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Abstract We introduce ShadowGAN, a generative
adversarial network (GAN) for synthesizing shadows
for virtual objects inserted in images. Given a target
image containing several existing objects with shadows,
and an input source object with a specified insertion
position, the network generates a realistic shadow for
the source object. The shadow is synthesized by a
generator; using the proposed local adversarial and
global adversarial discriminators, the synthetic shadow’s
appearance is locally realistic in shape, and globally
consistent with other objects’ shadows in terms of shadow
direction and area. To overcome the lack of training data,
we produced training samples based on public 3D models
and rendering technology. Experimental results from a
user study show that the synthetic shadowed results look
natural and authentic.

Keywords shadow synthesis; deep learning; genera-
tive adversarial networks; image synthesis

1 Introduction
Inserting virtual objects into scenes has a wide
range of applications in visual media, from movies,
advertisements, and entertainment to virtual reality.
Consistency of shadows between the original scene
and the inserted object contributes greatly to the
naturalness of the results. If no prior scene knowledge
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is provided, it requires much labor and expertise to
make the scene look as realistic as possible, in a
tedious photo or video editing process. Even an
experienced editor spends much effort to produce
convincing results using commercial editing software
such as Adobe Photoshop. The difficulties in this
process stem from the lack of accurate estimates of
illumination and scene geometry.

In this paper, we address the shadow synthesis
problem for virtual objects inserted in an image.
Shadow synthesis can be implemented by use of
rendering techniques, which require much information,
such as illumination, scene models, rendering
frameworks, etc. Other methods [1–4] synthesize
shadows with approximately estimated illumination
and reconstructed scene geometry. Such computations
either require user interaction or precise tools, and yet
are time-consuming.

We propose to solve this problem using a novel deep
learning-based framework without explicit knowledge
of scene geometry and illumination. We use a
convolutional neural network to directly predict the
shadow map for a virtually inserted object, given only
the target scene image and the specified insertion
position in the image domain. Specifically, we use
a generative adversarial network (GAN) framework,
where the generator G tries to produce outputs that
cannot be distinguished from “real” results, while the
local discriminator DL and global discriminator DG

try to detect the generator’s “fakes” from local and
global perspectives, respectively. During training,
the generator and discriminators compete until
convergence. As a result, a real-type, single-channel
shadow map is predicted, from which the edited
result with a synthetic shadow can be generated
by a simple pixel-wise original image multiplication.
The input constraints to our ShadowGAN are few
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Fig. 1 Input and output of ShadowGAN. (a) Given an input target
scene with original objects and a virtually inserted object (here, a toy
car), as well as the object mask ((a) top-right), ShadowGAN predicts
a shadow map (b) which can be used to synthesize the shadowed
result (c) with a simple pixel-wise product operation. The ground
truth result is shown in (d).

while the computational efficiency is high as only a
simple feed-forward operation through the network is
needed.

Our method works for an image of a static scene.
We assume scene surfaces to be made of Lambertian
materials and we do not model specular reflection
or inter-reflections between surfaces in the scene.
Despite these assumptions, we can produce plausible
results. To summarize, the contributions of our work
are:
• A convolutional neural network, ShadowGAN,

which can synthesize shadows for virtually inserted
objects in target images.

• A local–global conditional adversarial scheme for
both shape and direction supervision in shadow
synthesis.

• A practical dataset for shadow synthesis network
training, produced using rendering techniques and
public 3D models.

2 Related work
In this section, we discuss related prior work, mainly
on shadow synthesis, shadow detection and removal,

and image-to-image translation using generative
adversarial networks.

2.1 Shadow synthesis

In image editing, knowledge of illumination and
scene geometry is essential to achieving realistic
shadow synthesis results. Previous methods have
been proposed to recover such information from input
images or videos. Intrinsic image decomposition
algorithms aim to separate a single image I into
a pixel-wise product of an albedo or reflectance layer
R and a shading layer S [5–8]. The reflectance
layer reveals how the material reflects incident light,
and the shading layer accounts for illumination
effects due to geometry, shadows, and inter-reflections.
However, approaches based on pixel-wise illumination
and reflectance maps are not effective enough to
support complex editing operations such as object
insertion. For visually plausible results, shadows must
be carefully computed, which requires an analysis
of scene geometry and lighting configuration in 3D
space. The problem of estimating illumination from
images, or inverse lighting, has been investigated. In
Refs. [9, 10], illumination distributions in a scene from
object shadows of known shapes are recovered. Khan
et al. [11] proposed editing object materials in a static
image. Liu et al. [4] estimated illumination and scene
geometry from video for various video applications.
Ge et al. [12] proposed an object-aware image editing
approach to obtain consistency in structure, color,
and texture in a unified way.

