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Abstract We propose a novel approach for calculating an
air temperature entropy of environment over a region using
concepts from statistical mechanics. The proposed method
is intended for use in analysing spatially distributed environ-
mental data. Spatially distributed environmental time-series
temperature data from an atmospheric model have been used
to illustrate this approach. Our results show that entropy
reveals the underlying structure of a data distribution for
which a standard statistical analysis may be insufficient.

Keywords Environmental analytics · Shannon entropy ·
Statistical mechanics · Swarm sensing

1 Introduction

Entropy has been a subject of study within the research
community since its inception in the 1850s by Rudolf Clau-
sius [1], who coined the term entropy when he was analysing
the Carnot cycle process. The concept of entropy from classi-
cal thermodynamics was further developed byBoltzmann [2]
who, in the 1870s, introduced a probabilistic definition based
on microstates of a system. Since then there has been further
development of the concept by Planck [3] and Gibbs [4], ulti-
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mately leading to the development of statistical mechanics.
The entropy measure signifies changes in the microstates of
a system and the distribution of entities therein. Entropy has
been used in various areas of research, such as thermodynam-
ics, cosmology (i.e. entropy of black holes [5]), information
theory (i.e. Shannon entropy [6]) and in environmental sci-
ence [7–10].

The statistical mechanics formalism explains the macro-
scopic thermodynamic behaviour of a bulk systemby treating
the system as an assembly of microscopic interactions. This
enables the aggregate behaviour of large numbers of mole-
cules to be predicted using statistical concepts, such as
entropy. Shipley et al. [7] adopted a similar approach to
predict the ways in which biodiversity varies within eco-
logical communities, based on the particular traits of the
plant species within these communities. They regarded indi-
vidual species-to-species interactions as random events and
so were able to predict aggregate behaviour leading to
various biodiversity outcomes using statistical mechanics
concepts. Such techniques become necessary, and feasi-
ble, when the number of species interactions is very large,
as is the case in most plant-based communities. Ruddell
and Kumar [9] adopted an information-theoretical statis-
tical method called “transfer entropy” for measuring the
information flow between ecohydrological variables using
time-series data. Considering that ecohydrological systems
are too complex for specific variable-to-variable interactions
to be represented individually, these authors used statistical
concepts, including entropy, to study the aggregate behav-
iour of these systems. We have extended the application of
the concept of entropy by applying it to environmental air
temperature data coming frommicrosensors and observe cor-
relation with environmental phenomena, such as high wind
speed, heavy rainfall.
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In any application,many particles (or entities) are required
in order to estimate entropy. An ideal system would contain
a large number of tiny sensors distributed within an environ-
mental sensing domain providing real-time spatio-temporal
distributed environmental data. Over recent years technology
has evolved rapidly, with enormous advances in electronics
enabling the development of miniature sensing devices [11]
to collect environmental data—thereby creating the oppor-
tunity to utilize these devices in the environmental research,
and for many environmental applications, a large number of
these sensors are needed.

Environmental parameters, for example temperature, are
measured over time at a weather station providing data for
that location. Although this way of collecting data provides
information on the distribution of temperature over time, it
does not necessarily provide a good knowledge of its distrib-
ution over space. A spatial distribution of the data could help
us to understand variation in a specific environmental vari-
able over a given region. Therefore, our primarymotivation is
to understand more fundamental aspects of the environment
using temporal and spatially distributed data. In particular,
wewish to understand and calculate air temperature Shannon
entropy of the environment and infer its meaning.

A statistical analysis provides an overall picture of a distri-
bution.Themeanvalue provides a central expectedvalue, and
the standard deviation indicates howwidely a series of data is
distributed from its mean value. Nevertheless, analysing the
data distribution, for example exploring the different states
in the distribution that contain all of the data, requires the use
of statistical mechanics. The formalism to calculate entropy
using statistical mechanics provides an internal picture of the
data distribution at different states, ηi in Eq. (1), upon which
an entropy is calculated.

