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Abstract
The user-centric management of networks and services focuses on the Quality of Experience (QoE) as perceived by the end 
user. In general, the goal is to maximize (or at least ensure an acceptable) QoE, while ensuring fairness among users, e.g., 
in terms of resource allocation and scheduling in shared systems. A problem arising in this context is that the notions of 
fairness commonly applied in the QoS domain do not translate well to the QoE domain. We have recently proposed a QoE 
fairness index F, which solves these issues. In this paper, we provide a detailed rationale for it, along with a thorough com-
parison of the proposed index and its properties against the most widely used QoS fairness indices, showing its advantages. 
We furthermore explore the potential uses of the index, in the context of QoE management and describe future research 
lines on this topic.

Keywords  Quality of experience (QoE) · Quality of service (QoS) · Fairness · Fairness index

Introduction

Quality of Experience (QoE) is “the degree of delight or 
annoyance of the user of an application or service” [26]. 
It is generally accepted that the quality experienced by a 
user of a networked service is dependent, in a non-trivial 
and often non-linear way, on the network’s QoS. Moreover, 

the QoE of different services is often different given the 
same network conditions; i.e., the way in which QoS can 
be mapped to QoE is service-specific. For example, voice 
services can usually withstand higher loss rates than video 
streaming services, but are in turn more sensitive to large 
delays. Hence, given a network condition with certain QoS 
characteristics, the QoE experienced by users of different 
services can vary significantly. From the point of view of 
fairness, as we will see, we need not concern ourselves with 
the different aspects of how QoS affects QoE for different 
services, but rather how different users’ expectations, in 
terms of QoE, are affected by the underlying QoS: are most 
(or all) users receiving similar quality levels, regardless of 
the services they use?

Standards such as ETSI TS 102 250-1 V2. 2.1 [11] spec-
ify how to compute various QoS metrics and highlight the 
need to consider customer QoE targets. However, fairness 
aspects are not considered. From a network operator’s point 
of view, QoE is an important aspect in keeping customers 
satisfied, e.g., decreasing churn. This has lead to a number of 
mechanisms for QoE-driven network resource management, 
aimed at maintaining quality above a certain threshold for 
every user (or in some proposals, “premium” users, at least). 
An issue common to all those efforts is that of dividing the 
available resources among users so as to maintain a satisfied 
customer base. In this paper, we explore (in depth) a notion 
of QoE fairness, first introduced in our previous work [15], 
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to quantify the degree to which the users sharing a network, 
and using a variety of services on it, achieve commensurate 
QoE. In this paper, we expound upon both the concept of 
QoE fairness and the proposed QoE fairness index. We show 
that the QoS-fair methods of resource distribution among 
users do not, in general, result in QoE-fair systems, even 
when considering a single-service scenario, and therefore, 
that QoE fairness needs to be considered explicitly when 
evaluating the performance of management schemes. We 
further illustrate the differences between QoS fairness and 
QoE fairness indices by means of concrete case studies.

The remainder of this paper is structured as follows. 
“Background and related work: notion of fairness and its 
applications” provides background on the notion of fairness 
in shared systems and the networking domain, and discusses 
the move to considering fairness from a user perspective. 
The move from QoS to QoE management and the motiva-
tion for considering QoE fairness are then further discussed 
in “From QoS to QoE management” . “QoE fairness index” 
specifies the requested properties of a fairness index, while 
“Relative standard deviation and Jain’s fairness index” intro-
duces the commonly used relative standard deviation (RSD) 
and Jain’s index. The properties of Jain’s index are further 
elaborated in “Issues with Jain’s index for QoE fairness”. 
“Defining a QoE fairness index” presents the QoE fairness 
index we proposed [15], and the rationale behind it. We pro-
vide an example of its application for web QoE and video 
streaming QoE to demonstrate its relevance for benchmark-
ing and system design in “Application of the QoE fairness 
index”. Finally, “Conclusions and discussion” concludes this 
work and discusses further research issues.

Background and related work: notion 
of fairness and its applications

Notion of fairness in shared environments

Fairness in shared systems has been widely studied as 
an important system performance metric, with different 
application areas and lack of a universal metric. In gen-
eral, approaches quantifying fairness have relied mainly on 

measures such as second-order statistics (variance, standard 
deviation, coefficient of variation), entropy-based measures, 
and difference to optimal solution, e.g. [6]. A key issue is 
defining what is considered to be “fair”, and then designing 
and evaluating various scheduling policies in terms of fair-
ness. For example, while proportional fairness relates to the 
idea that it is fair for jobs to receive response times propor-
tional to their service times, temporal fairness respects the 
seniority of customers and the first-come-first-serve policy. 
Wierman [46] provides an overview and comparison of vari-
ous scheduling policies which are focused on guaranteeing 
equitable response times to all job sizes.

Avi-Itzhak et al. [1] address the applicability of various 
fairness measures for different applications involving queue 
scheduling, such as call centers, supermarkets, banks, etc.

A fairness measure is inherently linked to some kind of 
performance objective, such as minimizing waiting times 
or maximizing the amount of allocated resources. A com-
monly studied trade-off when considering different resource 
allocation optimization objectives is that between efficiency 
and fairness [3, 24]. Moreover, a key question that arises 
is at which granularity level should fairness be quantified 
and measured [1]. Related to different granularity levels 
is also the question of the time scales at which fairness is 
calculated, with most QoS fairness index measures used in 
the literature (such as max–min fairness and Jain’s fairness 
index [20]) reflecting long-term average system fairness. 
In contrast, a system may be considered short-term fair [9] 
if for N competing hosts, the relative probability of each 
host accessing a shared resource is 1/N in any short inter-
val. Deng et al. [9] further note that while short-term fair-
ness implies long-term fairness, long-term fairness may not 
ensure short-term fairness.

Table 1 gives example time scales and session-related 
elements for which performance measures may be derived. 
The time scale at which to compute fairness may be dif-
ferent when targeting QoE fairness as opposed to targeting 
QoS fairness. In the context of QoE fairness, the fairness 
calculation time scale is linked to the time scale on which 
QoE is actually measured (or estimated), typically short- or 
mid-term.

Table 1   QoE fairness, just like QoE, can be considered at different time scales, and its applicability can vary according to them

We note that, while very different QoE functions are needed to estimate QoE at these varying time scales, the notion of fairness remains 
unchanged (although its impact may be significantly different)

Time scale Duration Interpretation Example: web QoE Example video QoE Related network metrics

Instantaneous Tens of ms In-session Not applicable Video frame Throughput
Short term Seconds In-session Web objects, Single page DASH segment, single scene Avg. throughput, latency
Mid term Minutes Single-session Web session Video scene, short clips Aggregated over time
Long term Hours, days Multi-session Commonly visited sites Several episodes Aggregated over time
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Notion of fairness in networking

In networking, fairness in resource allocation and scheduling 
is either linked to sharing resources evenly among the enti-
ties, or scaling the utility function of an entity in proportion 
to others. Flow based resource sharing, e.g., max–min fair-
ness, is the fundament of the design of TCP and fair queu-
ing scheduling approaches [8, 36]. A resource allocation is 
said to be max–min fair if the bit rate of one flow cannot be 
increased without decreasing the bit rate of a flow that has a 
smaller bit rate. This definition puts emphasis on maintain-
ing high values for the smallest rates, even though this may 
be at the expense of network inefficiency [25].

In a more general and utility-driven approach, propor-
tional fairness was introduced in the seminal works by 
Kelly [22] and Kelly et al. [23]. Questioning the notion of 
max–min fairness, Kelly et al. [23] argue that bandwidth 
sharing should be driven by the objective of maximizing 
overall utility of flows, assuming logarithmic utility func-
tions. Weighted proportional fairness is further defined as 
the scaling of an entity’s utility function relative to others, 
such that the entities will allocate flow rates so that the cost 
they cause will equal the weight they choose [22].

An alternative bandwidth-sharing approach is that of �
-fairness and the associated utility maximization. Mo and 
Walrand [28] propose this as a decoupled fairness criteria, 
which each user can use to achieve fairness without con-
sidering the behavior of other users. Bonald and Proutiere 
[4] introduce the notion of balanced fairness, referring to 
allocations for which the steady state distribution is insensi-
tive to any traffic characteristics except the traffic intensities. 
They note that this insensitivity property does not hold for 
utility-based allocations such as max–min and proportional 
fairness, where an optimal allocation process depends on 
detailed traffic characteristics such as flow arrival process 
and flow size distribution.

Any resource scheduling allocation between different 
entities (users, applications, flows/sessions, bitstreams) must 
have a notion of fairness. For example, according to the Gen-
eral Processor Sharing Model (GPS), each host is assigned 
a fair portion of a shared resource for any time interval [36]. 
While GPS has a binary outcome (a system is either fair or 
not), other metrics (such as the max–min fairness index) 
quantify the fairness level when the system is not perfectly 
fair [9]. A QoS fairness index should thus reflect the distance 
between the actual and the idealised allocation. The fairness 
should be relative to the resource unit xi which is allocated to 
entity i relative to the other entities. Various measures have 
been proposed, both for measuring short- and long-term fair-
ness, as discussed previously.

The most frequently used QoS fairness metric is Jain’s 
index [20], which approximates the ratio between the squares 
of the first and second order moments of the resources xi 

allocated for entity i. Jain’s index is primarily for assessing 
long-term fairness (e.g., averaged per user, session), but can 
also evaluate short-term fairness by considering the sliding 
window average of xi . Jain’s fairness index has also been 
used to improve so-called transient fairness in the context 
of congestion control, when computing the optimal initial 
shaping rate for new flows entering a mobile network (rather 
than using a fixed value and/or Slow Start-like method) [35].

Apart from Jain’s index, other indexes which (partly) 
measure the fairness of shared resources are: variation, 
coefficient of variation, and the ratio between the maxi-
mum access share by a host and the minimum access share 
(max–min index, [34]).