Rendering virtual objects into real scenes has been
long investigated. A survey is provided by Kronander
et al. [13]. Various ways have been explored to solve
the problems of illumination and geometry recovery.
Debevec [14] proposed estimating scene radiance and
global illumination using a mirrored ball to capture a
high-dynamic range lighting environment, to support
object insertion. Karsch et al. [1] developed an image
composition system to render synthetic objects into
legacy photographs. The scene structure and area
light are provided by user interaction or a data-driven
approach [2]. Briefly, previous methods for shadow
synthesis either require user interaction and scene
knowledge, or recover explicit representations of scene
geometry and illumination. Our method, in contrast,
is novel in synthesizing shadows using a convolutional
neural network without any requirements about the
scene or the inserted object model.
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2.2 Shadow detection and removal

The opposite problem to shadow synthesis, i.e.,
shadow detection and removal, has been studied in
the computer vision community [15–20]. Its goals are
to separate the target image into lit and shadowed
areas, and thence to remove the shadows. In early
work, color [15, 20], edge [18], or segmentation [19]
cues was used to build high level features for shadow
description. Ma et al. [21] introduced appearance
harmonization that makes the appearance of a de-
shadowed region compatible with the rest of the
image. Recently, convolutional neural networks for
shadow removal have been proposed [16, 17]. In
Ref. [17], the input image is decomposed into a
shadow-free image and a shadow matte; the shadow
matte is predicted using a convolutional neural
network. Two stacked conditional GANs successively
detect the shadow region and remove the shadow
matte.

In the shadow removal problem, the objects casting
shadows are commonly absent, while in the shadow
synthesis problem, a virtually inserted object is
present.

2.3 Image-to-image translation using genera-
tive adversarial networks

Goodfellow et al. [22] first introduced the concept of
the generative adversarial network (GAN), consisting
of two sub-networks: a generator (G) and a dis-
criminator (D). G’s task is to generate outputs to
resemble the ground truth, while D tries to distinguish
between fake and real inputs, i.e., between generated
output and the ground truth. G and D work against
each other, and the ideal outcome is for G to
produce outputs that D cannot discriminate. Since
its introduction, the GAN method has been widely
applied to image-to-image translation problems,
such as face image synthesis [23–25], image super
resolution [26], and image completion [27, 28].
Variations of the GAN architecture have also been
developed, including conditional GAN [29, 30],
CycleGAN [31], StarGAN [24], etc.

Isola et al. [30] proposed a GAN network that
translates an image into another domain, such as
from a sketch to a photo, from architectural maps
to photos, from black-and-white to color photos,
etc. Their approach used a U-net structure inside
the generator, enabling earlier convolutions to be
concatenated with later deconvolutional layers to

Fig. 2 Training a conditional generative adversarial network to
synthesize shadow maps. The local discriminator DL learns to classify
between fake and real cropped tuples. The global discriminator DG

learns to classify between fake and real tuples from a global view. The
generator G learns to fool the discriminator.

pass down information about the input. In an image
completion task [27], the contents of an arbitrary
image region conditioned on its surroundings are
generated by a convolutional neural network. Later,
Iizuka et al. [28] proposed an image completion
network with global and local discriminators. The
addition of a local discriminator helps scrutinize
the details of the completed image. Portenier et
al. [32] developed the Faceshop system which supports
interactive face editing with user provided sketch
and color information as input conditions for the
GAN architecture. Wei et al. [33] proposed to learn
adaptive receptive fields instead of manually selecting
dilated convolutional kernels.

Our proposed ShadowGAN is an adaption of GAN,
which uses a local discriminator to guarantee shape
correctness and a global discriminator to guarantee
direction and area compatible with other objects’
shadows.

