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Abstract
We propose a transfer metric learning method to infer domain-specific data embeddings for unseen domains, from which no 
data are given in the training phase, by using knowledge transferred from related domains. When training and test distribu-
tions are different, the standard metric learning cannot infer appropriate data embeddings. The proposed method can infer 
appropriate data embeddings for the unseen domains by using latent domain vectors, which are latent representations of 
domains and control the property of data embeddings for each domain. This latent domain vector is inferred by using a neu-
ral network that takes the set of feature vectors in the domain as an input. The neural network is trained without the unseen 
domains. The proposed method can instantly infer data embeddings for the unseen domains without (re)-training once the 
sets of feature vectors in the domains are given. To accumulate knowledge in advance, the proposed method uses labeled 
and unlabeled data in multiple source domains. Labeled data, i.e., data with label information such as class labels or pair 
(similar/dissimilar) constraints, are used for learning data embeddings in such a way that similar data points are close and 
dissimilar data points are separated in the embedding space. Although unlabeled data do not have labels, they have geometric 
information that characterizes domains. The proposed method incorporates this information in a natural way on the basis of a 
probabilistic framework. The conditional distributions of the latent domain vectors, the embedded data, and the observed data 
are parameterized by neural networks and are optimized by maximizing the variational lower bound using stochastic gradi-
ent descent. The effectiveness of the proposed method was demonstrated through experiments using three clustering tasks.

Keywords  Transfer learning · Metric learning · Domain generalization

1  Introduction

Learning data embeddings in such a way that similar data 
points are placed close together while dissimilar data points 
are separated apart is fundamentally important in the field 
of machine learning and data mining. Better data embed-
dings can provide better performance for a wide variety of 

tasks such as clustering [46], classification [44], retrieval 
[43], verification [21], visualization [16], and explanatory 
data analysis [23]. Metric learning explores a way to con-
struct such data embeddings by using label information such 
as class labels or pair (similar/dissimilar) constraints [4]. 
It assumes that the training and test data follow the same 
distributions. However, this assumption is often violated in 
real-world applications. For example, in face verification, 
images taken in different conditions follow different distribu-
tions [21]. In sentiment analysis, reviews in different prod-
uct categories follow different distributions [15]. When the 
training and test distributions are different, standard metric 
learning cannot work well [29].

This problem can be alleviated by large labeled data, 
i.e., data with label information, drawn from the test distri-
bution. However, such data are often time-consuming and 
impractical to collect because labels need to be manually 
assigned by domain experts. Transfer metric learning aims 
to find data embeddings that perform well on a testing 
domain, called a target domain, by using labeled and/or 
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unlabeled data in different domains, called source domains 
[8, 12, 13, 21, 28, 29, 31, 37, 38]. To adapt to the target 
domain, this usually requires a small amount of labeled 
data and/or unlabeled data from the target domain for 
training. However, training after obtaining data in the tar-
get domain is problematic in some real-world applications. 
For example, with the growth of the Internet of Things 
(IoT), complex operations need to be performed on devices 
such as information visualization on mobile devices [7], 
face verification on mobile devices [22], and character rec-
ognition on portable devices [45]. Since these devices do 
not have sufficient computing resources, training on these 
devices is difficult even if new target domains appear that 
contain training data. In cyber-security, a wide variety of 
devices, such as sensors, cameras, and cars, needs to be 
protected from cyber attacks [2]. However, it is difficult 
to protect all these devices quickly with time-consuming 
training since many new devices (target domains) appear 
one after another.

Few existing methods can learn domain-invariant data 
embeddings from labeled data in multiple source domains 
[5, 11, 34]. When the domain-invariant data embeddings can 
explain any target domains, they can achieve good perfor-
mance in the target domains without target specific training. 
However, this is generally difficult since the characteristics 
of the domains are different. To adapt to a wide variety of 
target domains, it is desirable to infer an appropriate domain-
specific data embedding for each target domain.

In this paper, we propose a method to infer domain-
specific data embeddings for target domains where there 
are no data in the training phase, called unseen domains, 
given unlabeled data in the domains in the testing phase 
and labeled and unlabeled data in the source domains in 
the training phase. Once training is executed, the proposed 
method can instantly infer a domain-specific data embed-
ding for the unseen domain given unlabeled data in the 
domain on the basis of knowledge obtained from the source 
domains. With the proposed model, each embedding of a 
sample is represented as a latent variable, called a latent 
feature vector, and each domain is also represented as a 
latent variable, called a latent domain vector. The latent 
domain vectors play an important role in representing the 
properties of the domains. We assume that each sample is 
generated depending on its latent feature vector and latent 
domain vector by modeling the conditional distribution by 
a neural network. The proposed method models the domain-
specific density of observed feature vectors depending the 
latent domain vector, which improves the flexibility of our 
model. With label information contained in the source 
domains, the latent feature vectors are constrained in such a 
way that similar data points are placed close and dissimilar 
ones are separated apart in the embedding space of each 
domain. Although unlabeled data do not have labels, they 

have geometric information that characterizes domains. The 
proposed method can incorporate this information in a natu-
ral way on the basis of a probabilistic framework. By using 
both labeled and unlabeled data in the source domains, the 
proposed method improves its ability to infer appropriate 
data embeddings for the unseen domains.

To infer both the latent feature vectors and latent domain 
vectors, the proposed method uses two neural networks. The 
first models the posterior of the latent feature vector given 
the observed feature vector and latent domain vector. Since 
the latent feature vectors depend on the latent domain vector, 
the proposed method can infer data embeddings consider-
ing the properties of the domains. The second models the 
posterior of the latent domain vector given the set of the 
observed feature vectors since the domain is usually char-
acterized by the data distribution, which requires the set of 
observed feature vectors to be estimated. Traditional neural 
networks take vectors with a fixed size as inputs and cannot 
handle sets with different sizes. To overcome this problem, 
we employ the deep sets [49], which are permutation invari-
ant to the order of data points in the sets and thus can take 
the sets with different sizes as inputs.

The neural networks for the conditional distributions of 
the observed feature vectors, the latent feature vectors, and 
the latent domain vectors are simultaneously optimized by 
maximizing the variational lower bound using stochastic 
gradient descent (SGD). Since the proposed method is based 
on a Bayesian framework, it can infer data embeddings by 
naturally considering the uncertainty of estimated latent 
domain vectors, which enables robust prediction. Figure 1 
illustrates the proposed method.

Fig. 1   Illustration of the proposed method. Same colors represent 
similar data points and different colors represent dissimilar data 
points, although data points with no color represent unlabeled data. 
Similar data points are close and dissimilar data points are sepa-
rated in the latent embedding space. Each domain is represented by 
a latent domain vector, and data embeddings (latent feature vectors) 
are inferred by using the latent domain vectors. After training, our 
method can infer data embeddings for unseen domains given unla-
beled data in the domains
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In summary, the main contributions of this paper are as 
follows:

•	 We propose a transfer metric learning method to infer 
domain-specific data embeddings for unseen domains by 
using both labeled and unlabeled training data in multiple 
source domains.