Fairness from the user’s perspective

While QoS fairness has been well established in the net-
working community, less focus has been put on considering 
fairness from a truly user-oriented perspective. Following 
Kelly’s theoretical notion of weighted proportional fairness, 
Briscoe [5] sharply criticized flow-rate fairness, and argued 
that fairness should be considered from the point of view of 
congestion costs (cost fairness) or user benefits. He states 
that if fairness is defined between flows, then users can sim-
ply create more flows to get a larger resource allocation. 
Moreover, flow fairness is defined instantaneously, and has 
no necessary relation to real-world fairness over time. In 
other words, Briscoe’s criticism of flow-level fairness leads 
to the notion that fairness should be considered at a higher 
level, where real-world entities are considered, such as peo-
ple or organizations.

Following this perspective, recent papers have argued that 
a QoS fair system is not necessarily QoE fair, e.g., Mansy 
et al. [27], given the lack of consideration of service QoE 
models. Such models specify the relationships between user-
level QoE and various application-layer performance indica-
tors (e.g., file loading times, video re-buffering) or influence 
factors such as device capabilities, context of use, network 
and system requirements, user preferences, etc.

As an example we consider QoE fairness in the context 
of bottleneck link sharing among adaptive video streams, 
where the on/off nature of flows results in inaccurate client-
side bandwidth estimation and leads to a potential unfair 
resource demand [13, 27, 37].

De Cicco et al. [7] propose a client-side algorithm which 
avoids on/off behavior until reaching the highest possible 
playback quality. However, while they focus on QoS fair-
ness, the approach still faces such problems as heterogene-
ous user devices, thus the issue of achieving QoE fairness 
remains. Georgopoulos et al. [13] proposed an OpenFlow-
assisted system that allocates network resources among 
competing adaptive video streams originating from hetero-
geneous clients, so as to achieve user-level (QoE) fairness. 
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The allocation utilizes utility functions relating bitrate to 
QoE, whereby the quality metric used to evaluate QoE is the 
objectively measured Structural Similarity Index (SSIM). 
They evaluate their system against other systems by compar-
ing mean achieved QoE and QoE variance.

Mansy et al. [27] also argue that typical flow-rate (QoS) 
fairness ignores user-level fairness and is ultimately unfair, 
thus proposing a QoE fairness metric in the range [0; 1] 
based on Jain’s fairness index. Their metric considers a set 
of QoE values corresponding to bitrate allocation, calculated 
taking into account factors such as user screen size, resolu-
tion, and viewing distance. Further, Petrangeli et al. [37] 
incorporate the notion of maximizing fairness, expressed 
as the standard deviation of clients’ QoE, into a novel rate 
adaptation algorithm for adaptive streaming. Villa and 
Heegaard [45] specify a ‘perceived fairness metric’ as the 
difference between the worst and best performing stream-
ing sessions in terms of average number of rate reductions 
(i.e., discrimination events) per minute. This is however an 
application-level (and application-specific) QoS metric, and 
not a general QoE fairness index.

Going beyond relating QoE to allocated bitrate, Gabale 
et al. [12] measure video-delivery QoE in terms of the num-
ber and duration of playout stalls, with the objective of fairly 
distributing stalls across clients. Mu et al. [31] propose a 
solution for achieving user-level fairness of adaptive video 
streaming, exploiting video quality, switching impact, and 
cost efficiency as fairness metrics. QoE fairness is computed 
based on calculation of the relative standard deviation (coef-
ficient of variation) of QoE values. In their work on com-
puting a benchmark QoE-optimal adaptation strategy for 
adaptive video streaming, Hoßfeld et al. [16] use Jain’s fair-
ness index to show that QoE can be shared in a fair manner 
among multiple competing streams.

It is clear that many approaches use application-level QoS 
metrics (like number of stalls, video bitrate, video quality 
switches) and use measures such as Jain’s fairness index or 
coefficient of variation to evaluate systems in terms of QoE 
fairness, e.g., [16, 21, 27, 42]. In the remainder of the paper 
(“Relative standard deviation and Jain’s fairness index” and 
“Issues with Jain’s index for QoE fairness”), we will argue 
that these measures are not necessarily suitable for QoE 
fairness.

Application of fairness index: (benchmarking 
of) QoE management in resource constrained 
environments

An important consideration is the applicability of a QoE 
fairness index, for example in the context of scheduling, 
resource assignment, optimization, etc.

For the most part, approaches discussed in the previ-
ous sections aim to exploit the notion of QoE fairness for 

optimized QoE-driven network resource allocation, often in 
the context of a concrete service. We focus instead on a fair-
ness index independent of the underlying service and QoE 
model used. We have defined a generic QoE fairness index 
to serve, e.g., as a benchmark when comparing different 
resource management techniques in terms of their fairness 
across users and services (Fig. 1).

In the following section, we further elaborate on the moti-
vation of going from QoS to QoE management, and on the 
need to consider QoE fairness in that context.

From QoS to QoE management

A general view on fairness

In other areas such as ethics and ecnonomics, fairness does 
not, in general, relate to utility, but rather to how resources 
are distributed among actors. We note in particular that a 
better system is not necessarily fairer, and neither is a fairer 
system necessarily better. Utility and fairness are orthogonal 
concepts.

For a simplified (and light-hearted) view on the orthogo-
nality between fairness and utility, we could draw an anal-
ogy to the cold-war era superpowers and their economic 
models. In the Soviet model, there was an emphasis on fair-
ness, but the overall quality of life (QoL) was low (i.e., most 
everyone had similarly low QoL). In the American model, 
the emphasis was on quality of life, but only for those who 
could achieve it on their own, leading to higher average 
QoL, but much lower fairness (QoL was much more vari-
able across sectors of the population). While the economic 
and societal merits of each approach are arguably not set-
tled, we can draw a parallel to the notions presented in this 
paper, namely that the overall QoE achieved on a system 

System

6. Fairness of system is evaluated by 
considering all QoE values y_i.

B. evaluate subjec�vly
test condi�ons on a 
ra�ng scale, e.g. 5-

point MOS scale
A. Subjects C. test condi�ons, e.g. certain web pages with pre-defined 

page load �me t in a test laboratory

QoE Model: Mapping func�on
between QoS and QoE, e.g. Q(t) 

D. Based on subjec�ve results, e.g. Mean Opinion 
Scores per test condi�on, a QoE model is derived

1. users in the system, e.g.
downloading a web page

6. Model is used to evaluate observed QoS, e.g. PLT, 
in a system. PLT x_i of user i is mapped to QoE value y_i.

2. System may have a shared 
bo�leneck, as in our 

measurement study. Resources 
may be shared among users.

3. Contents are delivered 
(shared resources).

Measurement study
in Sec�on 3

Results from
literature

5. Page Load Times (PLT) 
are measured objec�vely at 

the end user site.

Fig. 1   Illustration of QoE management
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is not directly related to how fair the system is, and vice-
versa. Depending on the goals and context of whomever 
is in charge of managing the quality (in the context of this 
paper, an ISP, for instance), the relative weight of each can 
be valued differently.

Why QoE management over QoS management?

Our main working assumption is as follows: network opera-
tors strive to maintain their users sufficiently satisfied with 
their service that they will not churn, while simultaneously 
trying to maximize their margins. There are different ways 
in which an operator can go about this (e.g, lower prices, 
higher speeds, bundled services), but conceptually, they all 
lead to a notion of utility, or perceived value that the users 
derive from their network connection.

Operators have a limited resource budget, and how they 
allocate it will have a (possibly large) impact on the users’ 
utility. One option, for example, would be to ensure that the 
network capacity is distributed evenly across users. How-
ever, it is easy to see that this fails if users have applica-
tions with different QoS requirements. While the allocation 
may seem reasonable from the QoS point of view, it fails to 
account for the users’ utility, which will vary with the appli-
cation or service under use. In this context, QoE provides a 
reasonable proxy measure for utility, and if the operator were 
to take QoE into account instead of QoS, a better distribution 
of its resources could be achieved (for instance, assigning 
more bandwidth to users who are watching video than to 
those who are just browsing the web; or providing expedited 
forwarding for users of real-time services such as VoIP or 
video-conferencing).

Let us consider a hypothetical scenario to illustrate the 
difference between QoS-based management and QoE-
based management, as well as between QoS fairness and 
QoE fairness. We assume a video service delivered using 
HTTP Adaptive Streaming (HAS), with an associated QoE 
model Q that takes into account the device on which the 
user is accessing the content (that is, like in the E-model for 
voice, mobile devices have a so-called “advantage factor”, 
that considers e.g., convenience of use alongside device-
specific limitations, such as screen resolution). As the sim-
plest scenario, we consider two users Ul and Um , accessing 
the service (from a laptop and mobile phone, respectively) 
over a shared link with capacity C < 2RMAX , where RMAX 
is the bitrate of the highest-quality video representation 
available. Now, doing a QoS-fair distribution of resources 
would result in both Ul and Um having the same available 
bandwidth b < RMAX . However, given the different devices 
being used by each user, their QoE, as per Q, could be sig-
nificantly different, with Um receiving higher QoE (due to 

the advantage factor). If the operator were to consider QoE 
fairness1 instead, the resource distribution could result in Um 
and Ul receiving bm < b ≤ bl ≤ RMAX , respecively, and their 
corresponding Q(bm) and Q(bl) values being closer together 
(i.e., more QoE-fair). Depending on the relationship between 
the bi values and RMAX , both users could even experience 
their maximal possible quality.

The use of QoE models to solve this resource allocation 
problem allows the operator to be “closer” to the users’ 
needs in terms of service quality.