3 Method
3.1 Training data

3.1.1 Approach
Our proposed ShadowGAN is trained on synthetic
data, where static scene images are rendered using
3D models indexed by ShapeNet [34]. Given an
input target scene image It including original objects
with shadows and a virtually inserted object without
shadow, whose position in the scene is specified by a
mask ms, our goal is to predict a shadow map S, with
which the output image Io with a synthetic shadow
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can be obtained by a simple pixel-wise product
operation Io = It ∗ S. With the scene image It and
source object mask ms as inputs, the shadow map S

is predicted using a generative network (see Fig. 3),
where a reconstruction loss and two adversarial losses
are used to guarantee the synthesis produces realistic
output.

As a supervised deep learning-based image
synthesis method, ShadowGAN requires paired input
and ground truth images as training data, where the
input scene image It contains N objects (N � 3 is
assumed in our work) with shadows and one virtually
inserted source object without a shadow; its mask
ms indicating the insertion region is also provided.
The ground truth shadow map S has the same size
as It. Each position p of S is associated with a
real number, indicating that the output synthetic
image color Io(p) can be obtained by multiplying the
scene image color It(p) by the coefficient S(p), under
the assumption that ambient light is present in the
scene.

Such data are impossible to effectively collect in
real life. Firstly, on one hand, scenes in which a few
objects have shadows and one object is fully lit do not
realistically occur in reality, while on the other hand,
if the virtually inserted object is copied and pasted
from other photos, the ground truth shadow map
S cannot be generated efficiently and realistically.
Secondly, a wide variety of illumination, scenes, and
camera configurations are required for training data,
which is both tedious and challenging for real-life
photo capture.

Instead of using real-life photos, we use rendering
technology to generate the training data. We render
each target scene image It with N objects placed
on the ground with shadows and one object with its
shadow turned off. The shadow map S is generated
by rendering a scene image I ′

t with all the shadows
turned on, then dividing it by It: S = I ′

t/It.

3.1.2 Scenes
We use a sub-set of commonly seen 3D model
categories such as can, printer, bed, etc. from a
publicly available dataset, ShapeNet [34]. The object
categories used for rendering are listed in Table 1. In
total, 9265 objects were selected for rendering scenes.
To render realistic ground planes, we downloaded
textures from Internet using key-words search for,
e.g., woollen, stone, tablecloth. A total of 110 textures

Table 1 ShapeNet 3D model categories used to render the target
scene

bus coach mug printer stove
bowl dishwasher can machine motorcar
bag grip suitcase bathtub bookshelf

cabinet auto car mailbox microwave
washer tower

were randomly chosen for rendering the plane. In each
target scene image, up to four objects were randomly
selected from the model collection, one of them being
the virtually inserted object, and the rest being the
original objects in the scene.

We assume each of the x, y, z coordinates to be
in the range [−1, 1]: the ground plane is set to
P = {(x, y, z)|x ∈ [−1, 1], y ∈ [−1, 1], z = 0}. The
four randomly selected objects are placed at locations
(0.6, 0.6, 0), (−0.6, 0.6, 0), (−0.6, −0.6, 0), (0.6, −0.6, 0),
randomly rotated about the z-axis.
3.1.3 Camera
The camera position Pc = (xc, yc, zc) was randomly
chosen in the 3D space within the range:

3.5 �
√

xc2 + yc2 + zc2 � 4.5

π/6 � arcsin (zc/
√

xc2 + yc2 + zc2) � π/3
3.1.4 Illumination
All scenes were illuminated by a single white point
light with fixed intensity. The distance between the
light and the center of the floor was randomly chosen
in a limited range: the light position Pl = (xl, yl, zl)
was randomly chosen in the following range:

3.5 �
√

xl2 + yl2 + zl2 � 4.5

π/4 � arcsin (zl/
√

xl2 + yl2 + zl2) � π/3
3.1.5 Rendering
We used path tracing [35] to render the scenes, with
128 samples per pixel. To find the mask of the inserted
object, we rendered it again with its material set to
pure black, and then extracted its mask from the
rendered image.
3.1.6 Training data
As a result, 12,400 training samples were generated,
comprising a scene image It, source object mask
ms, and ground truth shadow map S, rendered at
resolution 256 × 256.

