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Abstract
Increasingly organizations are elastically scaling their stream processing applications into the infrastructure as a service 
clouds. However, state-of-the-art approaches for elastic stream processing do not consider the potential threats of expos-
ing their data to third parties in cloud environments. We present the design and implementation of an Elastic Switching 
Mechanism for data stream processing which is based on homomorphic encryption (HomoESM). The HomoESM not only 
elastically scales data stream processing applications into public clouds but also preserves the privacy of such applications. 
Using a real-world test setup, which includes an E-mail Filter benchmark and a Web server access log processor benchmark 
(EDGAR), we demonstrate the effectiveness of our approach. Experiments on Amazon EC2 indicate that the proposed 
approach for homomorphic encryption provides a significant result which is 10–17% improvement in average latency in the 
case of E-mail Filter benchmark and EDGAR benchmark, respectively. Furthermore, EDGAR add/subtract operations, mul-
tiplication, and comparison operations showed up to 6.13%, 7.81%, and 26.17% average latency improvements, respectively. 
Finally, we evaluate the potential of scaling the homomorphic stream processor in the public cloud. These results indicate 
the potential for real-world deployments of secure elastic data stream processing applications.

Keywords  Cloud computing · Elastic data stream processing · Compressed event processing · Data compression · IaaS · 
System sizing and capacity planning

1  Introduction

Data stream processing has become one of the main para-
digms for data analytics in recent times [6, 7]. Various differ-
ent applications of stream processing can be found in differ-
ent domains such as transportation [20], telecommunications 
[8, 29], disaster management [10], and environmental moni-
toring [16]. The economies of scale introduced by cloud 
computing platforms consistently indicate the importance 
of migrating stream processing applications to cloud. This 

has resulted in data stream processors which run as man-
aged cloud services (e.g., [13, 18]) as well as hybrid cloud 
services (e.g., Striim [28]).

It is a common observation that data stream processors 
face resource limitations during their operation due to unex-
pected loads [3, 9]. There are multiple possible solutions for 
these issues. Elastically scaling into an external cluster [19, 
25], load shedding, approximate query processing [24], etc., 
are some examples. Out of these, elastic scaling has become 
a key choice because approaches such as load shedding and 
approximate computing have to compromise accuracy which 
is not accepted by certain categories of applications. The 
previous work has been there which used data compression 
techniques to optimize the network connection between pri-
vate and public clouds [25]. However, current elastic scal-
ing mechanisms for stream processing do not consider the 
problem of preserving the privacy of the data sent to the 
public cloud.

Preserving the privacy of stream processing becomes 
a key question to be answered when scaling into a public 
cloud. Sending the data unencrypted to the server definitely 
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exposes them to prying eyes of the eavesdroppers. Send-
ing data encrypted over the network and decrypting them 
to get original values at the server may also expose sensi-
tive information. Multiple works have recently been con-
ducted on privacy-preserving data stream mining. Privacy of 
patient health information has been a serious issue in recent 
times [23]. Fully homomorphic encryption (FHE) has been 
introduced as a solution [12]. FHE is an advanced encryp-
tion technique that allows data to be stored and processed 
in encrypted form. This gives cloud service providers the 
opportunity for hosting and processing data without even 
knowing what the data are handling. However, current FHE 
techniques are computationally expensive needing exces-
sive space for keys and ciphertexts. However, it has been 
shown with some experiments done with HElib [15] (an 
FHE library) that it is practical to implement some basic 
applications such as streaming sensor data to the cloud and 
comparing the values to a threshold.

In our previous work, we present elastic scaling in a pri-
vate/public cloud (i.e., hybrid cloud) scenario with privacy-
preserving data stream processing [26]. We design and 
implement a privacy-preserving Elastic Switching Mecha-
nism (HomoESM) over private/public cloud system. Homo-
morphic encryption scheme of HElib has been used on top 
of this switching mechanism for compressing the data sent 
from private cloud to public cloud. Application logic at the 
private cloud is implemented with Siddhi event processing 
engine [20]. We designed and developed two real-world 
data stream processing benchmarks called E-mail Proces-
sor and HTTP Log Processor (EDGAR benchmark) during 
the evaluation of the proposed approach.