On the need for QoE fairness

Besides keeping their users sufficiently satisfied, operators 
may care about doing so in a fair manner. Whereas in many 
cases users will not be aware of the quality experienced by 
other users, there are several contexts in which they may 
(e.g., shared activities, applications involving social media), 
and this can become a relevant factor, so distributing the 
resources in a “fair way” can be a smart business practice 
for operators. As discussed in above, what is fair in the QoS 
domain, may not be fair in the QoE domain, and so a notion 
of QoE fairness becomes necessary. We note that this applies 
not only to scenarios where there are multiple different ser-
vices involved, but also in scenarios where a single service 
is considered. In what follows, we focus on these single-
service scenarios, but the contributions presented herein 
hold also for multi-service scenarios as well, provided that 
QoE models for those services are available and comparable, 
which to the best of our knowledge is still an open problem.2

QoE fairness and QoE management

As mentioned above, QoE management problems often 
revolve around maximizing some measure of QoE (the Mean 
Opinion Score in the simplest case, but ideally something 
like the percentage of users who rate the service above a cer-
tain threshold). The literature further advocates the need to 
consider ensuring fairness among users, in particular related 
to QoE fairness [13, 27, 37]. This generally leads to a multi-
objective optimization problem, typically, maximizing QoE 
subject to some fairness constraints. This can be approached 
in several ways, such as:

1  This assumes a mechanism for determining the type of device each 
user is using, which could be implemented e.g., via suitable APIs, or 
by monitoring whether users are making requests to the mobile ver-
sion of the HAS service.
2  I.e. given two models for different services, using the same scale, 
it is not clear whether equal output values from them correspond to 
equal QoE for users of each service. In the case of different scales, 
this is even further complicated.
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•	 A two-step approach, maximizing first the average QoE, 
with a second step to solve for maximum fairness while 
maintaining the previously determined average quality 
level.

•	 An approach based on utility functions, where the opti-
mization targets (e.g., cost minimization, average quality 
maximization, fairness maximization) are combined into 
a utility function.

We posit that in a QoE management context, we generally 
do not want to confound QoE fairness from overall QoE, 
e.g., by using utility functions. By treating QoE and QoE 
fairness as orthogonal goals, the operator can decide the 
correct trade-offs and decide about the relevance of fairness. 
This is easier from a practical point of view if there are two 
separate metrics for both concepts. Our aim is to provide a 
means for the provider to implement QoE management by 
considering the various aspects independently, according to 
their particular situation. The existence of a QoE fairness 
metric does not imply that operators must use only QoE fair 
assignment of resources, but should they need to, they have a 
well-founded metric at their disposal. For further discussions 
related to QoE management, different QoE metrics and fair-
ness, the interested reader is referred to Hoßfeld et al. [18].

QoE fairness index

QoE models and QoE fairness

We have proposed a QoE fairness index [15], F(Y), which 
enables us to assess the fairness of a provided service, for 
which we assume that we have a set of QoE values (Y) pro-
duced by a QoE model (about whose particulars we need 
not worry) mapping a set of QoS parameters x to a unique 
QoE estimate y.

In resource management, network and service providers 
already use a notion of fairness at the QoS level, striving to 
allocate a fair share of resources (e.g., bandwidth) to each 
segment/session/user. However, as we will discuss in this 
article, the notion of QoS fairness and fair share resource 
allocation will in general not provide QoE fairness, and a 
new QoE fairness index is required in order to assess the 
fairness at the QoE level.

Figure 2 shows a generic QoE model that maps the QoS 
factors (x) and other influencing factors to a QoE value (y). 
For the notion of the QoE fairness metric, it is not important 
which time-scale is considered by the QoE model. The fair-
ness index is independent of the time-scale. We consider a 
shared system of users consuming a certain service. For each 
service there is a set of QoS parameters (of various key QoS 
influence factors on QoE) given in a vector x. There exists 
a mapping function Q taking the QoS parameters in the set 

X into a QoE value y. For user i the corresponding QoS 
parameters are xi , with QoE value yi.

We note that Q does not need to be monotonic.
L and H are the lower and uppper bounds of the QoE 

scale, respectively, e.g., L = 1 (‘bad quality’) and H = 5 
(‘excellent quality’) when using a 5-point absolute category 
rating scale. As an example for a QoE model, y = Q(x) is 
the mean opinion score (MOS) value corresponding to QoS 
x. In the literature, those QoE models are often derived by 
subjective user studies, and typically only the MOS is used. 
But other QoE metrics (like median, quantiles, etc.) may be 
especially of interest for service providers [14], which may 
be reflected by the mapping function Q.

Desirable properties of a QoE fairness index

As mentioned in the introduction, the most commonly used 
quantification of (QoS) fairness is Jain’s fairness index [20]. 
It was designed for QoS fairness with the properties as intro-
duced in the following section. We briefly explain those 
properties and interpret them for QoE fairness. Please note 
that we discuss the properties in detail for Jain’s fairness 
index applied to QoE as well as our proposed index in “Prop-
erties of the QoE fairness index F” and validate the indices 
with respect to these properties. A fairness index F(Y) maps 
the QoE values Y to a single scalar value. Y can be both a 
random variable and a set of samples in the following. Thus, 
F should have the following properties:

(a)	  Population size independence: it should be applicable 
to any number of users. If the QoE values emerging 
in the system follow a certain distribution Y, then the 
actual number of users should not affect the fairness 
index.Let Yx be the set of x samples of the RV Y. We 
demand: If Yn ∼ Y  and Ym ∼ Y  , then F(Yn) = F(Ym) , 

(1)Q ∶ X ↦ y = Q(X) ∈ [L;H] .

QoE model

QoE model

QoE model

QoS parameters

QoE Fairness Index
x2

xk

Q(x1)

Q(x2)

Q(xk)

y1

y2

yk

scope of paper

x1

F (y)

Fig. 2   Scope of the paper: QoE fairness index. Please note that the 
notion and the variables frequently used in this article are summa-
rized in Table 6
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even if n ≠ m . For example, the absolute difference 
D =

∑n

i=1
Yi − E[Y] from the average QoE E[Y] is a 

measure for the diversity of QoE values in the system. 
However, the more users n are in the system the larger 
the value of D may get. Hence, such a metric is not con-
venient to quantify QoE fairness. Also the sum of Y or 
the standard error of Y depend on the sample size and 
hence violate this property, while the expected value 
and standard deviation fulfil it.

(b)	  Scale and metric independence: the unit of measure-
ment should not matter (for QoE this means independ-
ent of L and H values). The main intention of the for-
mulation of this property is the fact that the unit does 
not influence the fairness index. For example, it does 
not matter if kpbs or Mbps is used when considering 
network throughput. For Jain’s index, the measurement 
scale requires to be a ratio scale with a clearly defined 
zero point. On such a ratio scale, scale and metric inde-
pendence can be formulated as F(aY) = F(Y) for a > 0 . 
However, QoE is measured on a category or interval 
scale, see also “Relative standard deviation on an inter-
val scale”. Therefore, scale and metric independence 
means that the fairness index is the same when the 
QoE values are linearly transformed (to another inter-
val scale). We demand: F(aY + b) = F(Y) for a ≠ 0 and 
any b. Please note that a negative value of a means that 
the interpretation of the QoE values is inverted. Instead 
of the degree or delight of the user Y, the annoyance or 
dissatisfaction is expressed by −Y .

(c)	  Boundedness: the fairness index should be bounded 
(without loss of generality it is set to be between 0 and 
1). A bounded fairness index enables comparison of 
different sets of QoE values (e.g., from different appli-
cations) if the fairness index is mapped on the same 
value range. We demand: F(Y) ∈ [0;1].

(d)	  Continuity: the fairness index should take continuous 
values and changes in resource allocation should 
change the index (e.g., the max–min ratio does not sat-
isfy this since it considers only the max and the min, 
and not values of xi in between). We demand: F(Y) ∈ ℝ 
and F(Y) ≠ F(Y �) if Yi = Y �

i
 but ∃j ∶ Yj ≠ Y �

j
 . Please 

note that the continuity allows to discriminate systems. 
Although a discrete fairness index may be also useful 
in practice, the discriminative power of a continous 
index is benefical in QoE management.

(e)	  Intuition: the fairness index should be intuitive: high 
value if fair ( F(Y) = 1 is “perfect” fairness), and low 
value if unfair ( F(Y) = 0 , if possible, is totally unfair). 
F(Y) = 1 means that all users get the same QoE. The 
most unfair system is when half of the users obtain the 
best quality and the other half get the worst quality.

Please note that those properties are claimed in literature by 
Jain et al. [20]. The main motivation for properties (c)–(e) 
is to have an intuitive metric which provides continuous 
values in the interval [0; 1]. The fairness index values are 
thus comparable across systems. The (b) ‘scale and met-
ric independence’ is crucial. In QoE assessment, different 
rating scales are commonly used to assess quality, such as 
5-point, 7-point, 11-point or continuous scales, which have 
different performance in terms of discriminatory power and 
reliability, and also differ in assessment time and ease of use 
by the subjects. As examples, Tominaga et al. [43] discuss 
different rating scales for mobile video, Huynh-Thu et al. 
[19] for high-definition video, and Möller [29] for speech 
quality. Moreover, the used QoE models may operate on 
different scales. For example, the transmission rating scale 
of the E-model quantifies the quality of speech transmission 
on a rating scale from 0,… , 100 . This scale is extended to 
0,… , 129 to consider wideband transmission [30]. Conse-
quently, we argue that a QoE fairness index needs to quantify 
fairness independent of the underlying scale.

When we want to quantify the QoE fairness we need an 
index with the same properties as above, plus the following:

(f)	  QoE level independence: the fairness index is inde-
pendent of QoE level, whether system achieves good or 
bad QoE. As discussed in “From QoS to QoE manage-
ment”, overall QoE and QoE fairness are orthogonal 
concepts, and thus we want the QoE fairness index to 
be independent of the overall QoE of the system. We 
demand: The fairness statistic F(Y) shall be independ-
ent of the sample mean E[Y] . The theorem by Basu 
[2] shows that sample variance and standard deviation 
fulfill this property and are independent from the sam-
ple mean. Therefore, we can concretize this property 
using the variance of QoE values. We demand: Given 
two systems with Var[Y1] = Var[Y2] and E[Y1] ≠ E[Y2] , 
then F(Y1) = F(Y2) . A simple example for the rational 
of this property is as follows. Let us assume that all 
users experience a fair QoE (3 on a 5-point scale). The 
system is totally fair. If all users experience a good QoE 
(4 on a 5-point scale), the system is obviously better, 
but the system is not fairer. Please note that a shift in 
QoE (i.e., changing the QoE level) without changing 
the dispersion of QoE values around the mean does not 
affect the fairness index.

It is important to notice that as per property (f) above, F 
does not consider the absolute (average) QoE values across 
all users in a system, i.e., it is independent of the QoE level. 
Thus, QoE managment solutions can separate between QoE 
fairness and overall QoE of the system. Of course, QoE man-
agement solutions will consider the overall QoE, see “From 
QoS to QoE management”.