3.2 Formulation

3.2.1 Approach
Our goal is to train a generator G that learns a
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mapping function from domain X to domain Y ,
where X = {xi}N

i=1 are input scenes with virtually
inserted object mask xi = 〈Ii

t , mi
s〉, and Y = {yj}N

j=1
are the corresponding shadow maps yi = Si. The
key requirement for learning is that the generated
shadow map G(x) should reconstruct the shadow
map, while not being distinguished from the ground
truth shadow map data y ≈ pdata(y). We introduce
a local discriminator DL and a global discriminator
DG which are trained to detect the generated shadow
maps as “fakes” from aspects of local shape and global
direction and area, respectively. Our objective thus
contains a reconstruction loss LL1 , a local adversarial
loss LL

GAN, and a global adversarial loss LG
GAN.

3.2.2 Reconstruction loss
Reconstruction loss is commonly used in supervised
image-to-image translation problems [28, 30, 36], to
constrain the generated result to be similar to the
ground truth in an L1 or L2 sense. Here we use
L1 norm reconstruction loss to measure the error
between the predicted shadow map G(x) and the
ground truth shadow map y:

LL1(G) =‖ y − G(x) ‖1 (1)
3.2.3 Local adversarial loss
The local discriminator DL tries to distinguish the
generated fake results G(x) from real samples y

from local considerations, so only looks at the region
around the source object. Intuitively, the generated
shadow G(x) for the source object should be as similar
as possible to the ground truth sample y within a
local region. We crop a square region centered at the
source object, of side half the original image size, i.e.,
128 × 128 pixels, and only pass the cropped region
of the predicted shadow map C(G(x)) or ground
truth shadow map C(y), with conditional input scene
image and source object mask C(x), to the local
discriminator. Here, C(·) is the cropping operator.
The local adversarial loss is defined to be

LL
GAN(G, DL) =Ex,y[log DL(C(x), C(y))]

+ Ex[1 − log DL(C(x), C(G(x)))]
(2)

G tries to minimize this objective against the local
adversarial DL that tries to maximize it. DL takes
the cropped version of either conditional real samples
〈x, y〉 or generated fake samples 〈x, G(x)〉 as inputs.
The discriminator determines whether the samples
are real or fake.

3.2.4 Global adversarial loss
The global discriminator DG tries to distinguish the
generated fake results G(x) from real samples y using
a global view of the whole shadow map. In particular,
the generated shadow G(x) for the source object
should be compatible with other objects’ shadows in
the original scene in terms of direction and area.

LG
GAN(G, DG) =Ex,y[log DG(x, y)]

+ Ex[1 − log DG(x, G(x))] (3)
where G tries to minimize this objective against
the global adversarial DL that tries to maximize
it. DG takes either conditioned real samples 〈x, y〉
or conditioned generated fake samples 〈x, G(x)〉 as
inputs.
3.2.5 Full objective
The overall objective is the weighted sum of the loss
terms:

L(G, DL, DG) = LL
GAN(G, DL)

+ LG
GAN(G, DG)

+ λLL1(G) (4)
where λ = 200 controls the relative importance of the
objective terms. The goal is to determine:

G∗ = arg min
G

max
DL,DG

L(G, DL, DG) (5)

3.3 Implementation

3.3.1 Conditional shadow map generator
Figure 3 visualizes the conditional shadow map
generator. The generator takes an input of size
256 × 256 with 4 channels; 3 are RGB channels from
the target scene and 1 is the source object mask ms.
The output is a single channel shadow map of size
256×256. We adopt the encoder–decoder architecture

Fig. 3 Conditional shadow map generator.
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proposed by Isola et al. [30], where skip connections
(U-net) are set up to concatenate the corresponding
layers in encoder and decoder. The generator
downsamples the input using strided convolutions,
followed by intermediate layers of dilated convolutions
[37] before upsampling using transposed convolutions.
We use the ReLU activation function after each
layer except for the output layer, which uses a tanh
activation function. In total, the proposed editing
network has 15 convolutional layers with up to 256
feature channels.
3.3.2 Discriminator networks
Following Iizuka et al. [28] and Portenier et al. [32],
we use local and global discriminators as adversaries
for generator training (see Fig. 4). The input to the
global discriminator is a 256 × 256 × 5 tensor: a fake
shadow map sample Sf or a real shadow map sample
Sr, conditional input target scene image It, and the
inserted object mask ms. The local discriminator
uses the same input tensor but works on a cropped
region of size 128 × 128 centered around the inserted
object position.