In this paper, we extend our privacy-preserving data 
stream processing mechanism (HomoESM) with significant 
additional features such as the support for homomorphic 
multiplication operations [26]. Furthermore, we extend our 
HomoESM mechanism to elastic scaling with multiple VMs 
running in public cloud and report results. Moreover, we 
demonstrate that latency improvement is consistent across 
multiple different experiment rounds.

Using multiple experiments on real-world system setup 
with the stream processing benchmarks, we demonstrate the 
effectiveness of our approach for elastic switching-based pri-
vacy-preserving stream processing. We observe that homo-
morphic encryption provides significant results. It provides 
10–17% of improvement in average latency in the case of 
E-mail Filter benchmark. EDGAR add/subtract, multipli-
cation, and comparison operations showed 6.13%, 7.81%, 
and 26.17% of average latency improvements, respectively. 
HomoESM is the first known data stream processor which 
does privacy-preserving data stream processing in hybrid 
cloud scenarios effectively. We have released HomoESM 

and the benchmark codes as open source software.1 , 2 , 3 
Specifically, the contributions of our work can be listed as 
follows.

•	 Enhanced privacy-preserving Elastic Switching Mecha-
nism (HomoESM) We design and develop a mechanism 
for conducting elastic scaling of stream processing que-
ries over private/public cloud in a privacy-preserving 
manner. We enhance this to operate in public cloud with 
multiple virtual machine (VM) instances.

•	 Homomorphic multiplication operation We improved the 
stream processing functionality of HomoESM by imple-
menting homomorphic multiplication.

•	 Optimization of homomorphic operations We optimized 
several homomorphic evaluation schemes such as equal-
ity and less than/greater than comparison. We also do 
data batching-based optimizations.

•	 Evaluation We evaluate the proposed approaches by 
implementing them on real-world systems. We compare 
the performance of homomorphic add/subtract opera-
tions as well as multiplication operations. We also evalu-
ate the criteria for scaling into multiple VMs in public 
cloud.

The paper is organized as follows. Next, we provide the 
related work in Sect. 2. We give the brief overview to the 
technologies used in this paper in Sect. 3. We provide the 
details of system design in Sect. 4 and implementation of the 
HomoESM in Sect. 5. The evaluation details are provided in 
Sect. 6. We make a discussion of the results in Sect. 7. We 
provide the conclusions in Sect. 8.

2 � Related Work

There have been multiple previous works on elastic scaling 
of event processing systems in cloud environments.

Cloud computing allows for realizing an elastic stream 
computing service, by dynamically adjusting used resources 
to the current conditions. Hummer et al. discussed how elas-
tic computing of data streams can be achieved on top of 
cloud computing [17]. They mentioned that the most obvi-
ous form of elasticity is to scale with the input data rate and 
the complexity of operations (acquiring new resources when 
needed and releasing resources when possible). However, 
most operators in stream computing are stateful and cannot 
be easily split up or migrated (e.g., window queries need to 

1  https​://githu​b.com/arosh​arodr​igo/event​-publi​sher.
2  https​://githu​b.com/arosh​arodr​igo/stati​stics​-colle​ctor.
3  https​://githu​b.com/arosh​arodr​igo/simpl​e-siddh​i-serve​r.

https://github.com/annonaccount/event-publisher
https://github.com/annonaccount/statistics-collector
https://github.com/annonaccount/simple-siddhi-server
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store the past sequence of events). In HomoESM, we handle 
this type of queries by query switching.