	 Quality and User Experience (2018) 3:4

1 3

4  Page 8 of 23

As an example: we regard the fairness of a system 
(I) with an average QoE value ȳ = 4 on a 5-point ACR 
scale and 50% of users with y = 3.5 and 50% with y = 4.5 , 
and a system (II) with an average QoE ȳ = 2 with 50% of 
users with y = 1.5 and 50% with y = 2.5 to have the same 
fairness.

As another example, a (bad) system with an average 
QoE ȳ = 1.4 , with 10% of users with y = 5 and 90% with 
y = 1 is more fair than a system with an average QoE ȳ = 4 
with 50% of users with y = 3 and 50% with y = 5 . This 
property makes QoE fairness orthogonal to the overall 
QoE of the system, which allows to objectively bench-
mark systems with respect to both aspects and to evaluate 
the possible trade-off between QoE fairness and overall 
QoE (see “Application of the QoE fairness index” for an 
example). Figure 3 visualizes QoE level indepence from 
QoE fairness.

We would like to highlight that property (b)  Scale and 
metric independence and property (f) QoE level independ-
ence are key features. Since QoE is given on arbitrary inter-
val scales, any linear transformation must not influence the 
fairness index. To have a higher flexibility in QoE manage-
ment, QoE level independence is necessary. This allows to 
mimic combined utility functions with relevance factors 
(e.g., for fairness, costs, overall QoE) defined by the pro-
vider. The utility values are then easily derived as U(Y ,FY ) . 
The other features (population size independence, bounded-
ness, continuity, intuition) are desired to have a mathemati-
cally “nice” metric, which is intuitive and easy to interpret.

We also note that in Hoßfeld et al. [15], we demanded 
additional properties (deviation symmetry and validity for 
multi-applications) for a QoE fairness metric. However, after 
receiving feedback from the reviewers of this, we carefully 
analyzed those properties and revised them. In particular, we 
found that those properties follow from the set of properties 
above: (a)–(f). We discuss these derived properties below.

Additional properties derived from desirable 
properties

(g)	  Deviation symmetric: the fairness index should only 
depend on the absolute value of the deviation from the 
mean value, not whether it is positive or negative. This 
property follows from (b). When considering the dis-
tribution Y of QoE values, the flipped distribution Y ′ 
(i.e., reflection in a line parallel to the y-axis in the 
middle of the QoE scale) is simply Y � = −Y + L + H . 
Thus, F(Y) = F(Y �) due to property (b) with a = −1 
and b = L + H . Deviation symmetry can also be seen 
from property (f). Var[Y �] = (−1)2Var[Y] = Var[Y] , and 
hence F(Y �) = F(Y).

(h)	  Valid for multi-applications: the fairness index should 
reflect the cross-application fairness (and not only 
between users of the same application). Property (h) 
requires that a set of suitable QoE models exists for the 
applications considered. If the QoE models fulfill this, 
then the fairness index fulfills this property too. QoE 
and QoE models are application specific, and how to 
compare QoE values from different applications is a 
separate and challenging topic that is outside the scope 
of this paper.

In an axiomatic theory of fairness in network resource 
allocation Lan et al. [24] demand similar properties: con-
tinuity, independence of the number of users, homogene-
ity F(Y) = F(aY) (which follows from scale and metric 
independence). Monotonicity is demanded which means 
that for n = 2 users, the fairness measure is monotonically 
increasing as the absolute difference between the two ele-
ments shrinks to zero. This is reflected in property (e). 
The fairness index converges towards F = 1 if the users 
perceive the same QoE and the difference in QoE is zero.

Relative standard deviation and Jain’s 
fairness index

Arguably, the two most common indexes used in literature 
for quantifying QoE fairness are the relative standard devi-
ation (RSD) and Jain’s fairness index. They rely on sec-
ond-order moments of the QoE values Y (a random varia-
ble resulting from mapping the QoS parameters X, another 
random variable, with the QoE model Q; Y = Q(X) ) in 
a system to numerically express the dispersion of QoE 
values across users.

Fig. 3   Illustration of property (f) that QoE level is independent from 
QoE fairness for more flexiblity in QoE management
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Relative standard deviation (RSD)

The relative standard deviation c (also referred to as coef-
ficient of variation) is the standard deviation � = Std[Y] of 
the QoE values normalized by the average QoE � = E[Y].

Given that 𝜇 > 0 then RSD c ≥ 0 . Using RSD as a fair-
ness index, then a low c represents a fair system while a 
higher c refers to a more unfair system. Maximum fairness 
is achieved when c = 0 , i.e., all users experience the same 
QoE.Minimum fairness is obtained when RSD is cmax . Let 
us consider the maximum standard deviation �max for an 
observed average QoE � . The �max is obtained when a ratio 
p of users get the minimum QoE L and 1 − p get the maxi-
mum H. Then, the average QoE value is � = pL + (1 − p)H , 
which can be transformed to

The maximum standard deviation �max follows as

Replacing p with Eq. (3) then we get �max as a function of �:

and the maximum RSD cmax as a function of �

The cmax reaches its maximum value for � satisfying:

which gives

and

Let us return to using c as a fairness index. Intuitively, we 
regard the most unfair system to be when half of the users 
experience lowest QoE L and half of the users experience 
highest QoE H, e.g., p = 0.5 in Eq. (3) and hence

(2)c =
�

�
=

Std[Y]

E[Y]
.

(3)p =
H − �

H − L
.

(4)�2
max

= (H − L)
√

(1 − p)p.

(5)�max(�) =
√

(� − L)(H − �)

(6)cmax(�) =

√

(� − L)(H − �)

�
.

(7)
�cmax(�)

��
= 0

(8)�max =
2HL

H + L

(9)cmax =
1

2

H − L
√

HL
.

(10)�u =
1

2
(H + L)

with standard deviation

and relative standard deviation

On a 5-point scale with L = 1 and H = 5 , then �u = 3 , 
�u = 2 , and cu =

2

3
= 0.67 for the most unfair system. Apply-

ing the same parameters to Eq. (9) gives cmax = 2∕
√

5 = 0.89 
(for �max = 5∕3 ), and hence cmax > cu . Generally, it can be 
proven that cmax > cu when H > L , which means that using 
RSD as a fairness index will never rate the most unfair sys-
tem (in our notion) as the most unfair system.

This is illustrated in Fig. 4 which shows the maximum 
standard deviation ( �max(�) ) and RSD ( cmax(�) ) as a function 
of average QoE ( � ) on a 5-point scale. It can be observed 
that the maximum RSD cmax is not achieved for the most 
unfair system at � = 3 but at �max = 1.67.

Thus we conclude that the RSD is not an intuitive fairness 
measure, as the most unfair system (Eq. 12) does not reach 
the maximum RSD (Eq. 9).3 From Eq. (9), we further see 
that the bounds of RSD depend on the actual rating scale. 
In case of L = 0 , the RSD, however, is not bounded and vio-
lates property (c) ‘boundedness’. RSD also trivially violates 
property (f) ‘QoE level independence’, as the RSD depends 
on the average QoE value (Eq. 2).

Furthermore, RSD does not fulfill property (g) ‘Deviation 
symmetric’ which is demonstrated in two simple scenarios, 
cf. Table 2. In scenario (A), 90% of users experience best 
QoE and 10% experience worst QoE. In scenario (B), the 
opposite ratio is observed, i.e. 10% of users experience best 
QoE and 90% experience worst QoE. Clearly, scenario A 
leads to better QoE than scenario B, however, both systems 
reveal the same unfairness. Nevertheless, the RSD is differ-
ent in both scenarios, i.e. cA ≠ cB , and leads to very different 
results. The RSD is not deviation symmetric.

The RSD is further scale dependent and violates prop-
erty (b). A linear transformation of the QoE values Y will 
also lead to different RSD values. We define T(Y) as lin-
ear transformation with parameters a and b. For example, 
a = −b =

1

4
 when normalizing QoE values from [1; 5] to 

[0; 1].

For the linearly transformed QoE values, we observe a 
dependency of the RSD value on the transformation.

(11)�u =
1

2
(H − L)

(12)cu =
H − L

H + L
.

(13)T(Y) = aY + b.

(14)E[T(Y)] = a� + b,

3  It is cu ≤ cmax , as H ≥ L.
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Table 2 illustrates the scale dependency numerically. Sce-
nario (C) and (D) are equivalent to Scenario (A) and (B), 
however, a normalized scaled is used instead of a 5-point 
scale. It is cA ≠ cC and cB ≠ cD , respectively. (We note that 
index F will be introduced in detail later on in “Defining a 
QoE fairness index”, with descriptions left out at this point 
for the sake of readability.)

Jain’s fairness index J

The well-known Jain’s fairness index J can be applied to 
QoE values Y and is a function of the RSD c.

(15)Std[T(Y)] = a�,

(16)cT =
a�

a� + b
.

(17)J =
1

1 + c2
=

E[Y]2

E[Y2]
.

Jain’s index takes continuous values in [0; 1]. The maxi-
mum fairness ( Jmax = 1 ) is reached for the minimum stand-
ard deviation ( �min = 0 ). If we consider the most unfair 
scenario with maximum standard deviation �max (Eq. 7), 
we will expect that the fairness index reaches its minimum. 
Substitute cu from Eq. (12) in Eq. (17) then

Thus, in the maximum unfair scenario, a nonzero value 
Ju > 0 is observed. Therefore, Jain’s index is not an intui-
tive fairness measure, as the most unfair system does not 
reach the minimum value, i.e. Ju > Jmin when H > L . In fact, 
the maximum RSD (Eq. 9) leads to the minimum possible 
value Jmin.

This means that the minimum value Jmin depends on the 
bounds of the value range [L; H]. If L = 0 , then Jmin = 0 . On 
a 5-point scale, Jmin =

5

9
≈ 0.56 . Although J is bounded in 

[0; 1], the lower bound Jmin is determined by the value range 
[L; H] and the bounds are [Jmin;1] . Property (c) is partly 
fulfilled.

