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Abstract We present a novel method to produce
discernible image mosaics, with relatively large image
tiles replaced by images drawn from a database, to
resemble a target image. Compared to existing works
on image mosaics, the novelty of our method is two-fold.
Firstly, believing that the presence of visual edges in the
final image mosaic strongly supports image perception,
we develop an edge-aware photo retrieval scheme which
emphasizes the preservation of visual edges in the
target image. Secondly, unlike most previous works
which apply a pre-determined partition to an input
image, our image mosaics are composed of adaptive
tiles, whose sizes are determined based on the available
images in the database and the objective of maximizing
resemblance to the target image. We show discernible
image mosaics obtained by our method, using image
collections of only moderate size. To evaluate our
method, we conducted a user study to validate that
the image mosaics generated present both globally and
locally appropriate visual impressions to the human
observers. Visual comparisons with existing techniques
demonstrate the superiority of our method in terms of
mosaic quality and perceptibility.

Keywords image mosaic; image retrieval; image
synthesis

1 Introduction
An image mosaic or photographic mosaic [1, 2] is a
picture (usually a photograph) that is divided into
usually uniformly sized tiles, each of which is replaced
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by another photo, so that the entire mosaic resembles
a target photo. As an art form, image mosaics
have widely appeared in advertising, decoration, and
entertainment. Ideally, results from such a “pictures
in a picture” composition paradigm should provide
both global and local visual impressions. Globally,
when viewed afar or with purposely blurred vision,
the mosaic should resemble the target photo in color
and texture. At the same time, close examination
should easily reveal the content of each component
photo.

At one extreme, producing an image mosaic is
trivial if the tiles are sufficiently small, e.g., the size
of a pixel. Spatial integration within the human eye
leads to perception of each small photo as a singly
colored tile, leading to the best approximation of the
target photo globally. However, the contents of the
small photos are no longer recognizable. A compelling
question is how to attain both global resemblance
and local recognizability by use of larger image tiles
in a mosaic, as shown in Fig. 2. The main challenge is
that with larger tiles, close resemblance between the
small photos and the target photo is harder to achieve
and their visual differences are more apparent.

In this paper, we present a novel method to produce
discernible image mosaics which resemble a target
photo, using relatively large image tiles replaced by
photos drawn from a database. Compared to existing
works on image mosaics [3–8], the novelty of our
method is two-fold:
• Firstly, we recognize the sensitivity of human

perception to edge structures in images and develop
a photo search mechanism that is edge-aware. Since
detectable visual differences between the small
photos and the target photo are inevitable, we
elect to emphasize preservation of visual edges in
the target photo over overall resemblance of texture
information.
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• Secondly, most previous mosaic works apply a
predetermined partition to the input image, while
our image mosaics are composed of adaptive
tiles, whose sizes are determined based on the
available photos in the database and the objective
of maximizing resemblance to the target photo.
To realize edge-aware photo retrieval, we adopt a

weighted L2 norm to measure the similarity between
two images. The weighting scheme depends on edge
features present in the query image so that edge
similarities are emphasized. Furthermore, to reduce
the need for exact color matching, we introduce a
color offset term when computing the image similarity
distance.

Adaptive tiles are determined incrementally, using
a scan order across the input image. Joint tile size
optimization and maximization of image resemblance
is carried out via dynamic programming. Compared
to the use of fixed partitions for image mosaics, our
adaptive partition scheme is able to exploit the full
potential of photos in the database to improve the
quality of the final mosaic result.

The database for our mosaic generation consists
of photos “in the wild”, such as those from an on-
line image search or existing image repositories. To
keep the search cost to a reasonable level, we work
with photo datasets of moderate size (here, 180,000
images). With our edge-aware retrieval and database-
adaptive image partitioning, our method attempts to
make the best out of this limited set of photos.

Figure 1 shows discernible image mosaics obtained
by our method, which exhibit both global resemblance
to the target photo, and local recognizability of the
photo tiles. There is still a gap in quality and artistry
compared to an artist’s creation such as that shown

in Fig. 2. However, it is worth noting that the small
photos therein were hand-crafted by the artist and
did not come from a generic photo collection.