Stormy is a system developed to evaluate the with ‘stream 
processing as service’ concept [22]. The idea was to build a 
distributed stream processing service using techniques used 
in cloud data storage systems. Stormy is built with scalabil-
ity, elasticity, and multitenancy in mind to fit in the cloud 
environment. They have used distributed hash tables (DHTs) 
to build their solution. They have used DHTs to distribute 
the queries among multiple nodes and to route events from 
one query to another. Stormy builds a public streaming ser-
vice where users can add new streams on demand. One of 
the main limitations in Stormy is it assumes that a query 
can be completely executed on one node. Hence, Stormy is 
unable to deal with streams for which the incoming event 
rate exceeds the capacity of a node. We address this issue in 
our work via the concept of data switching of HomoESM.

Cervino et al. [3] try to solve the problem of providing 
a resource provisioning mechanism to overcome inherent 
deficiencies of cloud infrastructure. They have conducted 
some experiments on Amazon EC2 to investigate the prob-
lems that might affect badly a stream processing system. 
They have come up with an algorithm to scale up/down 
the number of VMs (or EC2 instances) based solely on the 
input stream rate. The goal is to keep the system with a 
given latency and throughput for varying loads by adap-
tively provisioning VMs for streaming system to scale up/
down. However, none of the above-mentioned works have 
investigated on reducing the amount of data sent to public 
clouds in such elastic scheduling scenarios. In this work, we 
address this issue.

Data stream compression has been studied in the field of 
data mining. Cuzzocrea et al. have conducted research on a 
lossy compression method for efficient OLAP [4] over data 
streams. Their compression method exploits semantics of 
the reference application and drives the compression process 
by means of the with ‘degree of interestingness.’ The goal 
of this work was to develop a methodology and required 
data structures to enable summarization of the incoming 
data stream. However, the proposed methodology trades off 
accuracy and precision for the reduced size.

Dai et al. [5] have implemented homomorphic encryp-
tion library on graphic processing unit (GPU) to accelerate 
computations in homomorphic level. As GPUs are more 
compute-intensive, they show 51 times speedup on homo-
morphic sorting algorithm when compared to the previous 
implementation. Although computation-wise it gives better 

speedup, when encrypting a Java String field, its length goes 
more than 400 KB which is too large to be sent over a public 
network. Hence, we used HElib as the homomorphic encryp-
tion library in our work.

Intel has included a special module in CPU, named Soft-
ware Guard eXtension (SGX), with its sixth generation Core 
i5, i7, and Xeon processors [27]. SGX reduces the trusted 
computing base (TCB) to a minimal set of trusted code 
(programmed by the programmer) and the SGX processor. 
Shaon et al. developed a generic framework for secure data 
analytics in an untrusted cloud setup with both single-user 
and multiuser settings [27]. Furthermore, they proposed 
BigMatrix which is an abstraction for handling large matrix 
operations in a data oblivious manner to support vectoriza-
tions. Their work is tailored for data analytics tasks using 
vectorized computations and optimal matrix-based opera-
tions. However, in this work HomoESM conducts stream 
processing which is different from the batch processing done 
by BigMatrix.

3 � Overview

In this section, we provide a brief description of WSO2 
Stream Processor which is the stream processing engine 
used for implementing our HomoESM. Then, we discuss 
about existing ESM and furthermore give introduction to 
homomorphic encryption concept and available libraries.

3.1 � Overview of WSO2 Stream Processor

WSO2 Stream Processor (WSO2 SP) is a lightweight, easy-
to-use, stream processing engine. In our work, we are using 
Siddhi library which is a component of the WSO2 Stream 
Processor [32]. It is available as open source software under 
the Apache Software License v2.0 [31]. WSO2 SP lets users 
provide queries using an SQL-like query language in order 
to get notifications on interesting real-time events, where it 
will listen to incoming data streams and generate new events 
when the conditions given in those queries are met by cor-
relating the incoming data streams.

WSO2 SP uses a SQL-like Event Query Language to 
describe queries. For example, the following query detects 
the number of taxis dropped off in each cell in the last 
15 min [20]. 
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from Tr i p #window . t ime (15 min )
s e l e c t coun t ( meda l l i o n ) a s coun t group by c e l l I d
i n s e r t i n t o Outpu tS t r eam

Listing 1 EmailFilter condition.

implementation will look for a pre-configured latency value 
as the QoS parameter.