•	 We develop an efficient training procedure for the pro-
posed model by maximizing the variational lower bound 
using SGD and the reparameterization trick.

•	 Through the experiments using three clustering tasks, we 
demonstrated that the proposed method can infer better 
data embeddings than existing metric learning methods.

2 � Related Work

Metric learning aims to obtain a proper metric from 
observed data to reveal the underlying data relationship 
[4]. Early techniques learn the Mahalanobis metric without 
explicitly learning data embeddings, where the metric can 
be factorized as a product of linear transformation of inputs 
[9, 46]. Many recent metric learning methods explicitly learn 
data embeddings in the process of learning the metric [4, 36, 
44]. Metric learning usually assumes that the training and 
test distributions are the same. However, our task assumes 
that both distributions are different.

Transfer metric learning methods can learn appropri-
ate data embeddings for the target domain by using data in 
the source domains [8, 12, 13, 21, 28, 29, 37, 38]. Existing 
methods usually assume that labeled and/or unlabeled data 
in the target domain are available in the training phase. A 
popular approach is to reduce the discrepancy between the 
source and target domains. To reduce the discrepancy, some 
methods use maximum mean discrepancy [19], which is an 
effective nonparametric criteria that computes two distribu-
tions in a reproducing kernel space (RKHS) [13, 21]. As 
another example, domain adversarial learning, which intro-
duces a domain discriminator to measure the domain dis-
crepancy, is also used [12, 37, 38]. Although these methods 
are effective when some data in the target domain are avail-
able for training, our task cannot use any data in the target 
domain during training.

Multi-task metric learning methods can improve the qual-
ity of data embeddings on several tasks simultaneously by 
using data from multiple tasks. Although these methods 
require data in all tasks in the training phase, our task is 
to adapt to unseen domains, where no data are given in the 
training phase [47].

Few methods for transfer metric learning or multi-task 
metric learning can be applied to unseen domains. Fang 
et al. [11] proposed a method to learn the unbiased distance 
metric that generalizes better to the unseen domains on the 

basis of a structural SVM. This method requires additional 
weak-label information (web images) to select an appropri-
ate metric. Coupled projection multi-task metric learning 
(CP-mtML) and multi-task large margin nearest neighbor 
(mt-LMNN) introduced domain-invariant and domain-
specific data embeddings (or metrics) [5, 34]. Although 
they have been proposed for multi-task metric learning, the 
domain-invariant part can be used for the unseen domains 
as described by Parameswaran and Weinberger [34]. One 
method specialized in person re-identification also learns 
domain-invariant data embeddings [39]. All these methods 
learn domain-invariant data embeddings that are effective 
when unseen domains can be explained only by the domain-
invariant parts. However, it is generally difficult to explain 
all the unseen domains since the properties of each domain 
differ. The proposed method can infer domain-specific data 
embeddings for the unseen domains by using the sets of 
feature vectors in the domains given in the testing phase.

In transfer metric learning, it is typically assumed that 
there are at least some labeled data for every source domains 
[29]. Since unlabeled data have geometric information that 
characterizes domains, it is desirable to use information in 
domains where there are only unlabeled data for training. 
The proposed method can use these domains in a natural 
way on the basis of a probabilistic framework. The effec-
tiveness of using these domains will be demonstrated in our 
experiments.

Domain generalization aims to generalize to unseen 
domains by using labeled data in multiple source domains 
[3, 14, 27, 32, 33]. Although the motivations for developing 
these methods and the proposed method are similar, existing 
methods for domain generalization do not focus on metric 
learning.

Meta-learning aims to learn new tasks efficiently and 
quickly by using knowledge obtained from previous tasks 
[41]. Some meta-learning methods perform task-specific 
adaptation without training like the proposed method 
although they are not methods for metric learning. For 
example, some methods can infer few-shot classifiers when 
a small amount of labeled data of new classes is given in 
the testing phase [35, 40, 42]. Although they use a distance 
metric to infer classifiers, they are not methods for metric 
learning. Kumagai and Iwata [26] proposed a method to 
infer classifiers for new tasks given the sets of the feature 
vectors in the tasks. These methods cannot use unlabeled 
data for training. Neural statistician performs few-shot den-
sity estimation for new tasks [10]. Neural statistician cannot 
use any label information for training. Unlike these methods, 
the proposed method can infer data embeddings for unseen 
domains (new tasks) on the basis of knowledge obtained 
from both labeled and unlabeled data in the source domains.
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3 � Proposed Method

In this section, we first define the task we investigated. 
Then, we propose our probabilistic model and explain how 
to learn it. After that, we explain how to infer appropriate 
data embeddings for unseen domains on the basis of the 
learned model.

3.1 � Notations and Task

We introduce the notations used in this paper and define 
the task we investigate. Let �d ∶= {�dn}

Nd

n=1
 be a set of data 

points in the d-th domain, where �dn ∈ ℝ
C is the C-dimen-

sional feature vector of the n-th data point, and Nd is the 
number of the data points in the d-th domain. The sets of 
similar and dissimilar data points in the d-th domain are 
represented as

respectively. The index set for the similar and dissimilar data 
points in the d-th domain is represented as

Although we treat the similar and dissimilar information as 
a running example, the proposed method can also treat class 
label information by regarding the data points in the same 
class as similar and the data points in the different classes as 
dissimilar. Note that the proposed method can be applied to 
the case in which the range of class labels is not the same in 
different domains owing to the similar and dissimilar repre-
sentations. A label ydnm = 1 is assigned to (�dn, �dm) ∈ �d , or 
ydnm = 0 is assigned to (�dn, �dm) ∈ �d . The set of labels in 
the d-th domain is represented as �d . We assume that feature 
vector size C is the same in all domains.

Suppose we have feature vectors with label (simi-
lar and dissimilar) information in D source domains, 
D ∶=

⋃D

d=1
{(�d,�d)} . Our goal is to find data embed-

dings in such a way that similar data points are placed close 
together and dissimilar data points are separated in the d∗-th 
domain where any d∗ ∉ {1, 2,… ,D} , when the set of feature 
vectors �d∗

∶= {�d∗n}
Nd∗

n=1
 is given in the testing phase.

We note that our method can be used when each instance 
is represented by a vector. Therefore, for example, it can be 
applied for sequence data by transforming each sequence 
to a vector by neural network models such as LSTM [20].