To evaluate our method, we conducted a user
study to validate that the image mosaics generated
present both globally and locally appropriate visual
impressions to the human observers. Visual
comparisons with existing techniques demonstrate
the superiority of our method in terms of mosaic
quality and perceptibility.

2 Related work
2.1 Traditional mosaics

Mosaicing is a historical art form, producing a
picture or pattern composed of a set of small
colored or textured tiles [9]. Nowadays, people
often create mosaic images in digital form using
computational approaches. A mosaic image can
be created by segmenting an ordinary image into
small regions by Voronoi tessellation [10, 11], or
polygon tessellation [12], and then filling these closely
neighboring irregular regions with constant colors
or textures. Other works generate mosaic images
from disconnected regular tiles. Their objective is
to arrange a set of tiles with identical shapes to
represent the content of an image in 2D, or a surface
in 3D [13]. The positions and orientations of the
tiles can be determined by computing a centroidal
Voronoi diagram [14], minimizing an energy function
with graph-cut [15], or constructing a gradient vector
flow field [16]. The color or texture of each tile is
determined by the original image. The mosaic images
generated by all these techniques can be considered
to be a stylistic representation of an input image.

Fig. 1 Discernible image mosaics generated by our method (center, right). The replacement photographs in the mosaic tiles remain recognizable
while together they resemble the target photographs (left). Two unique features of our method are the use of adaptive mosaic tiles, whose sizes
vary, and edge preservation, e.g., see outlines of the cabin.
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Fig. 2 A discernible image mosaic created by an artist. The presence
of visual edges (of the house, cow, airplane, etc.) strongly supports
perception of the objects while their textures are more artistic, showing
clearly discernible contents, than realistic. Note that the small photos
were hand-crafted by the artist, and were not retrieved from a generic
photo dataset.

2.2 Image mosaics

Image mosaics or photomosaics [2] are a variation
of the traditional mosaic art form, and are also
composed of a set of tiles. Instead of constant
colors or textures, the tiles in image mosaics are
themselves images. The tiles are not created by
texture synthesis [17, 18], but retrieved from a
database. The appearances of these images resemble
the local content of the target image, and together
represent the content of the whole target image.
Creation of an image mosaic typically occurs in two
steps, firstly determining the tile set, and then finding
a replacement image for each tile. Di Blasi et al. [4]
introduced a grid-based image descriptor and a tree
data structure to accelerate the image replacement
step. Orchard and Kaplan [5] allowed each target
image tile to be replaced by a local part of an image in
the database, using FFT to reduce the computation
in evaluating matches between local parts of images
and the tiles of the target image. Barnes et al. [19]
utilized a PatchTable data structure to reduce the
query time for image patches. Pavić et al. [6]
adopted a polynomial descriptor to approximate
the content of images. When replacing the tiles of
the target image, descriptors with different degrees

are adaptively determined based on a feature/non-
feature classification. After the initial replacement,
a merging step is used to increase tile size in non-
feature areas. Zhang et al. [8] also adopted a tile
merging step guided by region entropy to reduce
the number of tiles. This group of techniques is
closely relevant to our work. While their tile set
is typically determined by regular partitioning of
the target image, we adopt an adaptive database
approach to determine the tile set, allowing us to
fully exploit the potential of the database to ensure
tile replacement quality. Like Refs. [6, 8], we aim to
reduce the number of tiles, or equivalently, increase
the tile size. Unlike these methods which focus
on increasing the tile size in non-feature areas, our
edge-aware image retrieval approach achieves better
feature resemblance, enabling large replacement tiles
in feature areas.