Both discriminators are fully-convolutional
networks, with the spatial tensor dimension gradually
downsampled to 1 × 1. Feature channels increase up
to 512 channels then decrease to 1. The outputs of
discriminators are predictions whether the inputs
are more like real samples or fake ones. We use
leaky ReLU activation functions with slope set to
0.2 everywhere in the discriminators, except for the
last layer which uses a sigmoid activation function.
Full network architectural details are provided in
Tables 2 and 3.

3.4 Optimization and parameters

To optimize the proposed ShadowGAN, we follow Ref.
[30] in which gradient descent steps for D and G are
alternately performed. We apply the Adam solver
[38] with learning rate set to 0.0002, and momentum

Fig. 4 Discriminator architecture, comprising a global (top) and a
local (bottom) network.

Table 2 Generator architecture. After each convolutional layer,
except the last, there is a rectified linear unit (ReLU) layer. The
output layer consists of a convolutional layer with a tanh function
instead of a ReLU layer. “Outputs” gives the number of output
channels for the output of the layer

Type Kernel Dilation Stride Outputs
Conv. 5×5 1 1×1 64
Conv. 3×3 1 2×2 128
Conv. 3×3 1 1×1 128
Conv. 3×3 1 2×2 256
Conv. 3×3 1 1×1 256

Dilated Conv. 3×3 2 1×1 256
Dilated Conv. 3×3 4 1×1 256
Dilated Conv. 3×3 8 1×1 256
Dilated Conv. 3×3 16 1×1 256

Conv. 3×3 1 1×1 256
Deconv. 4×4 1 1/2×1/2 128
Conv. 3×3 1 1×1 128

Deconv. 4×4 1 1/2×1/2 64
Conv. 3×3 1 1×1 64

Output 3×3 1 1×1 1

Table 3 Discriminator architectures. All Conv. layers are followed
by leaky ReLU activation (slope 0.2). The output layer consists of a
convolutional layer with sigmoid activation; it predicts the probability
that an input shadow map is from real samples rather than the
generator network

(a) Local discriminator

Type Kernel Stride Outputs
Conv. 4×4 2×2 32
Conv. 4×4 2×2 64
Conv. 4×4 2×2 128
Conv. 4×4 2×2 256
Conv. 4×4 2×2 512
Conv. 4×4 2×2 128

Output 4×4 2×2 1

(b) Global discriminator

Type Kernel Stride Outputs
Conv. 4×4 2×2 32
Conv. 4×4 2×2 64
Conv. 4×4 2×2 128
Conv. 4×4 2×2 256
Conv. 4×4 2×2 512
Conv. 4×4 2×2 128
Conv. 4×4 2×2 64

Output 4×4 2×2 1

parameters β1 = 0.5, β2 = 0.999. The training
process using 100 epochs takes about 5 hours on
a Titan 1080 Ti graphic card.

4 Results
4.1 Initial tests

We have tested ShadowGAN on rendered synthetic
scenes from the test set. The test set was rendered
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using the same rendering strategy as for the training
set, with randomly selected models, placed object
positions and orientations, illumination and camera
configurations. Time for shadow synthesis was about
0.3 s for a 256 × 256 input image on a Titan 1080 Ti
graphic card. A gallery of corresponding synthetic
shadowed results is shown in Fig. 8. Figure 5 shows
synthetic results with the same scene and illumination,
but viewed from randomly selected viewpoints. It can
be seen that even when observed from different view
points, the synthetic shadows are visually realistic.
As a further test, Fig. 6 shows results with the same
scene and illumination, but slightly different camera
poses caused by camera rotation. It can be seen
that the synthetic shadows are temporally consistent

Fig. 5 Two examples of shadow synthesis for the same scene and
illumination, with different viewing angles. In each example, top row:
input scenes, bottom row: corresponding synthetic results.