3.2 � Model

The proposed method assumes that each domain has a Kz

-dimensional latent continuous variable �d ∈ ℝ
Kz , which 

(1)
�d ∶= {(�dn, �dm)|�dn and �dm are similar},

�d ∶= {(�dn, �dm)|�dn and �dm are dissimilar},

(2)�d ∶= {(n,m)|(�dn, �dm) ∈ �d or (�dn, �dm) ∈ �d}.

is called a latent domain vector in this paper. This latent 
domain vector �d is generated from a standard Gaussian 
distribution N(�d|�, �) . In addition, the proposed method 
assumes that each data point in the d-th domain �dn has a 
Ku-dimensional latent continuous vector �dn ∈ ℝ

Ku , called 
a latent feature vector, and this latent feature vector is also 
generated from a standard Gaussian distribution N(�dn|�, �) . 
Since there are no prior knowledge of the data distribution, 
we used the standard Gaussian distribution as the prior for 
the latent feature and domain vectors, which is a standard 
choice in the probabilistic modeling, such as variational 
autoencoders [25]

Each feature vector in the d-the domain �dn is generated 
depending on its latent feature vector �dn and the latent 
domain vector �d . The parameters of the conditional distri-
bution p�(�dn|�dn, �d) are modeled by neural networks with 
parameter � . When the feature vector is binary, we can use 
the following Bernoulli distribution,

where xdn,c represents the c-th element of the feature vector 
�dn , and fc(�dn, �d;�) denotes the c-th element of the neu-
ral network that outputs the probability of xdn,c being one. 
Similarly, Gaussian, Gamma, and Poisson distributions with 
parameters modeled by neural networks can be used in the 
case of continuous values, non-negative continuous values, 
and non-negative integers, respectively. When (n,m) ∈ �d , 
the label ydnm of the pair �dn and �dm is generated from the 
following Bernoulli distribution,

where ‖ ⋅ ‖ denotes Euclidean norm, and ‖�dn − �dm‖ repre-
sents our metric for the two feature vectors �dn and �dm in 
the embedding space. Since �dnm takes one when the dis-
tance ‖�dn − �dm‖ becomes zero, and �dnm takes zero when 
‖�dn − �dm‖ becomes infinity, maximizing this probability 
encourages that the similar data points ( ydnm = 1 ) are placed 
close together and the dissimilar data points ( ydnm = 0 ) are 
separated in the embedding space.

For the d-th domain, the joint distribution of the set of 
feature vectors �d , the set of labels �d , the set of latent fea-
ture vectors �d ∶= {�dn}

Nd

n=1
 , and the latent domain vector 

�d is represented as

(3)

p�(�dn|�dn, �d) =
C∏

c=1

fc(�dn, �d;�)
xdn,c (1 − fc(�dn, �d;�))

1−xdn,c ,

(4)
p(ydnm��dn, �dm) = (�dnm)

ydnm (1 − �dnm)
1−ydnm ,

�dnm ∶=
1

1 + ‖�dn − �dm‖2
,
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The log marginal likelihood of our model on the training 
data D is given by

Note that the proposed method can be applied to the case in 
which only unlabeled data are given in some source domains 
(i.e., �d = � for some d). In this case, the joint distribution 
for the corresponding domain is represented as follows:

By using knowledge in these domains, the proposed method 
can improve the quality of data embeddings for unseen 
domains, which will be demonstrated in our experiments.

3.3 � Learning

We develop the learning procedure for the proposed model. 
Since our model is represented by using neural networks, 
analytically obtaining the posterior of the latent domain 
vector and latent feature vectors is intractable. Therefore, 
we approximate this posterior distribution with a inference 
model q� , which is represented as

(5)

p�(�d,�d,�d, �d) =
∏

(n,m)∈�d

p(ydnm|�dn, �dm)

×

(
Nd∏

n=1

p�(�dn|�dn, �d)p(�dn)
)
p(�d).

(6)ln p(D) = ln

D∏

d=1
∬ p�(�d,�d,�d, �d)d�dd�d.

(7)p�(�d,�d, �d) =

Nd∏

n=1

p�(�dn|�dn, �d)p(�dn) ⋅ p(�d).

where mean ��z
(�d) ∈ ℝ

Kz and variance �2
�z
(�d) ∈ ℝ

Kz

+  are 
modeled by neural networks with parameters �z . Similarly, 
mean ��u

(�dn, �d) ∈ ℝ
Ku and variance �2

�u
(�dn, �d) ∈ ℝ

Ku

+  are 
modeled by neural networks with parameters �u . Here, we 
denote � ∶= (�z,�u) . Since the latent feature vector �dn 
depends on the latent domain vector �d , it can reflect the 
property of the domain. Since the latent domain vector �d 
depends only on the set of feature vectors �d , the proposed 
method can infer the latent domain vectors of unseen 
domains when the sets of feature vectors in these domains 
are only given in the testing phase. As a result, the proposed 
method can instantly infer appropriate domain-specific data 
embeddings for the unseen domains without training.

Since the q�z
 deals with the set of feature vectors �d as an 

input, the neural networks for the parameters ��z
(�d) and 

ln �2
�z
(�d)

1 must be permutation invariant to the order of 
data points in the set. For neural networks satisfying this 
condition, we use the following neural network architecture 
proposed by Zaheer et al. [49],

(8)

q�(�d, �d|�d) =

Nd∏

n=1

q�u
(�dn|�dn, �d) ⋅ q�z

(�d|�d),

q�z
(�d|�d) = N(�d|��z

(�d), diag(�
2
�z
(�d))),

q�u
(�dn|�dn, �d)
= N(�dn|��u

(�dn, �d), diag(�
2
�u
(�dn, �d))),

(9)�(�d) = �

(
Nd∑

n=1

�(�dn)

)
,

Fig. 2   Graphical model representation of the generative model and 
inference model of the proposed method. Here, �d⋅ , yd⋅⋅ , �d⋅ , and �d 
represent a feature vector, label, latent feature vector, and latent 
domain vector of d-th domain, respectively. Parameters for neural 
networks are represented by � , �

z
 , and �

u
 . The shared and unshared 

nodes indicate observed and latent variables, respectively. Some pairs 
of data points in the d-th domain have similar ( ydnm = 1 ) or dissimilar 
( ydnm = 0 ) information. The posterior of the domain vector �d is esti-
mated from the set of feature vectors �d = {�dn}

Nd

n=1

1  We used the logarithm of the variance to take any real values for 
outputs.
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where �(�d) represents one of the ��z
(�d) and ln �2

�z
(�d) , � 

and � are any neural networks, respectively. This neural net-
work is obviously permutation invariant due to summation. 
Although this architecture is simple, it can express any per-
mutation invariant function and preserve all the properties 
of the sample set with suitable � and � [49]. Thus, we can 
capture the characteristics of each domain well with this 
architecture. Figure 2 shows a graphical model representa-
tion of the generative model and inference model of the pro-
posed method, where the shared and unshared nodes indicate 
observed and latent variables, respectively.