2.3 Content assembly with image objects

Assembling global content with small elements has
long been a topic of interest. Instead of using general
images, many works utilize well-defined image objects
to form the global content [3, 20–22]. Kim and
Pellacini introduced Jigsaw Image Mosaics [3], which
use segmented image objects to fill the regions in
the target image. The image objects are packed
closely, and their boundaries together approximate
the region boundaries in the target image. Di Blasi
et al. [20] also achieved similar results, but with
reduced computation. Huang et al. [22] presented
an approach for creating Arcimboldo-like collages, in
which a segmented image object is usually used to
replace an entire region in the target image. Kwan et
al. [21] introduced a pyramid of arc-length descriptors
to improve the packing layout of image objects when
filling regions. The boundaries of the objects also
better resemble the region boundaries. Reinert et al.
[23] designed an interactive system for manipulating
the layout of image elements inside regions. The
layout of the elements is automatically beautified
after the placement of example elements by the user.
Zou et al. [24] introduced an efficient algorithm to
create legible compact calligrams, meaningful shapes
composed of deformed characters. These works use
well-defined objects to assemble global content, with
deformation if necessary. In contrast, our work takes
general images as elements to form global content,
and uses the edge features of the images in the
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database to approximate the edge features in the
target image. Hu et al. [25] introduced a novel
hierarchical representation of images called PatchNets
to enable fast creation of new images by replacing
image objects. Zhang et al. [26] presented PlenoPatch
which enables image object manipulation in a given
image.

2.4 Image collages

Image mosaics can also be considered to be a collage
of images. Existing works for creating image collages
often focus on the aesthetic aspect, i.e., creating
a pleasant layout of images. They do not use the
image to form meaningful global structure or content.
Rother et al. [27] proposed a labeling optimization
framework for creating visually appealing collages
from a set of images. Yu et al. [28] solved this problem
using a power-diagram-based circle packing algorithm.
Puzzle-like collages [29] exploit the boundaries of
objects or regions of interest in the images, and can
create a more compact layout. Since these works do
not try to form a global content, they have much
more freedom when placing the images compared
to our work. In terms of delivering multiple pieces
of information, our work is also related to hybrid
images [30], camouflage images [31], and hidden
images [32], in all of which the generated image is
typically composed of a small number of images.

3 Method
An image mosaic is often obtained by first diving a
target image into a set of tiles and then replacing each
tile with a database image. In comparison to existing
image mosaic work [3, 5, 7, 20], our method adopts an
edge-aware retrieval procedure for tile replacement,
making each replacement image capable of recovering
the important edge features of the target image.
In addition, our target image partitioning strategy
adaptively determines the tiles from the database,
reducing the matching error of the replacement image
for each tile, thus improving the quality of the final
image mosaic.

3.1 Edge-aware image retrieval

In this section, we describe our edge-aware image
retrieval procedure. For now we assume that the
target image is already divided into a set of tiles.
As shown in Fig. 3, our system adopts a grid-
based descriptor [4, 5, 8] to encode each image in

Fig. 3 Edge-aware image retrieval procedure.

the database or a tile in the target image: we
transform the image or tile into a regular grid and
concatenate the mean color values of all cells to obtain
a vector. To keep enough information about the
image, we use a dense grid [5], e.g., a 24 × 24 grid
for a square tile, when computing the description
vector. Thus, the description vector v has the form
(cT

1 , . . . , cT
k )T, where ci is the RGB color of the i-

th cell, and k is the total number of cells. Before
computing the description vector, we apply edge-
preserving smoothing [33] to the image to remove
details, since they may make the description vector
noisy. To straightforwardly measure the similarity
of two images, we may compute the L2 distance
between the corresponding vectors. Given an image
database, we construct a K-D tree structure from the
description vectors of the images. Given a tile in the
target image, we compute its description vector and
efficiently retrieve its replacement image by use of
the K-D tree structure [34].

The above image similarity measurement using
L2 norm treats each grid cell equally and does not
emphasize any salient features. We recognize that
edge features play an important role in defining
the content of an image and those in tiles should
resemble those in the target image (see Fig. 2).
Unlike existing methods [6] which reduce tile size
to better match edge features, we aim to produce
resembling edge features using relative large image
tiles. To emphasize edge similarity in the replacement
image, we initially attempted concatenating an edge
feature vector, the HOG descriptor [35], in the
description vector of the image. The results were
not promising, since the relative contributions of
edge and texture similarity were difficult to control,
and may even compete to such an extent that the
retrieved image neither resembles the target’s edges
nor textures. We observed that edge features are
actually formed by textures: two neighboring regions
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with different textures form a clear edge feature.
Therefore, matching of edge features can be realized
by matching textures. Based on this observation,
we adopted a weighted L2 norm to measure image
similarity, and achieve edge-aware image retrieval.
Given a tile in the target image, we first extract
its salient edge features [36]. The areas near edge
features should contribute more when measuring
image similarity. We thus generate a weight map
using Gaussian diffusion based on the edges, then
the image similarity error between a tile T and a
database image I can be computed as