3.3 � Homomorphic Encryption

Homomorphic encryption is a type of encryption that allows 
computation on ciphertexts. It generates an encrypted result. 
When decrypted, the result matches with the result of the 
operations as if they had been performed on the plaintext. 
The purpose of homomorphic encryption is to allow com-
putation on encrypted data [2]. Therefore, homomorphic 
encryption allows complex mathematical operations to be 
performed on encrypted data without compromising the 
privacy.
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Fig. 1   Approach for elastic compressed complex event processing. System operation with single query switched to public cloud with data 
switching. a Private cloud-only mode of operation. b Hybrid cloud mode of operation with data switching and compression

3.2 � Elastic Switching Mechanism

The Elastic Switching Mechanism (ESM) [25] is designed 
to operate stream processing engines between private and 
public cloud environments as shown in Fig. 1. Basic idea is 
to have on-demand public SP engine according to the input 
load. This mechanism is able to maintain good QoS met-
rics as it can automatically scale for additional resources 
when required. ESM will route data between private and 
public stream processing engines with taking care of a QoS 
parameter configured by user. QoS measurements need to 
be taken at receiver component of ESM end, and publisher 
component will check for QoS level to take the decision 
of routing data to public stream processing engine. Current 
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There are two main homomorphic encryption schemes: 
partially homomorphic encryption and fully homomor-
phic encryption (FHE). FHE supports arbitrary computa-
tion on ciphertexts and is far more powerful while partially 
homomorphic encryption supports limited computations. 
Fully homomorphic cryptosystems have great practical 

implications in the outsourcing of private computations in 
the context of cloud computing.

There are several implementations of homomorphic 
encryption. CUDA Homomorphic Encryption Library 
(cuHE) [5] is a GPU-accelerated library for homomorphic 
encryption (HE) schemes and homomorphic algorithms 
defined over polynomial rings.

Another popular implementation of homomorphic 
encryption is HElib. This library is open source on GitHub 
and written in C++ [14]. Unlike some earlier HE schemes, 
HElib uses a SIMD-like optimization known as ciphertext 
packing. As a result, each individual ciphertext element with 
which one can perform a computation (addition or multi-
plication) is conceptually a vector of encrypted plaintext 
integrals. HElib is particularly effective with problems that 
can benefit from some level of parallel computation. The 
size of this vector decides according to the settings when to 
initialize the HElib. HElib supports multithreaded environ-
ment, and we need to enable that feature while we install 
HElib on a system. It provides low-level routines such as set, 
add, multiply and shift. These are the reasons for why we 
choose HElib over other homomorphic encryption libraries 
to implement HomoESM.

4 � System Design

In this section, we first describe the architecture of 
HomoESM and then describe the switching functions which 
determine when to start sending data to public cloud.

The HomoESM architecture is shown in Fig. 2. The com-
ponents highlighted in the dark blue color correspond to 
components which directly implement privacy-preserving 
stream processing functionality.

Figure 2 shows an example scenario of comparison opera-
tion has been implemented. There are three events E1, E2, 
and E3 where E1 and E3 satisfy the stated conditions. 
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Fig. 2   System architecture of homomorphic encryption-based ESM 
(HomoESM) with an example of how comparison operation has been 
conducted

Table 1   Notation

Notation Description

t Unit time slot
L
t

Average latency measured at the receiver component of the HomoESM during the time slot t
Ls VM Startup threshold latency. When the average latency exceeds this value, the HomoESM decides to initiate the VM start up 

process
Ld Data switching threshold latency. When L > Ld , the HomoESM starts sending data to public cloud
� Tolerance period. After the unit timeslot (t) elapses, the HomoESM waits for additional � period before it initiates the VM startup 

process. In the current implementation of the ESM, � is set equal to t
Lp Private cloud threshold latency. At least Lp amount of latency needs to be present in the private cloud for a VM to be kept running in 

the next unit time slot
D

t
Total amount of data received by the VM from private cloud during the time slot t

Ds Threshold for total amount of data received by the VM from private cloud during the time slot t
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However, E2 does not satisfy this condition. Hence, it gets 
filtered out.