We derive a lower bound on the log marginal likelihood 
ln p(D) using q�(�d, �d|�d) as follows:

where we used Jensen’s inequality [6] to derive the third 
line and DKL(⋅‖⋅) denotes the Kullback Leibler (KL) diver-
gence. The parameters of the neural networks for the condi-
tional distributions of the feature vectors, the latent feature 
vectors, and the latent domain vectors, � , �u , and �z , are 
obtained by maximizing this lower bound L(D;�,�) using 
SGD. Although the expectation terms of (10) are still intrac-
table, these terms can be effectively approximated by the 
reparameterization trick [25]; we draw Lz samples �(�)

d
 from 

q�z
(�d|�d) by

where �(�)
d

∼ N(�, �) and ⊙ is an element-wise product, and 
we can form Monte Carlo estimates of expectations of some 
function f with respect to q�z

(�d|�d) as follows:

(10)

ln p(D) =

D∑

d=1

ln� p�(�d,�d,�d, �d)d�dd�d

=

D∑

d=1

ln�
q�(�d, �d|�d)p�(�d,�d,�d, �d)

q�(�d, �d|�d)
d�dd�d

≧
D∑

d=1
� q�(�d, �d|�d)ln

p�(�d,�d,�d, �d)

q�(�d, �d|�d)
d�dd�d

=

D∑

d=1

[
�q�(�d ,�d|�d)

[
∑

(n,m)∈�d

ln p�(ydnm|�dn, �dm)
]

+ �q�(�d ,�d|�d)

[
Nd∑

n=1

ln p�(�dn|�dn, �d)
]

(11)
− �q�z (�d��d)

�
Nd�

n=1

DKL(q�u
(�dn��dn, �d)‖p(�dn))

�

− DKL(q�z
(�d��d)‖p(�d))

�
=∶ L(D;�,�),

(12)�
(�)

d
= 𝜇𝜙z

(�d) + 𝜖
(�)

d
⊙ 𝜎𝜙z

(�d),

Similarly, we draw Lu samples �(�
�,�)

dn
 from q�u

(�dn|�dn, �
(�)

d
) 

by

where �(�
�)

dn
∼ N(�, �) , and we have

As a result, the objective function to be maximized with 
respect to the parameters � and � becomes

3.4 � Inference

Given the set of feature vectors from the unseen domain 
�d∗

= {�d∗n}
Nd∗

n=1
 , the proposed method infers the distribu-

tion of the latent feature vector (embedded data point) 
given the feature vector �d∗n as follows:

where �(�)
d∗

 = ��z
(�d∗

) + 𝜖(�) ⊙ 𝜎𝜙z
(�d∗

) and �(�) is a sample 
drawn from N(�, �) . The proposed method can infer the data 
embeddings while considering the uncertainty of the latent 
domain vectors by sampling �d∗ from the posterior distribu-
tion q�z

(�d∗ |�d∗
) , which enables robust prediction. In our 

exper iments, we used the mean of (16), i .e. , 
1

Lz

∑Lz
�=1

��u
(�d∗n, �

(�)

d∗
) , as the embedded data of �d∗n.

(13)�q�z (�d|�d)
[f (�d)] ≈

1

Lz

Lz∑

�=1

f (�
(�)

d
).

(14)�
(��,�)

dn
= 𝜇𝜙u

(�dn, �
(�)

d
) + 𝜖

(��)

dn
⊙ 𝜎𝜙u

(�dn, �
(�)

d
),

(15)�q�(�d ,�d|�d)
[f (�dn, �d)] ≈

1

LzLu

Lz,Lu∑

�,��=1

f
(
�
(��,�)

dn
, �

(�)

d

)
.

(16)

L(D;�,�) ≈

D�

d=1

�
−DKL(q�z

(�d��d)‖p(�d))

−
1

Lz

Lz�

�=1

Nd�

n=1

DKL

�
q�u

�
�dn��dn, �

(�)

d

�
‖p(�dn)

�

+
1

LzLu

Lz�

�=1

Lu�

��=1

Nd�

n=1

ln p�

�
�dn��
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4 � Experiments

We evaluated the quality of data embeddings inferred by 
the proposed method with the clustering tasks. To cluster 
the embedded data, we used a K-means [1], which is a 
commonly used fast clustering algorithm, for all compari-
son methods and datasets. The number of clusters is fixed 
to the number of classes of each unseen domain. We cre-
ated similar and dissimilar pairs from class labels for all 
datasets. This evaluation procedure is commonly used in 
metric learning studies [9, 46, 48]. We used the following 
computers: CPU was Intel Xeon E5-2660v3 2.6 GHz, the 
memory size was 128 GB, and GPU was NVIDIA Tesla 
k80.

4.1 � Data

We used three real-world datasets: MNIST-r,2 Office-
Caltech10,3 and Amazon-Review.4

MNIST-r is commonly used in domain generalization 
studies [14, 32]. This dataset, which was derived from the 
handwritten digit dataset MNIST, was introduced by Ghifary 
et al. [14]. Each domain is created by rotating the images in 
multiples of 15 degrees: 0, 15, 30, 45, 60, and 75. Thus, this 
dataset has six different domains. Each domain has 1,000 
images, which are represented by 256-dimensional vectors, 
of 10 classes (digits).

Office-Caltech10 is a widely used real-world dataset for 
cross-domain object recognition [18]. This dataset consists 
of object images taken from four domains: Amazon, DSLR, 
Webcam, and Caltech. Each domain has images represented 
by SURF features encoded with 800-bin bag-of-words his-
tograms, of 10 object classes. We binarized each feature on 
the basis of whether the value was more than zero.

Amazon-Review is a widely used real-world dataset for 
cross-domain sentiment analysis [17]. This dataset consists 
of product reviews in four domains: kitchen appliances, 
DVDs, books, and electronics. We used the processed data 
from Gong et al. [17], in which the dimensionality of the 
bag-of-words features was reduced to the top 400 words that 
have the largest mutual information with the labels. Each 
domain has 1,000 positive and 1,000 negative reviews (two 
classes). We binarized each feature on the basis of whether 
the value was more than zero.

4.2 � Setting

To evaluate the clustering results, we used the adjusted Rand 
index (ARI), which is a widely used evaluation measure 
for clustering tasks. ARI quantifies the similarity between 
inferred clusters and true clusters, takes the value from −1 
to 1, and gives zero for random clustering.