E(T, I) =‖ WT (vT − vI) ‖2 (1)
where WT is a diagonal weight matrix. An entry
w in WT corresponds to a grid cell and its value
is defined as w = 1 + λe−d2/d̄2

. d is the minimal
distance between the grid cell and the edge feature.
d̄ controls the scope of the emphasized cells, and we
set it to 1

4 of the tile height. λ controls the degree
of edge emphasis and is 10 in our implementation.
We adopted the flann library [34] and modified the
L2 distance function to compute Eq. (1). WT is
considered to be a parameter, and is input to the
distance function for each retrieval.

The distance defined by Eq. (1) emphasizes
similarity in feature areas. This similarity measure
heavily depends on exact texture matching. A
replacement image with greater texture similarity
but lower edge resemblance may be preferred in this
setting. We observed from the image mosaic created
by an artist in Fig. 2 that people are sensitive to
edge structures and can tolerate a certain range of
variations in texture. This inspires us to believe
that, without loss of emphasis in edge matching,
the similarity measure between the original tile and
the replacement image could be relaxed from exact
texture matching. We thus modify Eq. (1) to

E(T, I) = min
Δv

‖ WT (vT − vI + Δv) ‖2 (2)

where Δv is an offset vector that is used for relaxation
of exact texture matching. To avoid evident texture
mismatches in the retrieved image, we constrain each
color offset Δci in Δv = (ΔcT

1 , . . . , ΔcT
k ) to be in a

certain range: each RGB color channel in Δci is in
the range [−Δd, Δd]. By introducing this color offset
vector, the color histograms of the target image and
the retrieved image need not exactly match. Since
the color offsets Δci in the cells can be different,
the transformation between these two histograms is

composed of multiple independent color translations.
We realize Eq. (2) by further modifying the distance
function in the flann library, as follows:

D(u, v) =
√∑

i(wid(ui, vi))2

d(ui, vi) = max(0, |ui − vi| − Δd)
(3)

In our implementation, Δd is set as 15 for color
channels in the range [0, 255]. The above definition
is not actually a metric, since it does not fulfil the
triangle inequality. However, this does not matter for
the K-D tree search procedure.

Image shape adaptive description vector.
Our system keeps the original shapes of the database
images when assembling the target image. For images
of different shapes, our grid-based descriptors also
have different sizes, so the range of the matching
error is proportional to the image sizes. In our current
implementation, we compute the description vector of
a square image based on a 24 × 24 grid, and an image
with aspect ratio W/H = 4/3 based on a 32 × 24
grid. Grids for images with other aspect ratios can
be derived similarly.

Partial image retrieval with weighted L2
distance. The weighted L2 norm can also be used
for partial image retrieval [5]. Given a tile, we can
set the weights as non-zero values in areas of interest,
and zero elsewhere. Then the distance computed by
Eqs. (1) and (2) is not affected by entries with weight
zero, precluding retrieval outside areas of interest.
We will describe how we benefit from this partial
image retrieval in Section 3.2.

3.2 Database-adaptive target image partition

Existing image mosaic techniques [5–7] treat target
image partitioning as a preprocessing step before
tile replacement. Their partitions are regular grids,
or guided by the content of the target image.
Such schemes ignore the content of the database,
making the generated tiles vulnerable to low quality
image replacements. We adopt a database-adaptive
target image partitioning scheme. Partitioning is
determined based on the available images in the
database, so the generated tiles are more likely to
contain desirable replacement images.

We consider the partitioning process to be
an optimization problem, involving selection of
rectangular tiles. Given a target image, we need
to select a set of tiles T from the target image Q,
such that (i) the tiles together cover the target image,
and (ii) the sum of retrieval errors over all tiles is
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minimized. This problem can be formulated as

T ∗ = argminT
(∑

T ∈T E(T )
)

,

such that
⋃

T ∈T T = Q (4)
where E(T ) = minI∈I E(T, I), and I is the image
dataset. Directly solving the above optimization
problem is difficult. There is no explicit relation
between the overall retrieval errors of different tile
sets, so an analytical approach is not applicable. In
addition, the number of tile sets which fulfil the
constraints is huge, so it is not practical to adopt
an exhaustive approach.