The HomoESM Scheduler collects events from the Plain 
Event Queue according to the configured frequency and the 
timestamp field on the event. Then, it routes the events into 
the private publishing thread pool and to the public publish-
ing queue, according to the load transfer percentage and the 
threshold values.

Receiver receives events from both private and public 
Siddhi. If the event is from the private Siddhi, it is sent to the 
Profiler. If the event is not a composite event, it is directed 
to the ‘Composite Event Decode Worker’ threads located 
inside the Decryptor which basically performs the decryp-
tion function. Finally, all the streams which go out from 
HomoESM run through Profiler which conducts the latency 
measurements.

In this paper, we use the same switching functions 
described in [25] for triggering and stopping VMs and send-
ing data to public cloud (see Eqs. 1 and 2). Here, �VM(t) is 
the binary switching function for a single VM and t is the 
time period of interest. Lt−1 and Dt−1 are the latency and data 
rate values measured in the previous time period. A time 
period of � has to be elapsed in order for the VM startup 
process to trigger. The symbols used in the two equations 
are shown in Table 1.

ESM needs to take decisions on following three main 
scenarios,

When to start public VM Average latency measured for 
the last period at receiver ( Lt−1 ) should be greater than VM 
startup threshold latency ( Ls ), and tolerance period ( � ) 
needs to be elapsed.

When to stop public VM We do not switch off the VMs 
just because the charging period elapses. The decision is 
taken at the end of charging period if the following two con-
ditions are satisfied.

•	 Data sent to public VM within the last period ( Dt−1 ) 
should be less than threshold amount of data sent to pub-
lic VM for a period ( Ds)

(1)𝜙VM(t) =

⎧
⎪
⎨
⎪
⎩

1, Lt−1 ≥ Ls, 𝜏 has elapsed.

0, Dt−1 < Ds, Lt−1 < Lp Otherwise,

,

(2)𝜙data(t) =

⎧
⎪
⎨
⎪
⎩

1, 𝜙VM(t − 1) = 1, Lt−1 ≥ Ld, Ls > Ld

0 Otherwise,

,

•	 Average latency measured for the last period at receiver 
( Lt−1 ) should be less than private cloud threshold latency 
( Lp)

When to send data to public VM

•	 Public VM should be up and running
•	 VM Startup threshold latency ( Ls ) should be greater than 

data switching threshold latency ( Ld ). Note that this con-
dition is always true and it is maintained by ESM initial 
configurations.

•	 Average latency measured for the last period at receiver 
( Lt−1 ) should be greater than data switching threshold 
latency ( Ld).

5 � Implementation

First, we describe the implementation details of HomoESM 
in Sect. 5.1, and we describe the benchmark implementa-
tions in Sects. 5.2, 5.3, 5.4, and 5.5.

5.1 � Implementation of HomoESM

We have developed the HomoESM on top of the WSO2 
Stream Processor (WSO2 SP) software stack. As we 
described earlier, WSO2 SP internally uses Siddhi which is 
a complex event processing library [20]. Siddhi feature of 
WSO2 SP lets users run queries using an SQL-like query 
language in order to get notifications on interesting real-
time events.

High-level view of the system implementation is shown 
in Fig. 3. Input events are received by the ‘Event Publisher.’ 
Java objects are created for each incoming event and put 
into a queue. Event Publisher thread picks those Java objects 
from the queue according to the configured period. Next, it 
evaluates whether the picked event needs to be sent to the 
private or the public Siddhi server, according to the config-
ured load transfer percentage and threshold values. If that 
event needs to be sent to private Siddhi, it will mark the 
time and delegate the event into a thread pool which handles 

Input

Fig. 3   Main components of HomoESM
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sending to private Siddhi. If that event needs to be sent to 
public Siddhi, it will mark the time and be put into the queue 
which is processed by the Encrypt Master asynchronously.