For all datasets, we evaluated ARI on one unseen domain 
while training on the rest by changing the unseen domain. 
We considered two types of source domains for all datasets. 
The first is a source domain where all pairs of data points 
have label (similar and dissimilar) information, which is a 
widely used experimental setting in metric learning stud-
ies [8, 12, 21, 34]. We call these source domains labeled 
source domains. The second is a source domain where no 
data points have label information, i.e., all data points are 
unlabeled. We call these source domains unlabeled source 
domains. We included unlabeled source domains to demon-
strate that they are useful to learn data embeddings even if 
they do not have any labels.

For each trial in MNIST-r and Office-Caltech10, we ran-
domly chose five classes in each domain to create a situation 
in which each domain had different class labels. After that, 
in each domain used for training, we randomly selected 80% 
of samples for training and 20% of samples for validation. 
For each trial in Amazon-Review, we used all classes (two 
classes) in each domain. In each domain used for training, 
we chose 1,500 samples for training and 400 samples for 
validation. We conducted experiments on 10 randomized 
trials for each unseen domain fixing the ratio of the number 
of labeled source domains to unlabeled source domains. For 
each trial, we randomly chose labeled and unlabeled source 
domains from all the source domains. We reported the mean 
ARI over unseen domains for all datasets.

4.3 � Comparison Methods

We evaluated the following two variants of the proposed 
method: SS-Proposed and S-Proposed. SS-Proposed uses 
both labeled and unlabeled source domains for training. 
S-Proposed uses only the labeled source domains for train-
ing. We included S-Proposed in our experiments to evalu-
ate the efficacy of using the unlabeled source domains for 
training.

We compared the proposed method variants with three 
transfer metric learning methods and two baseline methods: 
supervised invariant (S-Invariant), semi-supervised-invar-
iant (SS-Invariant), coupled projection multi-task metric 
learning (CP-mtML) [5], Direct, and VAE-Direct.

(a) S-Invariant This method infers data embeddings 
by using all labeled data in the labeled source domains 
ignoring identification of domains. The probabilis-
tic model for S-Invariant is obtained from the proposed 

2  https​://githu​b.com/ghif/mtae.
3  https​://archi​ve.ics.uci.edu/ml/datas​ets/.
4  http://multi​level​.ioe.ac.uk/intro​/datas​ets.html.

https://github.com/ghif/mtae
https://archive.ics.uci.edu/ml/datasets/
http://multilevel.ioe.ac.uk/intro/datasets.html
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model on the labeled source domains by ignoring the 
domain index d and latent domain vector � . Specifi-
cally, S-Invariant uses the following probabilistic model, ∏

n<m p(ynm��n, �m)
∏N

n=1
p(�n��n)p(�n) , where N is the total 

number of data points in the labeled source domains. The 
posterior of the latent feature vector � given the feature vec-
tor � is modeled by a neural network q(�|�) , and learning 
is performed by maximizing the variational lower bound 
like the proposed method. S-Invariant can be regarded as a 
metric learning variant of the recently proposed domain gen-
eralization method (contrastive semantic alignment; CCSA) 
[32] since CCSA brings data points with the same labels 
closer and separates data points with different labels in the 
hidden space.

(b) SS-Invariant This method is a semi-supervised exten-
sion of S-Invariant. That is, SS-Invariant infers data embed-
dings by using all data in both labeled and unlabeled source 
domains ignoring identification of domains. The probabil-
istic model for SS-Invariant is obtained from the proposed 
model on the labeled and unlabeled source domains by 
ignoring the domain index and latent domain vector. We 
included S-Invariant and SS-Invariant as comparison meth-
ods to demonstrate the effectiveness of considering domain-
specific data embeddings since both methods infer domain-
invariant data embeddings.

(c) CP-mtML This method is a recently proposed multi-
task metric learning method, which defines both task-invari-
ant and task-specific projections. CP-mtML cannot use unla-
beled data for training. Following the previous study [34], 
we used the task-invariant projection for data embeddings 
of the unseen domains.

(d) Direct This method performs K-means clustering 
directly against testing data in the unseen domain.

(e) VAE-Direct This method first learns data embeddings 
of testing data in the unseen domain by using a variational 
auto-encoder (VAE) [25] and then performs K-means clus-
tering against the embedded data.

Direct and VAE-Direct are baseline methods that do not 
use any data in the source domains for training.

For S-Invariant, SS-Invariant, and VAE-Direct, we used 
neural networks with one dense hidden layer and ReLU acti-
vations for the encoder q(�n|�n) and decoder p(�n|�n) , 
respectively. We set the sizes of hidden nodes for both the 
encoder and decoder as 1,000, 800, and 200 for MNIST-r, 
Office-Caltech10, and Amazon-Review, respectively. For all 
datasets, we used Bernoulli distributions for the decoders. 
For the proposed method variants, same neural networks are 
used as base models. To infer the mean and variance param-
eters of latent domain vectors, the shared single-layer neural 
networks with ReLU activations are used as � in Eq. (9), and 
different two single-layer neural networks are used for mean 
and variance outputs as � in Eq. (9). The same two-head 
architecture is used for the neural network for latent feature 

vectors. We set the sizes of output nodes of � as 1,000, 800, 
and 200 for MNIST-r, Office-Caltech10, and Amazon-
Review, respectively. In our experiments, we took an average 
of �(�dn) before applying � to reduce the effect of differences 
in the data size. That is, we used �(�d) = �

�
1

Nd

∑Nd

n=1
�(�dn)

�
 

as neural networks for inferring the latent domain vectors, 
��z

(�d) and ln �2
�z
(�d) . Note that this architecture is 

included in the definition of permutation invariant architec-
tures [49]. The estimated latent domain vector is concate-
nated with the hidden layers of both the decoder and 
encoder. For all comparison methods except for CP-mtML 
and Direct, we used the mean of the encoder q(�|�) as the 
embedded data of � . For CP-mtML, we used a neural net-
work with one dense hidden layer and ReLU activations for 
projections. We set the sizes of hidden nodes as 1,000, 800, 
and 200 for MNIST-r, Office-Caltech10, and Amazon-
Review, respectively. The hidden layer is shared for both 
task-invariant and task-specific projections. Although linear 
projections on the original feature space are considered in 
the original paper, we considered these non-linear projec-
tions for fair comparisons, which improved performance.

4.4 � Hyper‑Parameters

For all methods except for Direct and VAE-Direct, we 
selected hyper-parameters by using validation mean ARI on 
the labeled source domains. We selected hyper-parameters 
for VAE-Direct on the basis of validation loss on the unseen 
domains since it does not use any label information. We ran-
domly divided testing data into training data (70%) and vali-
dation data (30%) to train the VAE. For all methods except 
for Direct, the dimension of embedded data Ku (the output 
size of the encoder) was chosen from {10, 20, 30} . For CP-
mtML, the bias term b was selected from {1, 2, 3} . For the 
proposed method, the dimension of the latent domain vector 
Kz was fixed as ten for all datasets, and the sample size of the 
reparameterization trick Lz and Lu was set to one for training 
and ten for testing. Similarly, for S-Invariant, SS-Invariant, 
and VAE-Direct, the sample size of the reparameterization 
trick was set to one for training and ten for testing. For all 
methods, we used the Adam optimizer [24] with a learning 
rate of 0.001. The maximum number of epochs was 300 
for MNIST-r and Office-Caltech10 and 200 for Amazon-
Review, and we used early-stopping based on the validation 
data to avoid the over-fitting.