In this paper, we present a methodology, using statistical
mechanics which deals with a system of many particles, to
calculate an air temperature Shannon entropy of the environ-
ment from a spatio-temporal distributed temperature data set.
In presenting the results, we show how the data are distrib-
uted in two different systems, one with high and onewith low
Shannon entropy. As large numbers of microsensors are not
available yet, we use output from an atmospheric model (the
South Esk Hydrological model [12]) to develop the method-
ology.

Therefore, the major theoretical contribution in terms of
statistics emerging from this work is the possibility to para-
meterize the degree of order of any distribution (not only
a normal distribution, which is already well described by
mean and standard deviation). While these classical metrics
of central tendency and dispersion of data represent a num-
ber of natural phenomena effectively, it is still not enough to
depict the degree of order of any given assembly of data. Data
Science could benefit from this approach as it employs the
entire formalism from statistical mechanics, which is consid-

ered to be one of the most elegant and powerful theoretical
frameworks to describe large numbers of particles in a given
system. Entropy describes the degree of (dis)order of a sys-
tem, and many other thermodynamic states (e.g. enthalpy,
internal energy) and constants (e.g. heat capacitance) could
provide additional insights into large data assets and con-
stitute a powerful tool in data science. The novelty of our
contribution is that we use the concept of entropy to reveal
the structure of a data distribution, in circumstances where
standard statistical methods are insufficient.

2 Entropy in statistical mechanics and information
systems

The Boltzmann equation for entropy is written as S =
k lnM, where k is the Boltzmann constant and M is the
number of microstates [13,14]. M is defined by

M = N !
(ηa !)(ηb!)(ηc!) · · ·

= N !
∏

i ηi !
, (1)

where N is the total number of particles of the systems and
ηi is the number of particles at energy state i . The number of
particles ηi at an energy state i corresponds to the Boltzmann
distribution law

ηi = η0e
−βεi , (2)

where εi is the energy of the state i (ε0 < ε1 < · · · < εn)
and N = ∑

i ηi . Using Eq. (1) and Stirling’s approximation
(ln N ! = N ln N − N ), the entropy S can be written as

S = k lnM = k

(

N ln N −
∑

i

ηi ln ηi

)

. (3)

The inclusion of the Boltzmann constant k produces an exact
coincidence between the statistical entropy and the classical
thermodynamic entropy, i.e. kd lnM = dE

T , where β = 1
kT

[13].
As our environmental system does not consider individual

atoms or molecules (in a physical system a gas constant and
the Avogadro constant lead to the value of the Boltzmann
constant), we may set k = 1 for simplicity and hence, we
obtain

S = N ln N −
∑

i

ηi ln ηi . (4)

If we define the probability of particles being in the
i th state as pi = ηi

N , then the statistical entropy S can
be presented in terms of Shannon’s information entropy
(−∑

i pi ln pi )
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lnM = N ln(N ) −
∑

i

ηi ln ηi

lnM
N

= −
∑

i

pi ln pi . (5)

Redefining S ≡ lnM
N provides the Shannon entropy S =

−∑
i pi ln pi . The Shannon entropy tells us about the dis-

orderedness of the temperature distribution in the given
environment. We perform our calculations for the Shannon
entropy S. As for the discrete energy levels discussed above,
the temperature scale of our environmental system is made
discrete by considering level width constrained by the preci-
sion limit of a temperature measuring sensor, as discussed in
the next section.

3 Data sets

3.1 Atmospheric modelling data set

This first data set was used extensively to develop and test the
proposed methodology for the research that is the CSIRO 9-
level atmospheric general circulation model [12,15,16]. The
model was applied to a region covering the South Esk catch-
ment [12] of Tasmania, Australia, extending from 42.0 to
41.0◦S latitude and 147.0 to 148.5◦E longitude. Each degree
of latitude and longitude is divided into 100 units providing a
grid size of 101×151 grid cells. This means that the data set
contains 15,251 data points per unit time (hourly). In each
run of the model, the data are generated on an hourly basis
starting at 00:00A.M. at night and finishing after 3 days at
00:00A.M. at night providing a total of 73 time slices per run.
The data used in this work extended from January to Decem-
ber 2013. The minimum temperature value of our whole data
set is −7.42 ◦C, and maximum value is 33.76 ◦C. The data
are freely available in [17].