Encrypt Master thread (see Fig. 4a) periodically checks 
a queue which keeps the events required to be sent to public 
cloud. The queue is maintained by the ‘Event Publisher’ (see 
Fig. 5a). If that queue size is greater than or equal to com-
posite event size, it will create a list of events equal to the 
composite event size. Next, it delegates the event encryption 
and composite event creation task to the ‘Composite Event 
Encode Worker’ (see Fig. 4b).

Composite Event Encode Worker is a thread pool which 
handles event encryptions and composite event creations. 
First, it combines nonoperational fields of each plain event in 
the list by the pre-defined separator. Then, it converts opera-
tional fields into binary form and combines them together. 
Next, it pads the operational fields with zeros in order to 
encrypt using HElib API. Finally, it performs encryption on 
those operational fields and puts the newly created compos-
ite event into a queue which is processed by the ‘Encrypted 
Events Publisher’ thread (see Fig. 5b).

Firing events into the public VM is done asynchronously. 
Decision of how many events are sent to the public Siddhi 

server was taken according to the percentage we have config-
ured initially. But the public Siddhi server’s publishing flow 
has max limit of 1500 TPS (tuples per second). If the Event 
Publisher receives more than the max TPS, the events are 
routed back into the private Siddhi server’s VM.

‘Encrypted Events Publisher’ thread periodically checks 
for encrypted events in the encrypted queue which is put by 
the ‘Composite Event Encode Worker’ at the end of the com-
posite event creation and encryption process (see Fig. 4b). 
First, it combines nonoperational fields of each plain event 
in the list by the pre-defined separator. If there are encrypted 
events, it will pick those at once and send them to public 
Siddhi server. The encryptor module batches events into 
composite events and encrypts each composite message 
using homomorphic encryption. The encrypted events are 
sent to the public cloud where Homomorphic CEP Engine 
module conducts the evaluation.

We encrypt operand(s) and come up with composite oper-
and field(s) in each HE function initially, in order to perform 
HE operations on operational fields in composite event. For 
example, in the case of the E-mail Filter benchmark, at the 
Homomorphic CEP Engine which supports homomorphic 
evaluations, initially it converts the constant operand into 
an integer (int) buffer with size 40 with a necessary 0 pad-
ding. Then, it replicates the integer buffer ten times and 
encrypts using HElib [14]. Finally, the encrypted value and 
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the relevant field in the composite event are used for HElib’s 
relevant (e.g., comparison, addition, subtraction, multiplica-
tion, etc.) operation homomorphically. The result is replaced 
with the relevant field in the composite event and is sent to 
the receiver without any decryption.

The received encrypted information is decrypted and 
decomposed to extract the relevant plain events. The 
latency measurement happens at the end of this flow. ‘Event 
Receiver’ thread checks whether the event received from the 
Siddhi server is encrypted with homomorphic encryption. 
If so, it delegates composite event into ‘Composite Event 
Decode Worker.’ If not, it will read payload data and calcu-
late the latency (see Fig. 6a).

After receiving a composite event from the Event 
Receiver, the Composite Event Decode Worker handles all 
decompositions and decryptions of the composite event (see 
Fig. 6b). It first splits nonoperational fields in the compos-
ite event by the pre-defined separator. Second, it performs 

decryption on the operational fields using HElib API and 
splits the decrypted fields into fixed-length strings. Then, 
it creates plain events using the split fields. Next, it checks 
each operational field in the plain event to see whether it 
contains zeros and then processes the events. Finally, it cal-
culates the latency of the decoded events.

Note that we implement the homomorphic comparison of 
values following the work by Togan et al. [30]. We have used 
Togan et al.’s methodology for implementing homomorphic 
comparison operation because it provides an O(log2(n)) solu-
tion which evaluates the comparison. Furthermore, accord-
ing to the authors, their approach provides good results com-
pared to other previous approaches [1]. For two single-bit 
numbers with x and y, Togan et al. [30] have shown that the 
following equations (see Eq. 3) will satisfy greater-than and 
equal operations, respectively.