4.5 � Results

We quantitatively evaluated the clustering results on the 
unseen domains. Table 1 shows the average and standard 
deviations of the ARIs over all unseen domains when vary-
ing the ratio of DL labeled source domains to DU unlabeled 
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source domains for all datasets. SS-Proposed showed the 
best or comparable ARIs in all cases. Both Direct and 
VAE-Direct tended to perform worse than the others when 
the number of labeled source domains DL were relatively 
large, which indicates the efficacy of using knowledge 
(labeled data) in related domains. As for methods that use 
only labeled source domains for training, S-Proposed per-
formed better than S-Invariant and CP-mtML, which infer 
domain-invariant data embeddings, in almost all cases (8 

out of 9). Similarly, as for methods that use both labeled 
and unlabeled source domains for training, SS-Proposed 
performed better than SS-Invariant in almost all cases (7 
out of 9). These results indicate that modeling the charac-
teristics of each domain is quite effective to obtain good 
data embeddings. In addition, SS-Proposed outperformed 
S-Proposed with MNIST-r and Office-Caltech10, which 
indicates that unlabeled data are useful to learn domain-
specific data embeddings even if they do not have any 

Table 1   Average and standard deviation of ARI over all unseen domains with D
L
 labeled source domains and D

U
 unlabeled source domains

Boldface denotes the best and comparable methods according to the paired t test at the significance level 5%. Bottom row gives the number of 
best or comparable cases of each method

Data D
L
 : D

U
SS-proposed S-proposed S-invariant SS-invariant CP-mtML Direct VAE-direct

MNIST-r 2:3 0.563 ± 0.18 0.456 ± 0.20 0.406 ± 0.19 0.523 ± 0.18 0.367 ± 0.18 0.449 ± 0.15 0.447 ± 0.14
3:2 0.614 ± 0.17 0.566 ± 0.20 0.452 ± 0.17 0.540 ± 0.15 0.429 ± 0.16 0.449 ± 0.15 0.447 ± 0.14
4:1 0.641 ± 0.14 0.620 ± 0.15 0.522 ± 0.16 0.552 ± 0.14 0.484 ± 0.14 0.449 ± 0.15 0.447 ± 0.14

Office- 1:2 0.295 ± 0.11 0.209 ± 0.09 0.219 ± 0.10 0.301 ± 0.13 0.170 ± 0.09 0.234 ± 0.11 0.294  ± 0.13
Caltech10 2:1 0.326 ± 0.13 0.274 ± 0.12 0.245 ± 0.10 0.301 ± 0.13 0.205 ± 0.09 0.234 ± 0.11 0.294 ±  ± 0.13

3:0 0.350 ± 0.11 0.350 ± 0.11 0.316 ± 0.12 0.316 ± 0.12 0.208 ± 0.09 0.234 ± 0.11 0.294 ± 0.13
Amazon- 1:2 0.242 ± 0.10 0.248 ± 0.08 0.215 ± 0.09 0.246 ± 0.11 0.246 ± 0.08 0.005 ± 0.01 0.018 ± 0.02
Review 2:1 0.334 ± 0.09 0.331 ± 0.10 0.313 ± 0.11 0.311 ± 0.10 0.303 ± 0.11 0.005 ± 0.01 0.018 ± 0.02

3:0 0.382 ± 0.09 0.382 ± 0.09 0.351 ± 0.09 0.351 ± 0.09 0.325 ± 0.11 0.005 ± 0.01 0.018 ± 0.02
# Best/comp 9 4 0 2 1 0 1

Fig. 3   Visualization of the embedded data for the unseen domain (0-degree domain) on MNIST-r. Each column represents SS-Proposed, S-Pro-
posed, S-Invariant, SS-Invariant, and VAE-Direct, respectively, from left to right
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labels. For Amazon-Review, there was no big difference 
between SS-Proposed and S-Proposed. This dataset has 
bag-of-words text features that are less correlated than 
image features like MNIST-r and Office-Caltech10. This 
property may possibly make it difficult to extract useful 
geometrical information from unlabeled source domains. 
Overall, we found that the proposed method variants (SS-
Proposed and S-Proposed) could better obtain data embed-
dings than other methods.

We visualized the embedded data for the unseen domain 
on MNIST-r to qualitatively evaluate the proposed method. 
Figure 3 shows the embedded data for the unseen domain 
(0-degree domain) obtained by SS-Proposed, S-Proposed, 
S-Invariant, SS-Invariant, and VAE-Direct. Note that 
inferring data embeddings for the 0-degree domain is 
challenging because the 0-degree is the endmost domain 
in all domains (0, 15, 30, 45, 60, 75-degree domains) and 
extrapolation is necessary. Here, we set the dimensions of 
the embedded data Ku and the latent domain vectors Kz to 
ten. We used t-distributed stochastic neighbor embedding 

(t-SNE) [30] to reduce the dimensionality of the embed-
ded data to two. When DL ∶ DU = 2 ∶ 3 , S-Proposed and 
S-Invariant could not infer discriminative data embed-
dings because the number of labeled data was small and 
the extrapolation was difficult. Similarly, for VAE-Direct, 
similar data points in green were separated apart since they 
did not use any training data in the source domains. In con-
trast, SS-proposed and SS-Invariant were able to infer data 
embeddings in which similar data points are close to each 
other since both methods were able to extract useful infor-
mation for data embeddings from unlabeled data. As the 
number of labeled source domains increased, SS-Proposed 
and S-Proposed came to infer good data embeddings in 
such a way that similar data points are close and dissimilar 
data points are separated although some dissimilar data 
points overlapped in both S-Invariant and SS-Invariant. 
Since the proposed method variants (SS-Proposed and 
S-Proposed) explicitly model the property of each domain, 
they can infer appropriate data embeddings for the unseen 
domains by using labeled data in the related domains.