Issues with Jain’s index for QoE fairness

In the following, we demonstrate that Jain’s fairness index 
violates several desirable properties introduced in “Desirable 
properties of a QoE fairness index”.4 We further illustrate 
severe issues for its application in the QoE domain.

(18)Ju =
1

1 + c2
u

=
(H + L)2

2(H2 + L2)
.

(19)Jmin =
4HL

(H + L)2
.

Table 2   Illustrative scenario 
and fairness indexes

The RSD c and Jain’s fairness index J depend on the average QoE value. As a consequence, RSD and J are 
scale dependent and return different values after normalization of QoE values to [0; 1]

id Best QoE (%) Worst QoE 
(%)

Avg. Std. RSD J F

QoE values with L = 1 and H = 5

 (A) 90 10 4.6 1.2 0.26 0.94 0.40
 (B) 10 90 1.4 1.2 0.86 0.58 0.40

Normalized QoE values with L = 0 and H = 1

 (C) 90 10 0.9 0.30 0.33 0.90 0.40
 (D) 10 90 0.10 0.30 3.00 0.10 0.40
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Fig. 4   The maximum standard deviation �max and coefficient of 
variation cmax depending on the average QoE value � is plotted. We 
observe that the curve for �max is symmetric – in contrast to cmax . The 
unfairest scenario ( 50% experience worst quality L and best quality 
H, respectively, leading to � = 3 ) is well captured by �max , but not by 
cmax due to the normalization by the observed (average) QoE level �

4  We have already seen in “Relative standard deviation (RSD)” that 
the RSD violates several desirable properties. Since J and RSD are 
inversely proportional, cf. Eq. (17), this implied that J violates some 
of those properties too. In “Issues with Jain’s index for QoE fairness”, 
we will visualize those violations for J to make the reader aware of 
how severe these violations are.
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Scale and metric dependency of J

The scale dependency of J is caused by the dependency of 
the RSD on the actual scale, as shown in Eq. (16). To be 
more precise, a linear transformation T(Y) of the QoE values 
impacts J.

Figure 5 highlights the dependency of J when using dif-
ferent QoE domains with varying L and H. On a 5-point 
scale [1; 5], the same average QoE level � = 2 is considered 
and only the standard deviation of the QoE values � is var-
ied. The QoE values are then transformed to different rating 
scales [L; H]. It can be seen from Fig. 5 that Jain’s fairness 
index is not scale independent.

Please note that Jain’s index was developed for measures 
on a ratio scale (like bandwidth or waiting times), which 
means L = 0 . In that case (ratio scale), Jain’s index fulfills 
the scale independence. It does not matter e.g., if band-
width is measured in kbit or MByte. Only in the case of 
L = 0 , Jain’s index is scale independent. We observe that 
J is equal for any H, iff L = 0 . Let us assume � = Std[Y0;1] 
and � = E[Y0;1] when considering the QoE values on a [0; 1] 
scale. Now we consider the linearly transformed values on 
the scale [L; H], i.e.

with a = H − L and b = L in Eq. (13). The RSD cT of the 
transformed values (Eq. 16) is equal to c, iff L = 0.

However, in the QoE domain the most common scale is 
the 5-point MOS scale with L = 1 and H = 5 . When using 
normalized QoE values in [0;  1], Jain’s fairness index 

(20)T(Y) = (H − L)Y + L

(21)cT = c ⇔
a�

a� + b
=

�

�
⇔ b = 0.

dependence. WHere do I see this?. If L = 0 , J is very sensi-
tive to QoE values close to zero as depicted in Fig. 6.

We consider here a constant standard deviation � = 0.1 
on the 5-point MOS scale and vary the average QoE value �.

Such a small � is reached when 50% of the users get max-
imum QoE 5 and 50% get a QoE of 4.8. This is also reached 
when 50% of the users get minimum QoE 1 and 50% get a 
QoE of 1.2. Another scenario leading to the same � = 0.1 
is the following. 99.9375% obtain QoE 5 and the remaining 
0.0625% obtain QoE 1.

However, Jain’s index is varying from 0.5 to 1, as depicted 
in Fig. 6 which shows the fairness index J for normalized 
QoE values for varying � and constant �∗ . Due to the nor-
malization, �∗ = �∕4 = 0.025 see Eq. (15), we observe that 
J is clearly sensitive to � close to zero. A small shift of the 
average QoE significantly decreases J.

Furthermore, Jain’s index is not able to capture fair-
ness when higher values on the scale mean a lower QoE. 
An example considers the following quality degradation 
scale. 0—no degradation, 1—perceptible but not annoying, 
2—slightly annoying, 3—annoying, 4—very annoying, 5—
extremely annoying. Let us consider that n − 1 users expe-
rience the best quality 0 and 1 user obtains a 1. Then, the 
average QoE is E[Y] = 1∕n , while the coefficient of variation 
follows as cY =

√

(1∕n) . Then J = 1∕n . In the limit, J con-
verges towards limn→∞ 1∕n = 0 . Hence, in the best and fair-
est scenario, J quantifies the scenario as completely unfair.

QoE level dependence of J

From Fig. 6, we further see that Jain’s fairness index is QoE 
level dependent. A more explicit visualization is provided in 
Fig. 7 which clearly illustrates the QoE level dependence of 
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Fig. 5   Property (b) ‘Scale Independence’: Jain’s fairness index is 
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J.5 In particular, J is plotted against the standard deviation � 
for different average QoE values � = 2, 3, 4.

The three different curves for the average QoE � are not 
overlapping, although the same standard deviation from the 
mean value is observed. For higher average QoE values, the 
same standard deviation leads to higher fairness. For � = 4 
and � = 2 , we observe a value of Jain’s fairness index about 
0.95 and 0.8 for � = 1.

Deviation asymmetry of J

The desired property (g) ‘Deviation Symmetry’ means that 
the fairness index should only depend on the absolute value 
of the deviation from the mean value, not whether it is posi-
tive or negative.

Therefore, a scenario is considered in which a ratio of 
p users experience 2 and 1 − p experience 2 + � . Figure 8 
plots now Jain’s fairness index J against the discrepancy 
� ∈ [−1;1] between the two user classes. We observe that 
Jain’s index is not deviation symmetric, as the resulting 
curves for p = 0.1 and p = 0.3 are not symmetric at � = 0.

Another illustration is provided in Fig. 9. Normalized 
QoE values are considered with L = 0 and H = 1 . Again, 
two user classes are considered. A ratio p of users obtains 
QoE y and 1 − p obtain worst QoE L. In that scenario, we 
obtain the following statistical measures and fairness index 
J.

(22)E[Y] = py

This scenario provides an intuitive meaning for J. Relating 
the interpretation to QoS and resource allocation, a ratio 

(23)E[Y2] = py2

(24)Var[Y] = y2(p − p2)

(25)Std[Y] = y
√

p − p2,

(26)cY =
√

1−p

p
,

(27)J = p.
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lows as J = p , see Eq. (27). The proposed fairness index F is derived 
as F = 1 − 2� = 1 − 2

√

p − p2 , see Eq. (25). If 50% of the users get 
0 and 50% get maximum QoE, then this is maximum unfair, F = 0 . 
However, J = p = 1∕2

5  The QoE level dependence of J is visible in Figs. 6 and 7 as well as 
from Eq. (17).
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of p users share the resource and obtain a rating of y > 0 ; 
the other 1 − p users receive zero resources which means 
no service, hence a rating of L = 0 . If p = 100% of users 
get y = H , then J = 1 (maximal). If p = 100% of users get 
y = L = 0 , then J = 0 (minimal). However, J = 0 represents 
a totally unfair system, but all users get the same (bad) rat-
ing. Jain’s fairness index is not intuitive when applied to 
QoE. Similar thoughts for other values p and q = 1 − p (cf. 
Table 2) show that Jain’s fairness index violates the devia-
tion symmetry.

Relative standard deviation on an interval scale

A major concern of the application of Jain’s fairness index 
in the QoE domain is the typical interval scale of the QoE 
function Q in Eq. (1). The RSD may not have any meaning 
for data on an interval scale. For the computation of an RSD, 
a ratio scale is required which contains a natural zero value, 
like ‘no waiting time’ ≡ 0s.

However, the MOS scale typically used in QoE models 
is not a ratio scale. There is no meaningful zero value on 
the QoE scales: ‘zero’ would mean ‘no QoE’—which is 
not defined. Hence, the RSD of QoE values—and therefore 
Jain’s index—have no meaning for QoE values. The MOS 
scale can be considered as an interval scale as concluded by 
Norman [32]. Therefore, it is required to use other statistics 
(like the standard deviation) to measure the deviation from 
the mean.

Remark  For QoS Fairness, the usage of relative standard 
deviation as in Jain’s fairness index is very reasonable. An 
example for a QoS measure is bandwidth which measures 
the bandwidth of a user on a ratio scale with a meaningful 
zero value (‘no bandwidth’).

However, Jain’s fairness index may also be difficult to 
interpret if the data is measured on a ratio scale—which 
allows to compute the RSD.Consider the following exam-
ple. The QoS measure is delay, e.g., web page load time, 
which measures a duration on a ratio scale with a meaningful 
zero value (‘no delay’). However, in that case, Jain’s index 
leads to counterintuitive results. In a scenario, where 100% 
of users get no delay, J = 0 . Figure 9 can be re-interpreted 
when considering the ratio p of users experiences a delay of 
1 [s], while 1 − p experience no delay. Thus, for QoS meas-
ures like delays, Jain’s index cannot be directly applied to 
quantify QoS fairness.

Defining a QoE fairness index

Before presenting the formal definition of F, we briefly 
sketch the rationale behind it. After the definition, we dis-
cuss its properties, and compare it to Jain’s index.

Rationale for a QoE fairness index

Jain’s fairness index is not applicable as a QoE fairness 
index, as it violates some of the desired properties as speci-
fied in “Desirable properties of a QoE fairness index”. It is 
a reasonable approach to only consider the standard devia-
tions without relating them to mean values when defining 
QoE fairness. The standard deviation � of the QoE values 
Y quantifies the dispersion of the users’ QoE in a system.