Togan et al. have created comparison functions for n-bit 
numbers using divide and conquer methodology. In our case, 
we derived two-bit number comparisons as follows. x1x0 and 
y1y0 are the two numbers with two bits (see Eq. 4). Here, 
every ‘+’ operation is for XOR gate operation and every ‘ ⋅ ’ 
operator is for AND gate operation.

Reason that we build up comparison functions for two-bit 
numbers is to apply the concept of homomorphic encryption 
and evaluation into the CEP engine. Even for two-bit number 

(3)
x > y ⇔ xy + x = 1

x = y ⇔ x + y + 1 = 1

(4)

x1x0 > y1y0 ⇔ (x1 > y1)(x1 = y1)(x0 > y0) = 1

⇔ (x1 ⋅ y1 + x1) + (x1 + y1 + 1)(x0 ⋅ y0 + x0) = 1

⇔ x1 ⋅ y1 + x1 + x1 ⋅ x0 ⋅ y0 + x1 ⋅ x0+

y1 ⋅ x0 ⋅ y0 + y1 ⋅ x0 + x0 ⋅ y0 + x0 = 1

x1x0 == y1y0 ⇔ (x0 + y0 + 1) ⋅ (x1 + y1 + 1) = 1

⇔ x0 ⋅ x1 + x0 ⋅ y1 + x0 + y0 ⋅ x1 + y0 ⋅ y1 + y0 + 1 = 1

x1x0 < y1y0 ⇔ (x1x0 > y1y0) + (x1x0 == y1y0) + 1 = 1

⇔ (x1 ⋅ y1 + x1 + x1 ⋅ x0 ⋅ y0 + x1 ⋅ x0 + y1 ⋅ x0 ⋅ y0+

y1 ⋅ x0 + x0 ⋅ y0 + x0) + (x0 ⋅ x1 + x0 ⋅ y1+

x0 + y0 ⋅ x1 + y0 ⋅ y1 + y0 + 1) + 1 = 1
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Fig. 6   Event receiving, decomposition, and decryption processes
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comparisons, a number of XOR and AND gate evaluations 
need to be done as above.

After evaluating the individual HE operations at public 
SP, filtering using those gate operations happens at private 
SP. Boolean conditions are evaluated on encrypted operands 
using HE with above limitations for input number range, and 
‘NOT,’ ‘AND,’ and ‘OR’ gate operations are evaluated at 
private SP after decrypting/decoding the events which come 
from public SP after HE evaluations.

We have evaluated the HomoESM’s functionality using 
five benchmark applications developed using two data-
sets. Next, in order to ensure the completeness of this 
section, we describe the implementation details of these 
benchmarks.

5.2 � E‑mail Filter Benchmark

E-mail Filter is a benchmark we developed based on the 
canonical Enron e-mail dataset [21]. The dataset has 

517,417 e-mails with an average body size of 1.8 KB, the 
largest being 1.92MB. The E-mail Filter benchmark only 
had filter operation and was used to compare filtering 
performance compared to the EDGAR Filter benchmark 
which is described in the next subsection. The architec-
ture of the E-mail Filter benchmark is shown in Fig. 7. 
The events in the input e-mails stream had eight fields 
iij_timestamp, fromAddress, toAddresses, ccAddresses, 
bccAddresses, subject, body, regexstr where all the fields 
were Strings except iij_timestamp which was long type. 
We formatted the toAddresses and ccAddresses fields to 
have only single e-mail address to support HElib evalua-
tions. The criterion for filtering out e-mails was to filter 
by the e-mail addresses lynn.blair@enron.com 
and richard.hanagriff@enron.com. The fil-
tering SiddhiQL statement can be stated as in Listing 2, 

Fig. 8   EDGAR filter benchmark
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NOT ( ( f romAddress i s e qu a l t o ‘ l ynn . b l a i r@en ron . com ’ ) AND
( ( t oAdd r e s s e s i s e qu a l t o ‘ r i c h a r d . h anag r i f f@en ron . com ’ )
OR ( ccAdd r e s s e s i s e qu a l t o ‘ r i c h a r d . h anag r i f f@en ron . com ’
) ) )