To obtain a feasible solution, we need to narrow
down the search space. Existing works constrain tile
sets to have grid-like layout with differing numbers
of tiles. This constraint is too strong, leading to a
small number of usable tile sets. As the images in
the database have different aspect ratios, it is natural
to modify the grid layout by allowing the tiles to
have different widths, resulting in tile sets with brick
wall layout. The number of such tile sets is huge.
Consider a row of n tiles. if each tile has m possible
widths, the number of combinations is O(mn). The
huge number of applicable tile sets ensures that the
best one can approximate the target image well.

A useful property of such tile sets is that the tiles
have a clear linear order, which means the tiles can
be determined incrementally. We thus use a dynamic
programming approach to obtain the optimal tile
set. As shown in Fig. 4, we first partition the target
image into a number of rows. For each row, we select
the tiles from left to right one by one. Since the
images in the database have different aspect ratios,
each time when selecting a new tile, there are several
options for the tile shape, leading to several branches
for the tile sets. For each tile option, we use the
accumulated matching error of all selected tiles in
this branch to update the minimal error record at the
rightmost location of this tile. The accumulated error

can be computed by an addition operation on all
matching errors of the selected tiles, since the image
shape adaptive descriptor ensures that the range of
the matching error of each tile is proportional to
the size of the tile. We continue the selection until
all possible branches reach the rightmost location of
the row. By using dynamic programming, we can
efficiently obtain the optimal tile set with minimal
matching error for the row. Repeating this procedure
for each row generates a complete tile set, used for
creating the image mosaic.

Relaxation of the tile shape. In the above
image partition algorithm, the shapes of the tiles are
determined by the shapes of the database images.
We can introduce tiles with other shapes by allowing
partial image retrieval. This can be achieved by using
the weighted L2 norm (Section 3.1). This relaxation
increases the number of tile candidates for selection,
and therefore may further improve the quality of
the final image mosaic. In our implementation, we
constrained the size of partial images to be at least
80% of the original images, allowing image contents
to be preserved in the partial images.

Repetition control of the replacement
images. For target images with repeated textures,
the generated image mosaic may contain duplicated
replacement images. To avoid apparent repetition
artifacts, we record the replacement images used
during the partitioning procedure, and constrain
multiple successive replacement images to be different.
In our implementation, we consider 10 such images
to avoid repetition artifacts.

Generalization of tile layout. Although we
introduced our partition procedure using brick–wall
like tile layout, our method can easily be generalized
to other layouts, as long as the tiles have a clear linear
order. For example, our method may adopt a vertical
tile selection procedure, based on columns rather
than rows. It is also possible to combine horizontal

Fig. 4 For each row of the target image, we obtain the optimal tile set using dynamic programming.
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and vertical tile selection procedures to create more
interesting tile layouts. Here, the target image needs
to be first manually partitioned into horizontal and
vertical strips, using our algorithm to determine
the tile images in each strip. It is also possible to
adaptively determine the combination of horizontal
and vertical strips according to image content. The
algorithm for determining the image strips is beyond
the scope of this paper, and is potential future work.

4 Evaluation and discussion
We tested our method with a broad class of images.
Figures 1 and 11 show some results using our method.
Figures 6 and 9 show image mosaics produced by
our method with different numbers of rows. The
edges of the target images are well-preserved, and
the global contents are faithfully recovered, even
with a small number of rows (e.g., using 5 rows
for the tai chi diagram and 12 rows for the eagle
and flamingo image). The content of each tile can
also be easily recognized. All image mosaics were
created using the same image database, with about
180,000 images. Most images were taken from the
database used in Ref. [37]; some were downloaded
from free image websites, such as Flickr, under a
Creative Commons license. All images were added
to the database unmodified. With this database, our
method produces image mosaics reasonably quickly,
in general, taking less than 3 min to prepare a single
row of an image mosaic. Since the computation
of each row is parallelizable, the total computation
time for a complete image mosaic is less than 5 min.
The computation time was recorded on a PC with a
2.3 GHz Xeon CPU and 64 GB RAM.