In Fig. 1, the average temperature for the South Esk region
is presented, together with the standard deviation σ , on an
hourly basis. A set of values for the uncertainty of temper-
ature sensors are considered to be from 0.10 to 1.0 ◦C with
a step size of 0.10 ◦C. The quantization of the temperature
readings, based on the uncertainty related to equipment accu-
racy, is considered to be an analogous concept to the size of
the energy gaps in quantum systems, for the purpose of the
entropy calculations.

3.2 Hydrodynamic modelling data set

This second data set was used to demonstrate the robustness
of the proposedmethodology. In this case, the data have been
generated by the CSIRO Sparse Hydrodynamic Ocean Code
(SHOC) model applied to the south-east coastal region of

Fig. 1 Hourly average temperature for each time slice over spatially
distributed temperature data from the South Esk Hydrological model
for the entire region of South Esk Catchment of Tasmania

Tasmania, Australia, extending from approximately 42.6◦S
to approximately 43.6◦S latitude and from approximately
147◦E to approximately 148.0◦E longitude. The model has
a grid size of 132 × 233 grid cells and 10 depth layers and
so contains 307,560 data points per unit time (hour). The
data have been generated hourly, from 01 October 2015 to
30 October 2016, providing a total of 720 time slices per run.
This data set is accessible online via the CSIRO Data Access
Portal (http://data.csiro.au) [18].

4 From uncertainties to states

To calculate an air temperature Shannon entropy from our
environmental data set, we need to divide the data set into
discrete subsets representing the different states i referred
to the Eqs. (1) and (2). An approach to do this is to con-
sider the data distribution for each time slice at intervals of
�T = 0.10, 0.20, . . . , 1.0 ◦C, which are assumed to be the
different precisions of the instrument or sensor measuring
the temperature. Considering different widths for the dis-
cretization provides us with an opportunity to test how the
discretization affects the Shannon entropy.

The environmental data set currently of interest is the data
from the South Esk Hydrological model from the year 2013.
The temperature frequencies are calculated for each time
slice, and a sample of frequency distributions is shown in
Fig. 2. Each bin with a width of �T is considered anal-
ogous to the concept of a state in quantum systems, with
the number of entities in a state corresponding to a count
of frequency in that state or bin. However, as evident, the
distributions of particle-equivalent quantities over states are
nonuniform. Nevertheless, from the distributions of a “num-
ber of particles-equivalent” quantity residing in each state,
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Fig. 2 The structure of the
temperature distributions at
different levels for high entropy
(top) and low entropy (bottom).
The harmonic oscillator
potential-type function is
adopted to represent the data at
different levels, where the level
width for the figure corresponds
to �T = 0.20 ◦C. In the inset,
the distribution of temperature
over the South Esk Catchment
area is presented using a colour
scale to represent the
temperature
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the number of microstates may be calculated. It is noted that
the number of temperature values in each state is analogous
to the number of particles in a quantum mechanical system.

Below we describe the process of creating equivalent
states and calculating entropy:

– Consider the data distribution for each time slice at inter-
vals of �T = 0.10, 0.20, . . . , 1.0 ◦C;

– The temperature frequencies are calculated for each time
slice;
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– Each bin with a width of �T is considered to be equiv-
alent to a state with the frequency corresponding to the
number of particles in that state;

– Count the “number of particles-equivalent” quantity
residing in each state;

– Calculate the number of microstates and entropy using
Eqs. 1 and 4, respectively.

The top part of Fig. 2 corresponds to a state with high
entropy, while the bottom represents a low entropy state. The
harmonic oscillator potential function is adopted just to rep-
resent the distributions of data in different states. The gaps
(�T ) are presented in the harmonic oscillator shapes, where
the discrete levels are shown by the horizontal lines and the
particles are occupied in the levels. A significant difference
in the data distributions in high and low entropy cases is evi-
dent, where the data in the high entropy case are more sparse
than that in the low entropy case.

