From the left axis, 
labels indicate robust SIM with h = 1, 5, 10, 20 in (i), robust SIM with (ii) case, Gaussian SIM (Gau), 
landmark registration (lan), continuous monotone registration (con), registration by a self-modeling 
warping function (SW), Fisher–Rao-based registration (FR)
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𝜙̂(tm) = median(f̂1(tm),… , f̂n(tm)) ( m = 1,… , T  ), where f̂i (i = 1,… , n) are regis-
tered functions. Here, we take the median of all registered functions rather than 
mean, because if we were to take the mean to define 𝜙̂ , the resulting MSE of some 
methods would be too large to compare with the other methods, possibly because 
there might be some severely mis-registered functions due to outliers.

3.3 � Results

Figures 2 (left) and 3 show the results for n = 30 in non-noisy and noisy situation, 
respectively. While the MSE results of robust and Gaussian SIM are similar in non-
noisy situation, the differences between them are apparent in noisy situation, espe-
cially for c = 0.5 . This indicates that SIM assuming a Gaussian distribution is sensi-
tive to outliers.
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Fig. 4   Boxplot of MSE results of 50 data sets for n = 60

Table 1   Estimated degrees of 
freedom by robust SIM with (ii) 
and (iii) case

n c s (ii) (iii) group 1 (iii) group 2

Mean SD Mean SD Mean SD

30 0 1 761.41 54.60 – – – –
0.2 20 13.63 2.56 127.83 19.33 3.38 0.55

50 8.66 0.97 132.52 18.03 2.43 0.37
0.5 20 47.10 33.39 130.02 17.85 4.24 0.72

50 5.91 0.81 125.45 19.50 2.60 0.31
60 0 1 1337.75 420.25 – – – –

0.2 20 13.60 1.84 164.99 24.26 3.44 0.41
50 8.56 0.79 164.49 26.00 2.42 0.26

0.5 20 27.32 22.54 161.48 13.13 4.06 0.39
50 5.81 0.49 155.80 14.95 2.59 0.20
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In addition, the performance of existing methods worsens as c increases, while 
that of robust SIM appears not to be affected much by an increase in c. Compar-
ing the situation between s = 5 and 10, robust SIM appears to perform similarly 
for s = 10 than for s = 5 . This indicates that robust SIM can be robust especially 
for distant outliers.

Though the general tendencies of MSE results by (i), (ii), and (iii) in robust 
SIM are similar, it seems that robust SIM with a smaller h in (i) or (iii) have bet-
ter results in accuracy. Specifically, for h = 10, 20 in (i) and (ii), the increase in c 
does affect the accuracy, while with h = 1, 5 and (iii), the accuracy seems stable 
for all situations.

Figures 2 (right) and 4 show the results for n = 60 . For all methods the vari-
ance of MSE is reduced and the median of MSE is improved, compared to n = 30 . 
However, for c = 0.5 , the variance of MSE is increased for h = 10, 20 , (ii), and 
existing methods (iv),…,(viii).

Table 1 shows the degrees of freedom estimated by the robust SIM in case (ii) 
and (iii). hi estimated by (ii) and (iii) for group 2 (having outlying observations) 
tends to be smaller than the one by (iii) for group 1. This indicates that the algorithm 
efficiently provides robustness to the model. In particular, in (iii) case, hi is adjusted 
during each iteration, thereby conferring robustness to a subset of the data rather 
than the whole data set.

In summary, robust SIM performs better than the other methods in the sense that it 
shows a lower variance of MSE for all cases, and a lower median of MSE especially 
for c = 0.5 . This indicates that estimating the shared-shape function using robust SIM 
is more stable than for the other methods, and consequently, we can expect a better 
accuracy for the estimation. Among cases (i), (ii) and (iii), case (iii) and h = 1, 5 in (i) 
apparently performed well in all scenarios. This indicates that when we can specify 
groups for hi , that is, specify giv ( v = 1,… ,V ), approach (iii) is a reasonable choice, 
because it yields a low and stable MSE result even without pre-specifying the hi.

4 � Application

4.1 � Data and setting

In this section, we use an empirical electrocardiogram (ECG) data set to illustrate 
the performance of robust SIM. The ECG data set was obtained from the UCR 
Time Series Classification and Clustering Archive2, which was analyzed in Olsze-
wski (2001). The ECG database contains 200 data sets (corresponding to subjects in 
this paper), each consisting of measurements at 96 timepoints during one heartbeat. 
Each measurement was recorded by an electrode placed on the body. The first 100 
subjects were defined as the training data, while the latter 100 were the test data. 
Each of the 200 data sets were labeled as “normal” or “abnormal.”