Fig. 6 Shadow synthesis for the same scene and illumination, with
a slightly rotated camera. Top row: input scenes, bottom row:
corresponding synthetic results.

during the camera movement.
ShadowGAN supports inserting virtual objects in

sequence. Figure 7 shows an example of step-by-step
object insertions with shadows synthesized using our
method.

As ShadowGAN is the first deep learning-based
shadow synthesis network, we next present an
ablation study to demonstrate the benefits of the
components of our system, followed by a user study
to verify whether fake results from ShadowGAN are
indistinguishable from real ones.

4.2 Ablation study

In order to evaluate the effectiveness of components of
the proposed method, we re-evaluated ShadowGAN
with alternative loss functions: with only the
reconstruction loss (denoted as L1), with the
reconstruction loss and the local adversarial loss
(denoted as L1 + Local) and with the reconstruction
loss and the global adversarial loss (denoted as
L1 +Global). Representative visual results are shown
in Fig. 9. The results indicate that with some
losses turned off, using functions L1, L1 + Local, and
L1 +Global do not generalize well to the test samples
and fail to predict visually plausible shadows with
correct shape, area, and direction.

We also evaluated an input variation, in which
the input source object position was not explicitly
provided by a mask ms either for the generator or
for the discriminators. Figure 10 provides a visual
comparison under input variations. The results
indicate that the source object mask ms is essential
for ShadowGAN to obtain good results.

4.3 User study

To further assess whether the synthetic shadows for
virtually inserted objects are visually natural and
authentic, we conducted a user study with the task of
observing and determining whether the shadows from
our synthetic results look real. We also showed real
scenes to the subjects and asked them to determine
whether the images were real.

Fig. 7 Inserting virtual objects in sequence.
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Fig. 8 Gallery of synthetic results. Each example, left to right: (a) input target scene with a virtual source object, (b) input source object
mask, (c) predicted shadow map using ShadowGAN, (d) synthetic shadowed result, and (e) ground truth shadowed result.

We collected 20 pairs of real and fake shadowed
results from the test scenes; each pair shows the
same scene. We invited 20 subjects without viewing
or perception issues to observe and rate the images.
Each subject observed a randomly selected image
from each scene pair—either the synthetic result or
the real shadowed image, and assessed whether the

shadows in the image were real. We collected all votes
from the subjects, and summarise the results of the
user study in Table 4. As a result, 50.48% of our
synthetic shadows were assessed to be real images.
Even shadows in the real images were sometimes
considered to be fake; only 57.14% were considered
to be real. The summary indicates that the visual
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Fig. 9 Ablation study for loss functions. Different losses lead to different qualities of results. Each column shows results trained under a
different loss.

Fig. 10 Ablation study for source mask. Each row shows a scene with
our shadow synthesis result and the result without source mask, ms.

Table 4 User study summary

Rated real Rated fake
Real scene 57.14% 42.86%
Synthetic scene 50.48% 49.52%

effectiveness of synthetic results from ShadowGAN is
close to that in rendered scenes.

5 Limitations and conclusions
ShadowGAN has limitations. Firstly, as discussed
in Section 3.1, our training set and test set were
produced using rendering technology on public

3D models rather than using real-life photos. As
collecting real-life photos with some objects’ shadows
turned off is a challenging task, we regard collecting
and testing real-life photos as requiring further work.
Secondly, when testing our model, a scene with
only one virtually inserted object is fed into the
network. Synthesizing shadows for multiple objects
is not supported by ShadowGAN. However as we
have shown in the experimental results, users may
iteratively perform insertion operations, one object
at a time. As pioneering work that uses GAN to
synthesize shadows for virtual object, we only tested
our model on 256 × 256 images (as did Ref. [30]).

In summary, we have presented a generative
adversarial network—ShadowGAN—which can
synthesize shadows for virtual objects in images.
Shadows are predicted from a generator which during
training competes against a local discriminator and
a global discriminator. To our knowledge, this is the
first novel shadow synthesis solution using a deep
learning-based framework. It benefits from being
free from input constraints and is computational
effective. For network training, we have produced a
large set of rendered scenes using public 3D models
in commonly seen object categories. We believe both
the training data and ShadowGAN will benefit the
community of computer graphics and virtual reality.
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