5 Results

In Fig. 3, the air temperature entropy has been presented for
the South Esk Hydrological model data over 1 year. A large
variation is evident as is observed in the temperature data
shown in Fig. 1. The maximum entropy change appears to
be ∼30%. This entropy variation may have some correlation
with other environmental parameters, such as relative humid-
ity, wind speed. In particular, the relative humidity changes
by 40% in this time period. Overall the entropy variations
are smaller in the winter (June–August) than in the other
seasons of the year. It is noted that there are some time-series
data missing in the South Esk Hydrological model result-
ing in the presence of gaps in the entropy calculations in
Fig. 3. In Fig. 4, the correlation of entropy with the standard
deviation of temperature is presented for �T = 0.10 ◦C. A
significant correlation of entropy with standard deviation is
observed as would be expected (the correlation coefficient
= 0.90). The width of the entropy fluctuation may be due
to the bin-edge effect, and therefore for a better estimation
of entropy change with σ we perform a theoretical fit to the
entropy. The variation of entropy with σ is fitted with a func-
tion F(σ ) = a + b × log(σ ), and the fit is presented with a
red solid line. The entropy change is more sensitive at small
temperature variation, i.e. the rate of entropy change is higher
for small σ values (σ < 3.0) and the sensitivity decreases
for higher values of σ . While the standard deviation is useful
to understand the spread of the distributions around mean,
the entropy may be more useful to understand the system’s
change of internal structure over time. In Fig. 5, the fits with
F(σ ) for different values of �T are presented and the fit
parameters are given in Table 1. The parameter a presents

Fig. 3 Calculated Shannon entropy plotted against time of the year for
�T = 0.10 ◦C. The entropy is calculated on an hourly basis over the
entire South Esk Catchment area

Fig. 4 Calculated entropy plotted against the standard deviation of
temperature, with a correlation coefficient r = 0.90. The solid line
presents the fit to the data with a fit function F(σ ) = a + b × log(σ )

the value of F(σ ) at σ = 1, and b governs the curvature of
the function F(σ ).

If a set of data points Di , i = 1, . . . , n are discrete in
R
n , or a continuous set of values can be discretized as m

discrete states, then the entropy is bounded to be 0 ≤ S ≤
N logm (see also [9]). A fine banding of the states or a large
value of m can capture more accurate entropy variations of
the microstates, and only sensors with higher precisions can
provide data for this variation to be manifested. In Table 1
and Fig. 6, the value of parameter b is 0.45% for �T values
from 0.10 to 0.40 ◦C and 2.5% for �T values up to 1.0 ◦C
indicating the importance of fine banding or fine �T values.
Our observation is also consistent with the investigation in
Ref. [9] in observing that mutual information and transfer
entropy plateaus appear at finer banding.
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Fig. 5 Fits to the entropy variation with standard deviation of temper-
ature are shown for the various �T values considered in the analysis.
The fit parameters are given in Table 1

Table 1 Fit parameters a and b
of the fit equation
F(σ ) = a + b × log(σ ) for the
�T values considered in the
analysis

�T (◦C) a b

0.10 3.68 0.873

0.20 2.99 0.873

0.30 2.59 0.871

0.40 2.31 0.869

0.50 2.10 0.868

0.60 1.92 0.864

0.70 1.78 0.861

0.80 1.65 0.857

0.90 1.54 0.855

1.00 1.44 0.851

In Table 1 and Fig. 6, the value of parameter b is only
0.23% when we consider �T values from 0.10 to 0.30 ◦C,
and it is 2% for �T values up to 1.0 ◦C indicating the
importance of finer banding or finer �T values. The over-
all consistency of the parameters within 2% suggests the
methodology is robust in extracting qualitative features of
the underlying systems.

In Fig. 7, average temperature and entropy are presented
for the four seasons. The day-to-day hourly results are
averaged over a season, i.e. mean entropy at 1:00A.M.,
2:00A.M., . . ., over the season, and standard deviations are
calculated and presented using a 24-h clock. A sinusoidal
variation in temperature over 24 h is expected with the maxi-
mum values being reached during the day. On the other hand,
the pattern of hourly entropy changes and their variations dif-
fers significantly for the various seasons, in contrast to the
temperature changes, where the pattern is similar for all four
seasons.