There exists a maximum standard deviation of the QoE 
value Y over the bounded value domain [L; H].6 The maxi-
mum �max is obtained when 1

2
 of the users experience L and 

H, respectively. In that case, the average QoE value is

and the maximum second order moment is

Then, the maximum standard deviation is

The average QoE is different from the MOS, as users in 
the system are experiencing different conditions resulting 
into certain QoE values Q(x). When computing a MOS, all 
subjects experience the same test condition and the average 
over all user ratings is derived.

A new QoE fairness index F

We define the fairness index F as a linear transformation 
of the standard deviation � of Y to [0; 1]. The observed � is 
normalized with the maximal standard deviation �max and 
measures the degree of unfairness. Hence, the difference 
between 1 (indicating perfect fairness) and �∕�max is defined 
as fairness index.

We note that F can also be interpreted in another way. The 
QoE values are normalized to the QoE domain [0; 1],

(28)E[Y] = (L + H)∕2

(29)E[Y2] = (L2 + H2)∕2 .

(30)�max =
1

2
(H − L) .

(31)F = 1 −
�

�max

= 1 −
2�

H − L
.

(32)Y∗ =
Y − L

H − L
.

6  The maximum standard deviation has already been derived in Eq. 
(7) in “Relative standard deviation (RSD)”. For readability and due 
to its importance for deriving F, the maximum standard deviation is 
repeated here.
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Then, the standard deviation is

and the maximum standard deviation is �max =
1

2
 . Then, the 

fairness index follows as

Thus, (I) normalizing the standard deviation by the maxi-
mum possible standard deviation ( 1 − �

�max

 ) or (II) normal-

izing the QoE values Y∗ with �∗ and �∗
max

 result both in the 
same F ∈ [0;1].

Figure 10 illustrates the meaning of the fairness index 
F. A certain fraction of the QoE domain [L; H] is covered 
by the standard deviation � around the average QoE � in 
both directions. The size of the interval [� − �,� + �] is 2� 
reflects how unfair the QoE values are distributed over the 
QoE domain. Accordingly, the fairness index F is the size of 
the complement of this interval, i.e. ( 1 − 2�∗ ), normalized 
by the size of the QoE rating domain H − L.

Definition  The QoE Fairness Index F is defined as the lin-
ear transformation F = 1 −

2�

H−L
 over the QoE Y of all users 

consuming a service. A system is absolutely QoE fair when 
all users receive the same QoE value.

Properties of the QoE fairness index F

The proposed fairness index, F, needs to fulfill the proper-
ties as introduced in “Desirable properties of a QoE fairness 
index”. In the following, the properties are revisited and ana-
lyzed with respect to F.

(a)	 Population size independence—F is applicable to any 
number N of users in the system. The value of F is 
independent of N.

(b)	 Scale and metric independence—The unit of measure-
ment should not matter. In the context of QoE, the fair-

(33)�∗ = Std[Y∗] =
�

H − L

(34)F = 1 − 2�∗ = 1 −
2�

H − L
.

ness measure is independent of L and H. To be more 
precise, any linear transformation T(Y) = aY + b of the 
QoE values Y does not change the value of the fairness 
index. For the transformed values we obtain 

 Hence, F is scale independent (which is also indicated 
in Table 2).

(c)	 Boundedness—F is bounded between 0 and 1.
(d)	 Continuity—F takes continuous values in [0; 1].
(e)	 Intuitive—F is intuitive. The maximum fairness 

Fmax = 1 is for minimum standard deviation ( � = 0 ). 
The minimum fairness Fmin = 0 is found when standard 
deviation is at its maximum; this happens in the most 
unfair scenario (50% of users get L and 50% get H). 
Any fairness value F can also be interpreted as follows 
when considering normalized QoE values. (A) Half 
of the users get maximum QoE H = 1 and the other 
half gets QoE y. Then, F = y . (B) Half of the users get 
minimum QoE L = 0 . The other half get QoE y. Then, 
F = 1 − y . The equations are provided in Table  5. 
Exemplary numerical values are provided in Table 3.

(g)	 Deviation symmetric—F does not depend on the abso-
lute value of the deviation from the mean value, not 
whether it is positive or negative. This is clear from the 
definition of F and visualized in Figs. 8 and 9.

(f)	 QoE level independence—F is independent of the 
actual QoE level, whether the system achieves good 
or bad QoE. This is also clear from the definition of F, 
since F only depends on the deviation from the mean. 
Figure 6 visualizes the QoE level independence. A con-
stant standard deviation � is assumed while the average 
QoE � is varied. Since F is independent from � , F is a 

(35)

FT(Y) = 1 −
2Std[T(Y)]

T(H) − T(L)

= 1 −
2aStd[Y]

(aH + b) − (aL + b)
1 −

2Std[Y]

H − L
= FY .

µ

2σ

1 2 3 4 5

Fig. 10   Illustration of the new QoE fairness index F (solid hatch) on 
a typical 5-point scale with length H − L with � = 3.5 and � = 0.7

Table 3   Illustration of Jain’s J and QoE Fairness Index F for various 
scenarios and their distributions Y, L = 1,H = 5

Scenario Description J F

1 All users experience 1 1.00 1.00
2 50% experience 1 and 50% experience 2 0.90 0.75
3 50% experience 1 and 50% experience 3 0.80 0.50
4 50% experience 1 and 50% experience 4 0.74 0.25
5 50% experience 1 and 50% experience 5 0.69 0.00
6 50% experience 2 and 50% experience 4 0.90 0.50
7 50% experience 2.9 and 50% experience 4.9 0.94 0.50
8 Uniform distribution Y ∼ U(L;H). 0.75 0.42
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constant value which only depends on � (and the QoE 
value range [L; H]).

(h)	 Valid for multi-applications—The index should reflect 
the cross-application fairness (and not only between 
users of the same application). The index should also 
be applicable to different applications. This property is 
respected by F, provided that the QoE mapping func-
tion Q allows to have comparable QoE values. Further, 
F can be applied to any application, as it is based on the 
deviation of the QoE values. The same is also true for J 
and RSD. However, literature also suggests other fair-
ness metrics which are only defined for a single appli-
cation and use case, e.g. Cofano et al. [6] as discussed 
in “Fairness from the user’s perspective”.

We observe that the definition proposed fulfills the prop-
erties outlined in “Desirable properties of a QoE fairness 
index”. The QoE fairness index F reflects the system per-
spective of fairness and quantifies the fairness of the entire 
system across all users.7

Qualitative comparison of fairness indexes

A summary of the comparison between F and Jain’s index J 
as well as the RSD is provided in Table 4. All three indexes 
are population size independent, valid for multi-applications 
and return positive continuous values. While F fulfills all 
desirable properties, J and the RSD violate key properties: 
(g) ‘deviation symmetric’, see Fig. 8; (f) ‘QoE level inde-
pendence’, see Eq. (17) or Fig. 7; (f) ‘Scale and metric inde-
pendence’, see Fig. 5.

In the list of properties it is stated that the fairness index 
should be intuitive. This means for instance that the index 
should be at its minimum when the users’ experience (at 
least their scores) is maximally different. This holds for fair-
ness index F, but not for J since this depends on the values 

of L and H. Although J is bounded between [0; 1], its mini-
mum value Jmin depends on L and H. In this section, we will 
show in real numerical examples of YouTube QoE, those 
limitations are severe. In particular, we show that J is not 
very sensitive and hardly discriminates fairness in different 
scenarios.

As example, HTTP video streaming and the impact of 
video stalls on video QoE is considered. Hoßfeld et al. [17] 
provide a QoE model for non-adaptive video streaming in 
terms of MOS on a 5-point scale for N stalls and a total stall-
ing time T. In our numerical results, we assume T = NL with 
an average stall duration of L = 1s.

The normalized QoE function Q∗ ∈ [0;1] is

with H = 5 and L = 1.
In order to illustrate the differences between the QoE fair-

ness indexes, we consider N as a random variable describing 
the number of stalls experienced by the users in the sys-
tem. We assume that N follows a binomial distribution, i.e. 
N ∼ Binomial(K, p) . In this example, we assume K = 10 
and vary p. Please note that it is not important for the illus-
tration which distribution is assumed.8 The probability pn 
that a user experiences n stalls is then

From Eq. (41), the key statistics can be derived.

QoS fairness with respect to the stalls can therefore be 
derived via Jain’s index.

(36)Q(N) = 3.5e−0.15T−0.19N + 1.5 = 3.5e−0.34N + 1.5

(37)Q∗(N) =
Q(N) − L

H − L

(38)pn =

(

n

K

)

pK(1 − p)n−K .

(39)E[N] =

∞
∑

n=0

npn = Kp

(40)Std[N] =
√

Kp(1 − p)

(41)cN =

√

1 − p
√

Kp
.

(42)JN =
1

1 + c2
N

=
Kp

Kp + (1 − p)

Table 4   Qualitative comparison of fairness indexes

Property RSD c Jain’s J Fair. F

(a) Population size independent X X X
(b) Scale and metric independent – – X
(c) Boundedness – (X) X
(d) Continuity X X X
(e) Intuitive – (–) X
(g) Deviation symmetric – – X
(f) QoE level independent – – X
(h) Valid for multi-applications X X X

7  F must not be confused with standard deviation of user ratings in a 
subjective study (for a system under test) i.e. the user rating diversity.

8  Realistic scenarios and measurement traces are provided in “Appli-
cation of the QoE fairness index” to demonstrate the application of 
the QoE fairness index F.
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Due to the QoE mapping function Q, analytical expressions 
for the average QoE � = E[Q(N)] and the standard deviation 
of the QoE values � = Std[Q(N)] are rather bulky and omit-
ted here. It has to be noted that

We numerically compute the QoE fairness indexes F and 
Jain’s index on a 5-point scale with Q(N) as well as for nor-
malized QoE values Q∗(N) . We refer to them as J5 = JQ(N) 
and J1 = JQ∗(N).

Figure 11 shows the numerical values for the average 
QoE, the standard deviation and the RSD of the QoE values 

(43)E[Q(N)] =

∞
∑

n=0

Q(n)pn ≠ Q(E[N]) .

depending on the average number of stalls E[N] = Kp . Based 
on E[N] , the parameter p = E[N]∕K of the binomial distribu-
tion is derived. We clearly observe the exponential decay of 
the QoE model Q when considering the average QoE. The 
standard deviation and the RSD show however a different 
behavior.