The purpose of this data analysis was twofold; first, it estimated the shared-shape 
functions from both the training and test data; second, it identified the outlier types 

2  http://www.cs.ucr.edu/~eamon​n/time_serie​s_data/

http://www.cs.ucr.edu/%7eeamonn/time_series_data/
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among the subjects in test data, using the estimated shared-shape function as a refer-
ence curve. Therefore, to apply the data in this analysis, we picked up only “normal” 
subjects from the training data, and both “normal” and “abnormal” subjects from 
the test data. To reduce the computational burden, we used the data of 40 subjects, 
and 80% from the training data, and 20% from the test data with an equal number of 
normal and abnormal subjects. All subjects were randomly chosen.

In addition, we estimated the degrees of freedom in each group [corresponding to 
case (iii) in Sect. 2.1]. We pre-specified giv ( v = 1,… ,V ; i = 1,… , n ) with V = 2 , 
and set the subjects from the training and test data as groups 1 and 2, respectively. 
Note that we did not define groups by “normal” and “abnormal”, because the label 
of the test data was assumed to be unknown in this analysis.

Robust SIM requires prespecification of p. To determine p, we use Akaike 
Information Criteria (AIC) as Liu and Yang (2009) suggested, which is defined as 
AIC = −2 log L̂ + 2K , where log L̂ is the maximized log likelihood and K is the 
total number of free parameters, which is p + 3 + V  . p = 8, 9, 10, 11 are used as the 
candidate values. Same as the simulation study, we use order 4 and the p − 4 equi-
distant interior knots. Finally, we ran the algorithm with ten different initial values.

4.2 � Result

Table 2 shows AIC values for different p. This result indicates that robust SIM with 
p = 10 is the best fitted model according to AIC. Figure 5 shows the shared-shape 
function estimated by our robust SIM. The degrees of freedom in groups 1 and 2 
were estimated as 1258.06 and 74.66, respectively, indicating that group 2 may 
include outlying observations.

Furthermore, using the decomposition in Sect. 2.4, we identify outlier types for each 
subject. Figure 6 shows each separated distance of amplitude, phase, and other errors, 
d2
1i
, d2

2i
 and d2

3i
 in (16). We can see that the subject i = 34, 36, 40 appear to have large 

d2
i2

 , while several subjects such as i = 37, 38, 39 have large d2
i3
 . At the same time, Fig-

ure 7 depicted the observations of subjects having the three largest d2
i2

 and d2
i3
 values 

using solid and dashed lines. This indicates that the shapes of observations having large 
d2
i2

 with solid lines in Fig. 7 (left) appear similar to the shared shape, though these have 
the large phase difference from the shared one. On the other hand, the shape of observa-
tions having large d2

i3
 in Figure 7 (right) with a dashed line appears to be inconsistent 

with that of the other observations. Furthermore, those with solid lines in right figure 
have shapes that are more similar to the shared one than the dashed line; however, the 
difference in shape from the shared one appears to be more than a simple shift variation.

5 � Discussion

In this paper, we developed robust SIM using the t distribution. Our main objec-
tive was to estimate the shared unknown shape function without being affected by 
outliers. In addition, we showed that robust SIM can provide useful information for 
identifying outlier types.
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Specifically, in our robust SIM, by applying the first order Taylor expansion 
on SIM, we separated �i , �i and �i , making it easier to relate our model to LMM 
using the t distribution to utilize the properties of that model: we can decom-
pose the distance into separate components, which can be used to identify outlier 
types. In addition, utilizing the hierarchical structure of t distribution, we could 
obtain efficient multi-cycle ECM and ECME algorithms which can be consid-
ered as a iteratively reweighted least squares and allow to estimate the degrees of 
freedom.

In the simulation, we showed that the estimation of our robust SIM is more stable 
than the other existing methods, especially when c = 0.5 . In an empirical data appli-
cation, we illustrated the performance of our robust SIM with case (iii), showing 
how the decomposition of distance can be utilized to identify outlier types.

Finally, we mention three possible directions for future work. First, our simu-
lation study suggests that estimating hi by group improves the accuracy of the 
result. However, pre-specifying the groups is a complicated task in many prac-
tical situations. One can heuristically estimate giv from the data by a heuristic 
algorithm such as the k-means algorithm (e.g., MacQueen 1967). Specifically, 
when hi is fixed, CM-step obtains v∗ which contributes the increase of objective 
function the most from v = 1,… ,V  , and sets g(k+1)

iv∗
= 1 and all other elements to 

zero, and repeat the iteration. However, this approach increases the computational 
burden and slows the convergence. Therefore, an efficient and practical means of 
calculating hi is highly desired.