In Fig. 8, coefficients of variation of entropy are presented
on an hourly basis for the four seasons. A significant disper-

Fig. 6 Fit parameter b plotted against �T (◦C). A decrease in the
parameter b with increasing�T is evident. An overall variation of only
2% of parameter b signifies the stability of the rate of entropy variation
with σ

sion of entropy is evident over a 24-h time period, where the
dispersions are high in summer and lower in winter. Also, the
four seasons entropy dispersions are quite different at mid-
night, where the four curves exhibit a spread in coefficient
of variation over a factor of four. However, all four curves
converge in the afternoon indicating that the environmen-
tal system is more stable during the afternoon period. The
results for all the �T values are consistent and qualitatively
very similar. In Fig. 8, it is evident that the variations in dis-
persion are very similar for �T = 0.10, 0.50 and 1.0 ◦C.

6 Discussion

Figure 2 (bottom) presents a normal temperature data dis-
tribution which appears in our calculation as a low entropy
phenomenon. On the other hand the top figure shows a com-
pletely different temperature distribution corresponding to a
high entropy phenomenon. These phenomena exist for all
the �T values considered in the analysis. This presents an
interesting phenomenon in which at low entropy the system
converges to a particular distribution, such as normal in this
case, which is in accord with the physical principle that at
absolute zero temperature (ideally), the system collapses to a
single state with zero variance providing an entropy of zero.

Another observation from Fig. 2 is that since the low
entropy phenomenon appears to be a normal-type distrib-
ution, it provides an explicit mean and variance and the low
entropy manifestation is simple as expected. On the other
hand, the high entropy phenomenon is quite complex as the
distribution is more sparse and the distribution may cor-
respond to a superposition of several normal distributions.
In this case a deconvolution can provide means and vari-
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Fig. 7 The seasonal average hourly temperature variation is presented in the left column, while the seasonal average hourly entropy variation is
shown in the right column for �T = 0.20 ◦C
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Fig. 8 An hourly calculated
coefficient of variation of
entropy plotted for the four
seasons, for �T = 0.10◦C
(top), 0.50◦C (middle) and
1.0◦C (bottom)
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ances corresponding to each of the normal distributions for a
high entropy phenomenon. The Shannon entropy, therefore,
exhibits a more straightforward visual connection between
the data characteristics and the entropy.

The change in average entropy appears to be more stable
(Fig. 3), over the year considered in this analysis than the
variation in temperature (Fig. 1) where the average tempera-
ture decreases significantly in thewinter season than summer.
This indicates that, in addition to the temperature variation,
other environmental parameters might also be playing a cru-
cial role in entropy change, compensating for some effects of
temperature, thus keeping the average entropy more consis-
tent over time. The entropy changes at some times are sharper
than at adjacent times, and these changes are fluctuating on
a day-to-day basis, with a larger value of entropy occurring
during the daytime (Fig. 7).

It is also interesting to observe reduced entropy variations
in the winter season (May–August 2013) which illustrates
the crucial role that temperature plays in entropy variation,
as would be expected. In addition to the effect of temperature
on entropy, therefore, it will be interesting to observe how
other environmental parameters, such as relative humidity,
wind speed and solar radiation, affect the entropy variation.

Since the difference between maximum and minimum
temperatures in summer is larger, the number of populated
microstates changes significantly in this season and as a result
the fluctuations of entropy increase as well as the errors
(Fig. 7). Also, as the season progresses towards winter, the
entropy fluctuations settle down with reduced standard devi-
ation. The time for the smallest value of entropy during the
day changes from season to season. In summer the small-
est value appears at around 6:00A.M., and in autumn, it
is at 11:00A.M., in winter at 12:00P.M. and in spring at
8:00A.M. The smallest values correspond to the lowest num-
ber of microstates at these times which in turn correspond to
large numbers of particles clustering at particular states.