(a) (b) (c)

Fig. 4   Average ARI over all unseen domains and the ratio of DL to DU of each dataset when the value of K
z
 was changed

Table 2   Average and standard 
deviation of ARI over all target 
domains with D

L
 labeled source 

domains and D
U
 unlabeled 

source domains

The ‘T’ denotes using target unlabeled data for training. Table interpretation is the same as Table 1
Boldface denotes the best and comparable methods according to the paired t test at the significance level 
5%

Data D
L
 : D

U
TSS-proposed TSS-invariant SS-proposed SS-invariant

MNIST-r 2:3 0.637 ± 0.17 0.633 ± 0.17 0.563 ± 0.18 0.523 ± 0.18
3:2 0.667 ± 0.17 0.673 ± 0.18 0.614 ± 0.17 0.540 ± 0.15
4:1 0.712 ± 0.15 0.698 ± 0.16 0.641 ± 0.14 0.552 ± 0.14

Office- 1:2 0.379 ± 0.16 0.362 ± 0.15 0.295 ± 0.11 0.301 ± 0.13
Caltech10 2:1 0.392 ± 0.17 0.384 ± 0.15 0.326 ± 0.13 0.301 ± 0.13

3:0 0.395 ± 0.14 0.367 ± 0.14 0.350 ± 0.11 0.316 ± 0.12
Amazon- 1:2 0.261 ± 0.14 0.239 ± 0.14 0.242 ± 0.10 0.246 ± 0.11
Review 2:1 0.336 ± 0.10 0.297 ± 0.10 0.334 ± 0.09 0.311 ± 0.10

3:0 0.376 ± 0.09 0.344 ± 0.08 0.382 ± 0.09 0.351 ± 0.09
# Best/comp 9 5 3 1
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We investigated how the performance of the proposed 
method changed as the number of the dimensions of the 
latent domain vectors Kz changed. Figure 4 shows the aver-
age of the ARIs over all unseen domains and the ratio of 
the number of labeled source domains DL to the number of 
unlabeled source domains DU of each dataset when chang-
ing the value of Kz within {2, 5, 10, 20} . All methods except 
for SS-Proposed and S-Proposed had constant average ARIs 
when the value of Kz was varied because they do not depend 
on the value of Kz . We found that SS-Proposed constantly 
outperformed the others for all datasets when the value of 
Kz was changed. As for methods that use only labeled source 
domains for training, S-Proposed constantly performed bet-
ter than S-Invariant and CP-mtML for all the values of Kz . 
These results indicate that the proposed method variants 
(SS-Proposed and S-Proposed) are robust to the number of 
dimensions of the latent domain vector Kz.

Although we have focused on inferring data embeddings 
for unseen domains, from which no data are given in the 
training phase, unlabeled data in the target domain are some-
times available for training. Therefore, it is also meaningful 
to investigate the quality of data embeddings when the pro-
posed method uses target unlabeled data for training. Table 2 
shows the average and standard deviations of the ARIs over 
all target domains when varying the ratio of DL to DU for 
all datasets. Here, TSS-Proposed and TSS-Invariant are 
obtained from SS-Proposed and SS-Invariant by also using 
target testing (unlabeled) data for training, respectively. As 
expected, TSS-Proposed and TSS-Invariant performed bet-
ter than SS-Proposed and SS-Invariant on MNIST-r and 
Office-Caltech10, respectively. For Amazon-Review, TSS-
Proposed and TSS-Invariant showed almost the same results 
as SS-Proposed and SS-Invariant, respectively. This result, 
i.e., difficulty of using unlabeled data, was consistent with 
the previous one in Table 1. TSS-Proposed performed bet-
ter than TSS-Invariant, which indicates the effectiveness of 
using target unlabeled data for training in our framework.

We investigated the training time of 100 epochs for SS-
Proposed, TSS-Proposed, and VAE-Direct on MNIST-r. 
In this experiment, we set the hyperparameters as follows: 
Kz = 10 , Ku = 10 , and Lz and Lu were one for training. 
Table 3 shows the computation time when DL ∶ DU = 4 ∶ 1 . 
Since TSS-Proposed uses target unlabeled data to learn the 

target-specific data embeddings, TSS-Proposed took more 
training time than SS-Proposed. VAE-Direct was able 
to train the domain-specific data embeddings faster than 
SS-Proposed and TSS-Proposed although its quality was 
not good. SS-Proposed can infer the domain-specific data 
embeddings of any domains given the set of unlabeled data 
in the domains without re-training. In this experiment, SS-
Proposed inferred it with 0.012 seconds when Lz = 10 . This 
was 103 times faster than the training time of VAE-Direct.

5 � Conclusion

In this paper, we proposed a transfer metric learning method 
to infer appropriate domain-specific data embeddings for 
unseen domains by using labeled and unlabeled data 
obtained from multiple source domains. To infer domain-
specific data embeddings, the proposed method models each 
domain as the latent domain vector, which is estimated from 
the set of feature vectors in the corresponding domain. In 
experiments using three real-world datasets, the proposed 
method performed better than existing metric learning meth-
ods. In addition, the proposed method showed the effective-
ness of using domains, where there are no labeled data.

Several avenues can be pursed as future work. First, we 
will try to apply the proposed method to other real-world 
applications such as retrieval and verification. In addition, 
although we considered class labels and pair (similar and 
dissimilar) constraints as label information in this paper, we 
will extend the proposed method to use other label informa-
tion such as triplet constraints. Finally, we plan to apply our 
framework to structured data such as graphs and time series.
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Table 3   Computation time (s) on MNIST-r

VAE-Direct, SS-Proposed, and TSS-Proposed represent training 
time for 100 epochs when D

L
∶ D

U
= 4 ∶ 1 . SS-Proposed (inference) 

denotes the inference time of the data embeddings for the unseen 
domain. Once training is executed, SS-Proposed can instantly infer 
domain-specific data embeddings for any domains without re-training

SS-proposed (inference) VAE-direct SS-proposed TSS-proposed

0.013 1.34 57.1 84.1

http://creativecommons.org/licenses/by/4.0/


151Transfer Metric Learning for Unseen Domains﻿	

1 3

References

	 1.	 Arthur D, Vassilvitskii S (2007) K-means++: the advantages of 
careful seeding. In: Proceedings of the eighteenth annual ACM-
SIAM symposium on discrete algorithms. Society for Industrial 
and Applied Mathematics, pp 1027–1035

	 2.	 Babar S, Mahalle P, Stango A, Prasad N, Prasad R (2010) Pro-
posed security model and threat taxonomy for the Internet of 
Things (IoT). In: ICNSA

	 3.	 Balaji Y, Sankaranarayanan S, Chellappa R (2018) Metareg: 
towards domain generalization using meta-regularization. In: 
NeurIPS

	 4.	 Bellet A, Habrard A, Sebban M (2013) A survey on metric learn-
ing for feature vectors and structured data. arXiv

	 5.	 Bhattarai B, Sharma G, Jurie F (2016) CP-MTML: coupled pro-
jection multi-task metric learning for large scale face retrieval. In: 
CVPR