Second, we might wish to vary hi for the various components �i , �i and �i . For 
example, in the ECG data, a larger hi for �i than �i and �i might be beneficial.

Finally, robust SIM explicitly parameterizes only the shift difference along the 
horizontal and vertical axes, not the scale difference. However, there could be a 

Table 2   Akaike information 
criterion (AIC) results for 
different p 

p 8 9 10 11

AIC − 443.22 − 634.91 − 811.03 − 491.63

Fig. 5   ECG data. Dot lines indi-
cate data of each subject, while 
solid line indicates the estimated 
shared-shape function for both 
train and test data, using p = 10 
basis functions

0 20 40 60 80

−
3

−
2

−
1

0
1

2
3

4

time

ob
se

rv
ed

 v
al

ue
s



194	 Behaviormetrika (2019) 46:177–198

1 3

situation, where this is not enough. For example, we could say that the dashed 
line in Fig. 7 (left) might exhibit the scale difference from the shared shape, and 
therefore, it could be beneficial to extend robust SIM to distinguish such outliers 
in scale difference.

Note that these possible extensions of robust SIM are not straightforward, 
because the computations of the resulting model would become considerably 
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Fig. 6   Distance in each component d2
i1
 , d2

i2
 and d2

i3
 , calculated according to (16). The number in middle 

and right plots indicates the index of subject having three largest d2
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Fig. 7   ECG data with the subjects having the three largest distance of �i (left) and �i (right) in Fig. 6. 
Specifically, while left and right figures show the same data set, observations having large distance are 
depicted using as solid line ( i = 34, 36, 40 in left, and i = 37, 39 in right figures) and dashed line ( i = 38 
in right)
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more complicated. Therefore, we must consider efficient algorithms that guaran-
tee a high level of estimation accuracy.
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Appendix: Proof

The updating formula of � in (15) can be obtained by calculating the conditional 
expectation. To avoid calculating the integral directly, an algebraic expression of 
the formula is more convenient. Therefore, I derive here a more detailed expres-
sion of the updating formula.

Proposition A1  Consider the updating formula in (15)

Each expectation can be derived in more detail as

and

where

and the remaining expectation is obtained using (14).

�(k+1) =

(
𝜏
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i
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(19)E�(k) [�i�i | yi, �i] = E�(k) [�i | yi, �i]cT1 (yi − Bi�) + c2E�(k) [�
2
i
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Proof  Differentiating (7) with respect to � , and equating it to 0 yields

Then using

we obtain (17) and (18). To calculate (19), we use the property of a Gaussian distri-
bution, that is, omitting (k), E�(k) [�i | yi, �i, �i] can be rewritten as

where c1 and c2 are the first Mi elements and the last (Mi + 1) th element of (
Cov�(k) [�i, yi | �i], 0

)
V�(k) [(yi, �i) | �i]−1 , respectively. Then, inserting (20) in (19), 

we have

Thus we obtain the explicit update formula for � . 	�  □

�

��
Q(� ;�(k)) = 0
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= f (�i |yi ;�(k))f (�i | yi, �i ;�(k))f (�i |yi, �i, �i ;�(k)),

(20)

E�(k) [�i | yi, �i, �i]
=
(
Cov�(k) [�i, yi | �i], Cov�(k) [�i, �i | �i]

)
V�(k) [(yi, �i) | �i]−1(

yi − E�(k) [yi | �i]
�i − E�(k) [�i | �i]

)
+ E�(k) [�i | �i]

=
(
�2
1
1
T
Mi
, 0

)(
Vi �2

2
(Di�)

T

�2
2
Di� �2

2

)−1(
yi − Bi�

�i

)

= (cT
1
, c2)

(
yi − Bi�

�i

)

E�(k) [�i�i | yi]

= ∫ �i
(
cT
1
(yi − Bi�) + �ic2

)
f (�i | yi, �i ;�(k))d�i

= ∫ �ic
T
1
(yi − Bi�) f (�i | yi, �i ;�(k))d�i + ∫ �2

i
c2 f (�i | yi, �i ;�(k))d�i

= E�(k) [�i | yi, �i]cT1 (yi − Bi�) + c2E�(k) [�
2
i
| yi, �i]
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