In Fig. 9, the results of temperature distributions at two
different date times are presented. The distributions provide
the samemean temperature (μT ) and standard deviation (σT ),
but the entropies are different. This is an interesting result in
that, while the mean value and standard deviation are unable
to indicate the structure of the data, the entropy can be used
to extract and understand the underlying structure of the data
distribution. Our results show that an entropy difference of
0.18 is sufficient to manifest two completely different data
distributions.

We also applied the proposed methodology to a data set
from another domain (Sect. 3.2) for the purpose of demon-
strating the robustness of the methodology. In this case, the
data set consisted of water and salinity data derived from a
hydrodynamic model of a coastal ocean region off the south-
east coast of Tasmania and the results of this analysis are
presented in Fig. 11.

Fig. 9 Results of temperature distributions with the same mean tem-
peratures (μT ) and standard deviation (σT ), but different entropy (S)
values. The top figure corresponds to a distribution with the value of
entropy equal to 4.20, whereas the bottom figure corresponds to an
entropy value of 4.38

Fig. 10 Frequency distribution of hourly percentile change of entropy.
A change of greater than ±4% is considered to be significant

Both the salinity and temperature distributions exhibited
similar features to those exhibited by air temperature data
(Fig. 9). While the mean and standard deviation of the two
distributions were the same, the entropy values were differ-
ent, providing potential insights into the differences between

123



58 Int J Data Sci Anal (2017) 3:49–60

Fig. 11 Results of salinity distributions with the same mean and standard deviation (top row) and temperature distributions with the same mean
and standard deviation (bottom row), but different entropy (S) values

two distributions. The entropy value is also highly sensitive
to the shape of the distribution. For example, in the case of
salinity, an entropy value change of just 6% corresponds to a
significant change in the distribution. These analyses demon-
strate the robustness of the formalism and methodology that
we have developed.

7 Interpretation

The most interesting result is the change of entropy as a log
function of the standard deviation of temperature σ (Fig. 5),
i.e. the rate of change of entropy becomes smaller with
respect to σ at large �T values. The value of entropy cor-
responds to the distribution of energy (heat energy, wind
energy, solar radiation, relative humidity) in the environmen-
tal system and will be greater than unity if there is a variation
of energy fluctuation in the system. If the value of entropy is
unity, then that implies that the environmental energy is in a

perfectly stable state; in other words, no energy fluctuations
exist and the energy values are the same everywhere.

As our system is based on temperature, any entropy value
greater than unity means there is an inhomogeneous distrib-
ution of energy in the system and thereby in the distribution
of different temperature values in the region of interest. A
higher variation of energy leads to a higher distribution of
entities, for example temperature, subsequently providing a
higher entropy value. This higher variation of energy can be
considered analogous to an information signal transfer with
higher bandwidth, as represented by the concept of Shan-
non entropy used in the analysis of communication systems.
In Fig. 10, a frequency distribution of the hourly percentile
change of entropy is presented. This frequency distribution
is quite interesting in that it exhibits a feature similar to
the Gaussian distribution, where the tail of the distribution
presents a larger percentile change in the entropy. Consider-
ing �S/h > ±4.0 to be a large change in the entropy, we
attempted to look for any natural events, such as higher wind
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speed and higher rainfall that may have occurred within the
South Esk Catchment area over the time period of interest
(January–December 2013) and that may correspond to such
higher values in the change of entropy.

The entropy change values of greater than ±4.0% consti-
tute∼1.0%of total number of values in Fig. 10.Weattempted
to find any wind speed events within the top ∼2.0% of the
wind speed data values over the same time period that could
be matched up with these entropy change values. We also
considered a timewindow of 7 h for any events to bematched
up. Based on the above criteria, we found two wind speed
events that matched up with high entropy change values over
a 7-h time window. Although these observations were inter-
esting, the probability of correctly predicting a significant
wind speed event using the entropy change data was found
to be very small.We also looked at rainfall data over the same
time period, but were unable to find any significant rainfall
events within that data. This might be because some other
environmental parameters, such as precipitation, solar radi-
ation, atmospheric pressure and their entropic pictures, need
to be calculated, and then, combining these effects with air
temperature entropymay lead to a better prediction of natural
events.