The main observations can be seen in Fig. 12. Firstly, 
QoS fairness JN is different than QoE fairness quantified 
by F and J. In particular, the QoS fairness approaches zero 
(i.e. completely unfair system) when the average number 
of stalls approaches zero. We further see the sensitivity of 
Jain’s fairness index for values close to zero. QoE fairness 
depicts a different behavior. In case of no stalling, all users 
get best QoE and the variance of the QoE values diminishes. 
Hence, the QoE fairness indexes are 1. With increasing num-
ber of stalls in the system, the standard deviation increases 
and hence fairness decreases until a certain threshold. After 
that threshold, the variance decreases and more users suffer. 
Hence, the QoE fairness increases again. In contrast, QoS 
fairness shows here a monotonic behavior.

Secondly, Jain’s fairness index depends on the scale. The 
curves for J5 and J1 differ (a) when using the QoE function 
Q on a 5-point scale differs and (b) when using normalized 
QoE values Q∗ . Thirdly, Jain’s fairness index applied to QoE 
values is less sensitive than the fairness index F and does 
not allow to clearly discriminate fairness issues. From J5 or 
J1 , one might conclude that the system is more or less fair. 
However, F clearly depicts that for certain scenarios (around 
E[N] = 1.5 stalls) the system leads to unfairness.

Figure 13 summarizes those issues in a simple scenario. 
Half of the users experience worst quality ( L = 0 ) and the 
other half experience QoE V. Jain’s index is a constant value 
J = 1∕2 independent of V. Thus, in the scenario where all 
users obtain the same value V = 0 , J does not indicate that 
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Fig. 11   Qualitative comparison between J and F. We assume a bino-
mial distribution of the number N of stalls and observe accordingly 
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the system is fair. In the unfairest scenario, where half of 
the users get best QoE V = 100 , the same fairness index 
is obtained as in the fair scenario. J does not have intui-
tive meaning when applied to QoE to express fairness. In 
contrast, if the rating scale is shifted by 100, i.e., L = 100 
and H = 200 , J is not constant anymore, but always leads 
to values J ≥ 0.9 (cf. dashed line). Again, the rating scale 
dependence of J leads to severe differences. In contrast, the 
proposed QoE fairness index F distinguishes clearly the dif-
ferent scenarios reflected by V. Independent of the underly-
ing QoE scale, the unfairest scenario leads to V = 0 , while 
the fairest scenario leads to V = 1.

Application of the QoE fairness index

The goal of this section is to show how the proposed QoE 
fairness index F can be applied. As a result of the numeri-
cal examples, we show that a QoS fair system is QoE unfair 
(case study: Web QoE for M/D/1-PS). In addition, we show 
how to design a system in which a provider may trade-off 
between fairness and overall performance (case study: HTTP 
adaptive streaming QoE).

Case study: web browsing QoE 
in an M/D/1‑processor sharing system

The analytical M/D/1-PS sharing system is well understood 
and describes a perfect QoS fair system which is neverthe-
less QoE unfair. Literature has shown that the processor 
sharing (PS) model captures well the characteristics of a 
system with a single shared bottleneck, see the survey by 
Roberts [39].9

In the processor sharing model, the bandwidth C of the 
bottleneck (i.e., the QoS resource) is perfectly fairly shared 
among the n users in the system, i.e., each user receives 
C / n. The QoS resource is instantaneously adjusted when 
the number of users changes. Thus, perfect QoS fairness is 
considered here on an instantaneous time scale, as depicted 
in Table 1. The M/D/1-PS system leads also to proportional 
(QoS) fairness as discussed in “Background and related 
work: notion of fairness and its applications”. The propor-
tional fairness [23] means (in case of deterministic service 
requirements) that the expected service time E[T] is propor-
tional to the requirements of the service �.

(44)E[T] ∝ �

In the context of web browsing QoE, we have the following 
M/D/1-PS model. A web server is considered where all users 
share the server’s capacity C equally, i.e., processor sharing 
model. All users download the same web page of constant 
size b. User web page requests are modeled with a Poisson 
process and request rate � . Thus, the shared environment is 
modeled as M/D/1-PS queueing system. The offered load � 
of the system is � = �

b

C
= �b∗.

The expected value �T of the download time T is derived 
by Ott [33] and depends on the file size b,

Thus, M/D/1-PS is proportional fair.
For M/D/1-PS, the RSD cT  of the download time T 

depends only on the offered load � and is derived by 
Shalmon [41].

Thus, we can directly compute Jain’s fairness index JT for 
the download time.

Reichl et  al. [38] observe a logarithmic relationship 
between waiting time and QoE which is formulated as the 
WQL hypothesis by Egger et al. [10]. The QoE of web 
browsing is derived as a logarithmic function of the page 
load time t.

The QoE domain ranges from L = 1 to H = 5 and we assume 
a = 1 and b = 4 [10].

The page load times T in the M/D/1-PS system are a ran-
dom variable. For computing QoE fairness F, we need to 
derive the standard deviation Std[Q(T)] of the QoE values 
Q(T). Further, Jain’s fairness index is applied to Q(T).

(45)�T =
b

1 − �
.

(46)c2
T
=

1

�2
[2 − �2 − 2(1 − �)e�] ≈ �

(47)Q(t) = −a log(t) + b.
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Fig. 14   Case study ‘Web QoE’: Overall QoE and standard deviation 
�Y of the system depending on the offered load

9  In practice, the fair share of resources is not perfectly achieved 
due to imperfections in the transport protocol. In Hoßfeld et al. [15], 
measurement results are provided for the same system on web QoE 
which show the same characteristics in terms of fairness. In this arti-
cle, we focus on the analytical model as it is well known and under-
stood and generalizes the measurement results.
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Figure 14 depicts the QoE behavior of the system depend-
ing on the offered load. With increasing load, the download 
times increase and the QoE suffers (left Y-axis, see quan-
tiles and average QoE values). The standard deviation of 
the QoE values shows a non-linear behavior. For very low 
loads, the users arrive often at an empty system and every-
one experiences the same QoS and QoE. Due to the random 
arrival of users, some users share the capacity with others 
which happens more often with increasing load. At a certain 
load, it is well known that the download times exponentially 
increase [33] resulting in smaller QoE differences across 
users (but at a low overall QoE). Note that approaching the 
overload situation ( � → 1 ), all users experience the same 
poor quality ( lim�→1 Q(t) = L , but the system is perfectly 
fair ( lim�→1 F = 1 ), if terribly under-performing.

Figure 15 illustrates the different fairness indexes. Jain’s 
fairness index J leads to different results and conclusions 
than F. In case of low load ( 𝜌 < 0.4 ), J suggests a perfect 
QoE fair system. However, when looking at the standard 
deviations of the QoE in Fig. 14, we see already stronger 
discrepancies between users. J is not capturing this prop-
erly, since the average QoE is high for this load. We further 
see again that J is not very sensitive. The minimal fairness 
value is about 0.8. In contrast, our proposed fairness metric 
properly reflects the variances in QoE. F is more sensitive 
and identifies fairness issues even in the low load scenarios. 
F drops close to 0.5 which properly reflects that the sys-
tem leads to 0.5�max = 1 . We further observe that there is 
a strong discrepancy between QoS fairness (expressed by 
using Jain’s fairness index JT of download times T converg-
ing to 0.5) and QoE fairness.

Thus, the fairness index F gives the possibility to clearly 
identify under which conditions and in which scenarios fair-
ness issues arise.

Case study: HTTP adaptive streaming QoE

As a second case study, HTTP adaptive streaming (HAS) 
is considered to demonstrate the comparison of differ-
ent approaches with respect to QoE fairness but also with 
respect to overall QoE. When a provider has to decide 
which mechanism to use in practice, the (possible) trade-off 
between QoE fairness and overall QoE may be considered.

HAS allows the video player to dynamically adjust the 
video bitrate according to the current network situation. 
Thereby, HAS tries to overcome video stalling at the cost 
of reduced video bitrate and lower video quality. However, 
from a QoE perspective, stalling is the dominating QoE 
influence factor. For the interested reader, Seufert et al. [40] 
provides a comprehensive survey on HAS QoE and HAS 
technology.

However, when multiple HAS clients are competing for 
shared network resources, they may negatively influence 
each other in terms of QoE [37]. Thus, a QoE fairness issue 
may arise due to the HAS adaptation algorithm. To this end, 
several developed strategies can be found in the literature, 
which try to optimize QoE while maintaining QoE fairness 
among the users.

In particular, Petrangeli et al. [37] developed a QoE-
driven rate adaptation heuristic (’FINEAS’) and evaluated 
different mechanisms in terms of QoE.10 In their context, N 
users are consuming an HTTP adaptive streaming service 
which uses one concrete HAS mechanism. In the system, 
network bandwidth is the scarce resource and the users (to 
be more precise: the HAS mechanisms) are competing. The 
goal of the study by Petrangeli et al. [37] is to identify the 
HAS mechanisms which leads to the best overall QoE and a 
fair system. In the paper, the average QoE and the standard 
deviation of the QoE values over the N are reported for the 
HAS mechanisms. Since the results rely on simulations and 
are repeated several times, there are also confidence intervals 
specified for the average and the standard deviation. With 
the confidence interval of the standard deviation, [�1;�2] , 
we may also derive a confidence interval for the fairness 
index F for a given significance level � . Let us consider the 
probability that the real standard deviation � lies within the 
bounds of the confidence interval.

This can be transformed as follows. Please note that the less-
than sign changes.

(48)P
(

�1 ≤ � ≤ �2
)

= 1 − �.

(49)P

(

1 −
2�1

H − L
≥ F ≥ 1 −

2�2

H − L

)

= 1 − �
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Fig. 15   Case study ‘Web QoE’: The fairness indexes are compared 
for different load situations. QoS fairness in terms of Jain’s fairness 
index of sojourn times is different than QoE fairness

10  For details about the HAS algorithms (FINEAS, Q-L., FESTIVE, 
MILLER, MSS), the interested reader is referred to Petrangeli et al. 
[37]. For our purposes, the detailed description is not relevant.
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This leads to the confidence interval for F.