We have evaluated our method thoroughly. We

evaluated the effectiveness of our database-adaptive
target image partitioning scheme and edge-aware
retrieval procedure separately. We compared our
results with the state of art to show the advantages
of the proposed method. We also investigated how
the database might affect our method. Finally, we
conducted a user study to evaluate our method from
the user’s point of view.

4.1 Evaluation of algorithm

To investigate the effectiveness of the two components
of our algorithm, we generated image mosaics
as follows: (a) keep edge-aware image retrieval,
replace database-adaptive image partitioning with
regular partitioning, (b) keep database-adaptive
image partitioning, replace edge-aware image retrieval
with retrieval using simple L2 norm, (c) use both
edge-aware image retrieval and database-adaptive
image partitioning. Figure 5 shows image mosaics
generated with these three approaches. In the first
case, since the tile layout is constrained, the results
cannot exploit the full potential of the database.
In the second case, since the retrieval procedure is not
edge-aware, edge preservation is affected. In the third
case, the results achieve the best overall resemblance
of the edge features to those in the target images.
This indicates the importance of using both com-
ponents of our algorithm to generating good image
mosaics.

4.2 Comparison with other methods

We compared our method with other representative
techniques that generate image mosaics with similar
styles to ours. These techniques use grid-based
image descriptors [4, 5, 8] or polynomial image
descriptors [6] for image retrieval, and treat image

Fig. 5 Comparison between our method and simplified versions, showing the importance of both components of our algorithm for generating
good image mosaics.
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partitioning as a preprocess before tile replacement.
We also compared with Foto-Mosaic-Edda (FME)
[38], well-known commercial software from Rapid-
Mosaic, whose algorithm is private. Techniques that
produce traditional mosaics [10, 15], or use segmented
image objects [3, 21, 22] as input were not considered
in this comparison. The comparison focused on target
image partitioning and replacement image retrieval.
Other processes such as tile merging [6, 8] were not
considered. All compared techniques used the same
image database described above.

Figures 6 and 7 show the results. Figure 6 shows
that the results generated using a sparse grid
descriptor [4, 8] (3 × 3 grid, 27-dimension vector)
only poorly preserve edges. This is understandable
since the sparse grid descriptor loses edge information
when encoding the image. Results generated using
a dense grid descriptor [5] (24 × 24 grid, 1728-
dimension vector) are slightly better, as the dense grid
descriptor keeps more information from the image.
However, because it does not emphasise edges, its
performance is also unsatisfactory. The polynomial
descriptor [6] has a similar problem to the sparse
grid descriptor. When we increase the order of the
polynomial descriptor to 1728 dimensions, there is
no significant improvement. The results generated
by the commercial software Foto-Mosaic-Edda are
also deficient in preserving edges, implying that it
is not designed to do so. It is worth noting that,
even with fewer tiles, our method is able to create

better image mosaics than existing methods. Figure 7
shows further comparisons. Due to the poor results
from the sparse descriptors, they are not included in
this comparison. These examples show that image
mosaics generated by our method have the best edge
preservation of any methods considered.

4.3 Effect of database

As for other image mosaic methods, our method is
affected by the quality of the database. In general, a
larger database is preferable since it can provide more
candidates for tile replacement. To investigate how
our method is affected by the database, we generated
image mosaics with databases of different sizes. We
prepared four datasets with 180,000, 90,000, 50,000,
and 20,000 images, by gradually removing images.
Figure 8 shows image mosaics created using these
datasets: as the size of the dataset decreases, the
quality of texture matching and edge matching in
the produced image mosaic also decreases. However,
even for the smallest database, our method can still
generate reasonable image mosaics. This indicates
that our method has the ability to exploit the full
potential of the database, and so is more tolerant
to low-quality databases. On the other hand, it
is also noticeable that even for the image mosaic
created from the largest dataset, there are still some
artifacts. Indeed, artifacts are inevitable for a given
database, since a limited number of database images
cannot cover all the variation in target image details.

Fig. 6 Image mosaics for the tai chi diagram. (a) Target image. (b–e) Our results with 5, 8, 10, and 12 rows of tiles. (f) Result created by
Foto-Mosaik-Edda. (g) Result with dense polynomial descriptor. (h) Result with sparse polynomial descriptor. (i) Result with dense grid
descriptor. (j) Result with sparse grid descriptor. Images (f–j) have 12 rows of tiles.
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Fig. 7 Comparison with existing methods. Our method results in best edge preservation.