In addition to classical statistical measures such as mean,
median, mode, minimum and maximum, standard deviation
or amplitudes, we offer a newmeasure that can explain struc-
tures ofmeasured quantities, such as temperature, in a region.
For the purpose of presenting the methodology a model out-
put is required such as the South Esk Hydrological model, as
an example. When a large number of sensors are available,
such as in swarm sensing research, the results of Shannon
entropy should be very useful for describing and character-
izing a given environmental phenomenon.

Apart from environmental analysis, from the data science
perspective the methodology can be applied in situations
where:

– a high density of data is available (such as for the analysis
of social media data),

– the structure of a data distribution is to be better under-
stood and quantified,

– the means and standard deviations of such distributions
are very similar or equal and are unable to provide
insights into the structure of the data distributions.

8 Conclusions

Statisticalmechanics has been applied to calculate an air tem-
perature Shannon entropy of the environment, and results of
the entropy have been presented. In presenting the entropy,
time-series temperature data obtained from the South Esk
Hydrological model have been used. The temperature scale

has been discretized by setting the width of the states,
�T values, at {0.10, 0.20, . . . , 1.0 ◦C}, and a “number of
particle-equivalent” quantity have been estimated (i.e. the
frequency of temperature readings which fall within each
particular temperature state). The number of microstates was
then calculated, and from this, the entropy was determined.

While mean and standard deviation are useful statistical
quantities for a normal distribution, they are insufficient to
provide insights into the structure of the distribution if it is not
normal. The entropy, on the other hand, captures the structure
and underlying science of the distributed system and may be
a useful way to express new characteristics of non-normal
distributions. Therefore, as well as using statistical mechan-
ical theory, this paper has also shown how the underlying
dynamics of data distribution can be correlated with changes
of entropy.

The estimated entropy values fluctuated significantly over
the time period considered in thiswork.However, the average
of the entropy was more stable than the average tempera-
ture. Therefore, the fluctuating behaviour of the calculated
entropy seems to have some relationship with other environ-
mental parameters, such as relative humidity, wind speed,
atmospheric pressure, precipitation and solar radiation, and
this will be the subject of future investigations.

The variation of average entropy over all four seasons has
been presented. While the hourly average entropy changes
fluctuated more widely with increased errors in summer,
more consistency in the entropy changes was observed in
winter.

Dispersion of the entropy values has also been presented
on an hourly basis for all four seasons. The dispersion of
entropy is more significant at midnight for all four seasons,
but they converge in the afternoon. The presented results
are also consistent for different �T values. By analysing
data from miniaturized sensors when they are available and
calculating entropy we can understand the dispersion of a
quantity of interest in the environment.

The methodology developed in this paper can be applied
to any spatially and temporally distributed environmental
data including other environmental factors, such as wind
speed, relative humidity and rainfall, which will be the sub-
ject of future investigations. The robustness of the approach
has been demonstrated by applying it to two different
domains: air temperature data provided by an atmospheric
model (Fig. 9) and water salinity and water temperature
data obtained from a hydrodynamic model (Fig. 11). The
approach could also be applied to the analysis of social media
data with high density. Since the methodology uses the con-
cepts of particles in states (bins), the greater the density of
data in the bins, the more consistent the results will be and
the smaller the variations in entropy. The future work will
also include using time-series methods, such as ARIMA, to
provide predictions of entropy changes.

123



60 Int J Data Sci Anal (2017) 3:49–60

Acknowledgements The authors are grateful and thank CSIRO for
providing funding for this work through an OCE postdoctoral fellow.
The authors also wish to thank the Vale Institute of Technology for their
partnership with the Swarm Sensing Project. We thank Peter Taylor for
providing us with the model data.