Figure 16 shows the numerical results of the strategies con-
cerning the average QoE and the fairness index F. It can be 
clearly seen that the FINEAS strategy outperforms the other 
strategies as it is better in terms of average QoE and fairness. 
However, it remains unclear if the HAS adaptation strategy 
MSS is for example better than FESTIVE. MSS leads to 
higher average QoE but a lower fairness.

A provider needs to decide how relevant fairness is. 
Thus, there may be a trade-off between fairness and QoE. 
In Fig. 17 we sketch this more clearly. A provider may use a 

(50)P(F1 ≥ F ≥ F2) =1 − �.

(51)[1 −
2�2

H − L
;1 −

2�1

H − L
].

weighted sum of the average QoE and the fairness depending 
on a parameter � specifying the relevance of fairness. Thus, a 
value function is defined. For example, v = (1 − �)Q∗ + �F . 
Thereby, we use the normalized QoE values Q∗ to have the 
fairness index and the average QoE in the interval [0; 1].11 
This allows for an intuitive meaning of the relevance param-
eter. From Fig. 17, we observe that the FESTIVE approach 
may be preferred instead of MSS if fairness is as important 
as average QoE ( � ≥ 0.5 ). We would like to emphasize that 
other fairness indexes (Jain or RSD) lead to other values 
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Fig. 16   Case study ‘Video streaming QoE’: Different mechanisms 
from literature are compared in terms of QoE and fairness. The 
results by Petrangeli et al. [37] are reevaluated to quantify F 
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which algorithm to use in practice, a value function is defined 
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for the decision
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sitive, leading to high fairness values
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Fig. 19   Case study ‘Video streaming QoE’: Different fairness indexes 
lead to different values and conclusions for operators. We consider 
different fairness relevance factors � . FINEAS and Miller always lead 
to best and worst results, respectively. However, the order of the oth-
ers changes depending on F and J 

11  Instead of defining a relevance parameter for fairness, one might 
also define weights for each component. This may also overcome the 
normalization of the QoE values.
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and change the outcome of an operator’s decision. Figure 18 
shows (again) that Jain’s index is not able to discriminate the 
fairness properly (cf. Fig. 12)—here across mechanisms—
and also suffers like the RSD suffers from being scale and 
metric dependent. Since J always leads to high fairness val-
ues, the utility function would not consider fairness appro-
priately and mainly put weight on overall QoE. Figure 19 
shows the different outcomes. In case of little relevance 
of fairness ( � = 0.1 ), the fairness index has only a minor 
impact, as desired and defined. For higher relevance, it can 
be seen that the order of mechanisms changes between F and 
J, i.e. leading to different conclusions for operators.

In practice, this value function may be more complex and 
also include other aspects such as costs. This is however out 
of scope for this article. The basic intention is to highlight 
that for system design choice, the overall QoE and fairness 
needs to be evaluated and considered. Accordingly, the rel-
evance of fairness needs to be decided.

Conclusions and discussion

The motivation for defining a fairness index comes primar-
ily from the operator’s perspective, as QoE fairness measures 
can be used to drive resource allocation mechanisms aimed at 
maximizing the satisfied customer base. The application of a 
QoE fairness metric is manifold, ranging from QoE manage-
ment mechanisms and system optimization to benchmarking 
different resource management techniques. We have introduced 
a definition for a QoE fairness index, and showed that QoE fair-
ness does not, due to the nature of QoS to QoE mappings for 
most services, necessarily follow from QoS fairness. We argue 
that commonly used QoS fairness metrics such as Jain’s fairness 
index are not suitable for quantifying QoE fairness, despite being 
used for that purpose in the literature. Our proposed metric ful-
fills a number of desirable qualities, and it is intuitively simple 
to understand. We illustrate its use with an example use case for 
Web QoE modeled as a function of page loading times. Another 
use case is the selection of an HTTP adaptive streaming mecha-
nism which may be guided by the overall video QoE as well as 
the QoE fairness. QoE fairness says nothing about how good 
the system is and thus needs to be considered together with, and 
most likely subordinated to, the achieved overall QoE in system 
design. We emphasize that the proposed QoE fairness index is 
just a means for benchmarking or designing systems, and may 
be used as an extra tool for operators to make better informed 
decisions concerning QoE management.

Remark The proposed fairness index is a generic concept 
which may also be applied to other domains than QoE (like 
QoS) or for different purposes. It can be applied to any data 
on an interval scale with a clearly defined bounded value 
range.

QoE fairness from the operator’s perspective

Throughout the paper, we have considered fairness from the 
operator’s perspective. In fact, for most of today’s common 
applications usage scenarios, users are not necessarily aware 
of whether they receive a fair QoE. The question arises, then, 
why should operators care about fairness?

We posit that QoE fairness can help operators obtain better 
overall customer satisfaction, if used, e.g., as a secondary ser-
vice optimization objective. For instance, when optimizing 
a service for average QoE, it is common to find a family of 
solutions with similar results QoE-wise, but varying fairness 
levels. In such cases, choosing the fairer solution (with some 
additional constraints in terms of acceptance thresholds) will 
often result in more satisfied users, and lower churn levels.

These optimizations become more important in multi-
application scenarios, where the relative value of each QoS 
metric (e.g., throughput, latency) can vary wildly in terms 
of QoE. Assuming that the QoE models produce compara-
ble results, QoE fairness may imply very different resource 
management policies than just trying to give each user a fair 
share of the network’s capacity. This type of application, 
however, remains contingent on the development of QoE 
models whose results can be compared across applications. 
This is still an open problem.

For some application scenarios, where social interaction 
happens in parallel to the service delivery (e.g., real-time com-
menting on social networks for a live stream), or where the 
use of different devices can have an impact on both resource 
requirements and perceived quality (as exemplified in “From 
QoS to QoE management”), then fairness can be more relevant 
for individual applications, as an unequal share of resources 
leading to unfairness may be observed by the users themselves, 
and QoS-fair approaches can result in sub-optimal QoE.

Another possible interpretation of QoE fairness would 
be in terms of societal welfare, with the understanding that 
a more fair distribution of QoE would make for a larger 
number of satisfied (or even happy) users. This may also be 
relevant in the case of non-commercial scenarios, such as 
city- or coop-owned networks.

Further work

The notion of QoE fairness defined in this paper leads us to 
some interesting questions, which may be the basis of future 
research endeavours.

•	 QoE Fairness-aware service optimization: whereby 
QoE management mechanisms consider fairness as an 
optimization target (e.g., in a two-step optimization 
approach, optimizing first for overall QoE, and then 
for fairness).
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•	 The comparability of QoE results for different applica-
tions: QoE fairness is most interesting for operators 
when QoE can be compared across services. This is 
not (necessarily) the case with current QoE models, 
and further studies are needed in this direction. This 
research line is also relevant to service pricing and 
QoE-aware SLA definitions, as addressed for example 
by Varela et al. [44].

•	 The concept of QoE fairness can be more relevant for 
long-term contexts than for short-term ones. A provider 
may need to ensure that its customers are equally served 
over one month, while short-term variances may be 
accepted by the users. In a rough sense, some providers 
are implementing this with reduced data speeds at the 
end of a month when a certain data volume is consumed. 
This may lead to a certain kind of long-term fairness, see 
also “Notion of fairness in shared environments”. How-
ever, most QoE models only produce short-term QoE 
estimates, and are not suited for other usages.

•	 Related to the item above, service pricing is also rel-
evant to the notion of QoE fairness (as in, is the utility 
perceived by the user commensurate to the price they 
pay?), yet it is not really considered in QoE models. On 
this point, price and fairness can be closely related. Our 
proposed metric is price-independent as long as the QoE 
models consider price (and consequently users’ expecta-
tions), but this is not usually the case.
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Appendix

See Tables 5 and 6.

Table 5   Different statistical measures illustrating various properties 
of QoE fairness indexes

A system is considered which leads to two QoE classes A and B for 
its users with QoE values YA and YB . Both classes are observed with 
same probability pA = pB =

1

2
 . Scenario ‘S3’ and ‘S4’ lead to maxi-

mum unfairness

Scenario description for user classes A and B

Class A YA = 0 YA = 1 YA = 0 YA = 1

Class B YB = � YB = � YB = 1 YB = 5

Scale [0; 1] [0; 1] [0; 1] [1; 5]

Scenario S1 S2 S3 S4

 E[Y] 1

2
�

1

2
(1 + �)

1

2
3

 Var[Y] 1

4
�2

1

4
(1 − �)2

1

4
4

 Std[Y] 1

2
�

1

2
(1 − �)

1

2
2

 c[Y] 1 1−�

1+�
1 2

3

 J 1

2

1

2

(1+�)2

1+�2

1

2

9

13

 F 1 − � � 0 0

Table 6   Notation and variables frequently used

General variables
 Y QoE values of the users in a system, Y ∈ [L;H]

 L Lower bound of the QoE value range
 H Upper bound of the QoE value range
 Y∗ Normalized QoE values Y∗ =

Y−L

H−L
∈ [0;1]

 T(Y) Linear transformation of QoE values, 
T(Y) = aY + b

Key measures
 � = E[Y] Average QoE across all uers
 � = Std[Y] Standard deviation, Std[Y] =

√

E[Y2] − E[Y]2

 c Relative standard deviation (RSD), c = �∕�

 J Jain’s fairness index, J =
1

1+c2
= E[Y]2∕E[Y2]

 F New fairness index, F = 1 −
2�

H−L

Most unfair system
 Yu QoE values in most unfair system
 �u Average QoE in most unfair system, 

�u =
1

2
(H + L)

 �u       Stand-
ard deviation, 
�u =

1

2
(H − L) cu

RSD, cu =
H−L

H+L

 Ju Jain’s index, Ju =
(H+L)2

2(H2+L2)

 Fu Fairness index, Fu = 0

Maximum and minimum values of fairness indexes
cmin 0, if � = 0

cmax
1

2

H−L
√

HL

Jmin
4HL

(H+L)2

Jmax 1, if � = 0

Fmin 0 for most unfair scenario
Fmax 1, if � = 0
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