However, it is expected that artifacts will finally
become invisible if sufficient images are included in
the database.

4.4 User study

We conducted a user study to investigate (i) people’s
preferences regarding image mosaics generated by
different approaches, and (ii) whether people can
perceive the global and local visual content from an
image mosaic with given size. 19 college students
participated in this study.

Before the study, we prepared 5 sets of image
mosaics. The target images of these 5 sets were: the
cabin image in Fig. 1, the flamingo image in Fig. 9,

the tyrannosaur image in Fig. 5, the pyramid image
in Fig. 11, and the spade image in Fig. 8. Each set
contained 3 image mosaics, which were generated using
the following approaches: A1. Regular partitioning
with image retrieval based on dense grid descriptors [5].
A2. Regular partitioning with image retrieval based
on dense polynomial descriptors [6]. A3. Adaptive
partitioning with edge-aware image retrieval.

During the study, we displayed each set of image
mosaics on a monitor, with image mosaic height of
about 13 cm. The relative positions of the image
mosaics in a set were random. On viewing each set
of image mosaics, the participants were requested to
rate them from 1 to 5, where 1 meant completely
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Fig. 8 Image mosaics produced by our method with different image datasets. As the size of the dataset decreases, the quality of texture
matching and edge matching in the produced image mosaic degrades.

Fig. 9 Our method can produce high-quality image mosaics which preserve the edges of the target image, even when using few rows.

unacceptable, 3 adequate, and 5 perfectly acceptable.
They were also asked about the recognizability of the
replacement images during the study. After rating
all image mosaic sets, the participants were required
to state the factors they considered to produce their
ratings.

Figure 10 shows a statistical summary of the user
ratings. We can see that the image mosaics produced
by our method have the highest scores in all sets.
An ANOVA analysis also confirmed that there were
significant differences (p < 0.05) between the scores

using our approach and the other two approaches.
Although image mosaic scores involve personal taste,
these statistics still imply that our method generates
more desirable results. It is also worth noting that
some of our results have scores below 4, implying
that the quality of the image mosaics produced could
be further improved. As shown earlier, one simple
solution is to include more images in the database.

The factors the participants considered important
for rating often included smoothness and continuity
of edges, especially of contours of objects in the image.
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Fig. 10 User ratings for image mosaics produced using three different
approaches. Error bars represent the standard error in the mean.

Some participants indicated that important features,
such as the outlines of the cabin, should be faithfully
recovered. Some participants preferred image mosaics
with clean appearance, while other ones preferred
diverse tiles. All claimed that they could recognize
the content of each tile. This feedback indicated that
our method is able to produce desirable image mosaic
while keeping the recognizability of the tiles.

5 Conclusions, limitations, and future
work

We have presented a novel method for producing
discernible image mosaics with relatively large tiles.

Fig. 11 Further image mosaics produced by our method.
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Our method adopts an edge-aware image retrieval
scheme, which emphasizes edge conformation between
the query image and the retrieved images. The
tile layout is adaptively determined via dynamic
programming, based on the available images in the
database and optimization of mosaic quality. Visual
comparisons and user study results confirm that
our method is able to produce image mosaics with
better global resemblance to the target and local
recognizability than previous works.

Nevertheless, with relatively large mosaic tiles,
various forms of visual artifacts are still observable
in most, if not all, results generated by our method.
Insufficiently many photos in the database are always
a contributing factor. Furthermore, our current
implementation of edge-aware image retrieval is
unable to handle soft or weak edges well. Salient
features such as the eyes of the eagle in Fig. 9
play an important role in human perception but
they are not handled via any special means in our
method.

In addition to addressing the limitations mentioned
above, we would also like to expand the adaptivity
of the mosaic tiles. Possibilities include allowing
both the heights and widths of the tiles to adapt, as
well as photo transformations such as rotation and
scaling. Incorporating image salience and semantics
to improve the quality of mosaics are also natural
paths to explore. For example, the eyes of the
eagle could be recognized from the target photo
so that we may offer the options of not replacing
them or replacing them by more targeted photo
retrieval.
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