References

1. Clausius, R.: TheMechanical Theory of Heat:With Its Application
to the Steam-Engine and to the Physical Properties of Bodies. Van
Voorst, London (1867)

2. Uffink, J.: Boltzmann’s work in statistical physics—Stanford
encyclopedia of philosophy. http://plato.stanford.edu/archives/
spr2009/entries/statphys-boltzmann/ (2009)

3. Planck,M.: Treatise on Thermodynamics. Dover, NewYork (1926)
4. Gibbs, J.W.: ElementaryPrinciples in StatisticalMechanics.Dover,

New York (1960)
5. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–

2346 (1973). doi:10.1103/PhysRevD.7.2333
6. Shannon, C.E.: A mathematical theory of communication. Bell

Syst. Tech. J. 27(3), 379–423 (1948). doi:10.1002/j.1538-7305.
1948.tb01338.x

7. Shipley, B., Vile, D., Garnier, E.: From plant traits to plant com-
munities: a statisticalmechanistic approach to biodiversity. Science
314, 812 (2006)

8. Rechberger, H., Brunner, P.H.: A new, entropy based method to
support waste and resource management decisions. Environ. Sci.
Technol. 36, 809–816 (2002)

9. Ruddell, B.L.,Kumar, P.: Ecohydrologic process networks: 1. Iden-
tification. Water Resour. Res. 45, W03419 (2009). doi:10.1029/
2008WR007279

10. Kumari, J., Govind, A., Govind, A.: Entropy change as influenced
by anthropogenic impact on a boreal land cover—a case study. J.
Environ. Inform. 7(2), 75–83 (2006)

11. Lee, Y., Kim, Y., Ghaed, M.H., Sylvester, D.: A modular 1mm3

die-stacked sensing platform with low power I2C inter-die com-
munication andmulti-modal energy harvesting. IEEE J. Solid State
Circuits 48, 229–243 (2013). doi:10.1109/JSSC.2012.2221233

12. Katzfey, J., Thatcher, M.: Ensemble one-kilometre forecasts for
the South Esk Hydrological Sensor Web. In: 19th International
Congress on Modelling and Simulation, Perth, Australia, 12–16
Dec 2011. http://mssanz.org.au/modsim2011

13. Nash, L.K.: Elements of Statistical Thermodynamics, 2nd edn.
Dover, Mineola (2006)

14. Benguigui, L.: The different paths to entropy. Eur. J. Phys. 34,
303–321 (2013). doi:10.1088/0143-0807/34/2/303

15. McGregor, J.L., Gordon, H.B., Watterson, I.G., Dix, M.R., Rot-
stayn, L.D.: The CSIRO 9-level atmospheric general circulation
model. CSIRO report (1993)

16. Corney, S., Katzfey, J., McGregor, J., Grose, M., Holz, G., White,
C., Bennett, J., Gaynor, S., Bindoff, N.: Improved regional cli-
mate modelling through dynamical downscaling. IOP Conf. Ser.
Earth Environ. Sci. 11, 012026 (2010). doi:10.1088/1755-1315/
11/1/012026

17. https://researchdata.ands.org.au/tas-sensor-web-south-esk/15059
18. Andrewartha, J.: STORM SHOC hydrodynamic model data. v1.

CSIRO Data Collection. doi:10.4225/08/57B119A11CE6F

123

http://plato.stanford.edu/archives/spr2009/entries/statphys-boltzmann/
http://plato.stanford.edu/archives/spr2009/entries/statphys-boltzmann/
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1029/2008WR007279
http://dx.doi.org/10.1029/2008WR007279
http://dx.doi.org/10.1109/JSSC.2012.2221233
http://mssanz.org.au/modsim2011
http://dx.doi.org/10.1088/0143-0807/34/2/303
http://dx.doi.org/10.1088/1755-1315/11/1/012026
http://dx.doi.org/10.1088/1755-1315/11/1/012026
https://researchdata.ands.org.au/tas-sensor-web-south-esk/15059
http://dx.doi.org/10.4225/08/57B119A11CE6F

	Describing environmental phenomena variation  using entropy theory 
	Abstract
	1 Introduction
	2 Entropy in statistical mechanics and information systems
	3 Data sets
	3.1 Atmospheric modelling data set
	3.2 Hydrodynamic modelling data set

	4 From uncertainties to states
	5 Results
	6 Discussion
	7 Interpretation
	8 Conclusions
	Acknowledgements
	References