	 6.	 Bishop CM (2006) Pattern recognition and machine learning. 
Springer, Berlin

	 7.	 Blumenstein K, Niederer C, Wagner M, Schmiedl G, Rind A, 
Aigner W (2016) Evaluating information visualization on mobile 
devices: gaps and challenges in the empirical evaluation design 
space. In: Proceedings of the sixth workshop on BELIV

	 8.	 Cao B, Ni X, Sun J-T, Wang G, Yang Q (2011) Distance metric 
learning under covariate shift. In: IJCAI

	 9.	 Davis JV, Kulis B, Jain P, Sra S, Dhillon IS (2007) Information-
theoretic metric learning. In: ICML

	10.	 Edwards H, Storkey A (2017) Towards a neural statistician. In: 
ICLR

	11.	 Fang C, Xu Y, Rockmore DN (2013) Unbiased metric learning: on 
the utilization of multiple datasets and web images for softening 
bias. In: ICCV

	12.	 Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Lavio-
lette F, Marchand M, Lempitsky V (2016) Domain-adversarial 
training of neural networks. J Mach Learn Res 17(59):1–35

	13.	 Geng B, Tao D, Xu C (2011) Daml: domain adaptation metric 
learning. IEEE Trans Image Process 20(10):2980–2989

	14.	 Ghifary M, Bastiaan Kleijn W, Zhang M, Balduzzi D (2015) 
Domain generalization for object recognition with multi-task 
autoencoders. In: ICCV

	15.	 Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for 
large-scale sentiment classification: a deep learning approach. 
In: ICML

	16.	 Goldberger J, Hinton GE, Roweis ST, Salakhutdinov RR (2005) 
Neighbourhood components analysis. In: NeurIPS

	17.	 Gong B, Grauman K, Sha F (2013) Connecting the dots with 
landmarks: discriminatively learning domain-invariant features 
for unsupervised domain adaptation. In: ICML

	18.	 Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel 
for unsupervised domain adaptation. In: CVPR

	19.	 Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A 
(2012) A kernel two-sample test. JMLR 13(Mar):723–773

	20.	 Hochreiter S, Schmidhuber J (1997) Long short-term memory. 
Neural Comput 9(8):1735–1780

	21.	 Hu J, Lu J, Tan Y-P (2015) Deep transfer metric learning. In: 
CVPR

	22.	 Jung S-U, Chung Y-S, Yoo J-H, Moon K-Y (2008) Real-time face 
verification for mobile platforms. In: VC

	23.	 Kaski S, Sinkkonen J (2004) Principle of learning metrics for 
exploratory data analysis. J VLSI Signal Process Syst Signal 
Image Video Technol 37(2–3):177–188

	24.	 Kingma DP, Ba J (2014) Adam: a method for stochastic optimiza-
tion. arXiv

	25.	 Kingma DP, Welling M (2014) Auto-encoding variational bayes. 
In: ICLR

	26.	 Kumagai A, Iwata T (2018) Zero-shot domain adaptation without 
domain semantic descriptors. arXiv

	27.	 Li D, Yang Y, Song Y-Z, Hospedales TM (2017) Deeper, broader 
and artier domain generalization. In: ICCV

	28.	 Luo Y, Liu T, Tao D, Xu C (2014) Decomposition-based trans-
fer distance metric learning for image classification. IEEE Trans 
Image Process 23(9):3789–3801

	29.	 Luo Y, Wen Y, Duan L, Tao D (2018) Transfer metric learning: 
algorithms, applications and outlooks. arXiv

	30.	 Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach 
Learn Res 9(Nov):2579–2605

	31.	 McLaughlin N, del Rincon JM, Miller PC (2017) Person reidenti-
fication using deep convnets with multitask learning. IEEE Trans 
Circuits Syst Video Technol 27(3):525–539

	32.	 Motiian S, Piccirilli M, Adjeroh DA, Doretto G (2017) Unified 
deep supervised domain adaptation and generalization. In: ICCV

	33.	 Muandet K, Balduzzi D, Schölkopf B (2013) Domain generaliza-
tion via invariant feature representation. In: ICML

	34.	 Parameswaran S, Weinberger KQ (2010) Large margin multi-task 
metric learning. In: NeurIPS

	35.	 Snell J, Swersky K, Zemel R (2017) Prototypical networks for 
few-shot learning. In: NeurIPS

	36.	 Sohn K (2016) Improved deep metric learning with multi-class 
n-pair loss objective. In: NeurIPS

	37.	 Sohn K, Liu S, Zhong G, Yu X, Yang M-H, Chandraker M (2017) 
Unsupervised domain adaptation for face recognition in unlabeled 
videos. In: CVPR

	38.	 Sohn K, Shang W, Yu X, Chandraker M (2019) Unsupervised 
domain adaptation for distance metric learning. In: ICLR

	39.	 Song J, Yang Y, Song Y-Z, Xiang T, Hospedales TM (2019) Gen-
eralizable person re-identification by domain-invariant mapping 
network. CVPR

	40.	 Sung F, Yang Y, Zhang L, Xiang T, Torr PH, Hospedales TM 
(2018) Learning to compare: relation network for few-shot learn-
ing. In: CVPR

	41.	 Vanschoren J (2018) Meta-learning: a survey. arXiv
	42.	 Vinyals O, Blundell C, Lillicrap T, Wierstra D et al (2016) Match-

ing networks for one shot learning. In: NeurIPS
	43.	 Wang J, Song Y, Leung T, Rosenberg C, Wang J, Philbin J, Chen 

B, Wu Y (2014) Learning fine-grained image similarity with deep 
ranking. In: CVPR

	44.	 Weinberger KQ, Blitzer J, Saul LK (2006) Distance metric learn-
ing for large margin nearest neighbor classification. In: NeurIPS

	45.	 Xiao X, Jin L, Yang Y, Yang W, Sun J, Chang T (2017) Building 
fast and compact convolutional neural networks for offline hand-
written chinese character recognition. Pattern Recognit 72:72–81

	46.	 Xing EP, Jordan MI, Russell SJ, Ng AY (2003) Distance metric 
learning with application to clustering with side-information. In: 
NeurIPS

	47.	 Yang P, Huang K, Hussain A (2018) A review on multi-task met-
ric learning. Big Data Anal 3(1):3

	48.	 Yin X, Chen S, Hu E, Zhang D (2010) Semi-supervised clustering 
with metric learning: an adaptive kernel method. Pattern Recognit 
43(4):1320–1333

	49.	 Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov 
RR, Smola AJ (2017) Deep sets. In: NeurIPS


	Transfer Metric Learning for Unseen Domains
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Notations and Task
	3.2 Model
	3.3 Learning
	3.4 Inference

	4 Experiments
	4.1 Data
	4.2 Setting
	4.3 Comparison Methods
	4.4 Hyper-Parameters
	4.5 Results

	5 Conclusion
	References