Listing 2 EmailFilter condition.
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5.3 � EDGAR Filter Benchmark

We developed another benchmark based on a HTTP log 
dataset published by Division of Economic and Risk Analy-
sis (DERA) [11]. The data provide details of the usage of 
publicly accessible EDGAR company filings in a simple but 
extensive manner [11]. Each record in the dataset consists 
of 16 different fields; hence, each event sent to the bench-
mark had 16 fields (iij_timestamp, ip, date, time, zone, cik, 
accession, extension, code, size, idx, norefer, noagent, find, 
crawler, and browser). Similar to the E-mail Filter bench-
mark, all of the fields except iij_timestamp were strings. 

Out of these fields, we used noagent field by adding lengthy 
string of 1024 characters to the existing value, in order to 
increase the events’ size. (Note that we have done the same 
for all the EDGAR benchmarks described in this paper.) The 
architecture of EDGAR filter benchmark is shown in Fig. 8.

The EDGAR benchmark was developed with the aim of 
implementing filtering support. Basic criterion was to filter 
out EDGAR logs, which satisfies the conditions shown in 
Listing 3. 

Fig. 9   EDGAR Add/Subtract 
benchmark
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( e x t e n s i o n == ‘ v16003sv1 . htm ’ ) and ( code == ‘ 200 . 0 ’ ) and
( d a t e == ‘2016−10−01 ’)))

Listing 3 EDGAR filter condition.
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Most of the EDGAR log events were the same, and the 
logs did not have any data rate variation inherently. There-
fore, we introduced varying data rate by publishing events in 
different TPS values according to a custom-defined function.

5.4 � EDGAR Comparison Benchmark

Using the same EDGAR dataset, we developed EDGAR 
Comparison benchmark to evaluate the performance [10] of 
homomorphic comparison operation. In the EDAGR Com-
parison benchmark, we have changed the input format of the 
zone and find fields to integer (Int) in order to do comparison 
operations. Since we are doing only bitwise operations, we 

limited the HElib message space to 2, in order to use only 
0s and 1s. Therefore, maximum length for encrypting field 
when we used message space as 2 was 168, and we used 
composite event size as 168 when sending to public Siddhi 
server. The architecture of EDGAR Comparison benchmark 
is similar to the topology shown in Fig. 7. Basic criterion 
is to filter out EDGAR logs, which satisfies the following 
conditions (see Listing 4). 

( zone == 0) and ( f i n d > 0) and ( f i n d < 3)

Listing 4 EDGAR comparison condition.

Private Siddhi 
Server

Public Siddhi 
ServerHomoESM

Private Cloud Public Cloud

EC2 instance type: m4.xlarge
Region: North Virginia, USA
Hardware: 4 cores, 16GB RAM
OS: Ubuntu 16.04.2 LTS

EC2 instance type: m4.4xlarge
Region: North Virginia, USA
Hardware: 16 cores, 64GB RAM
OS: Ubuntu 16.04.2 LTS

730Mbits/sec 500Mbits/sec

EC2 instance type: m4.xlarge
Region: Ohio, USA
Hardware: 4 cores, 16GB RAM
OS: Ubuntu 16.04.2 LTS

Fig. 11   Experiment setup of HomoESM on Amazon EC2

Fig. 12   Input data rate variation of the two benchmarks a E-mail Filter benchmark b EDGAR benchmarks
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5.5 � EDGAR Add/Subtract Benchmark

In EDGAR Add/Subtract benchmark, we have changed 
the input format to an Integer, for code, idx, norefer, and 
find fields in order to support add/subtract operations. The 

corresponding Siddhi query which depicts the addition and 
subtract operations conducted by this benchmark is shown 
in Listing 5. 

Fig. 13   Average latency of elastic scaling of the E-mail Filter benchmark with securing the event stream sent to public cloud via homomorphic 
encryption

Fig. 14   Average latency of elastic scaling of the EDGAR benchmark with homomorphic filter operations

Fig. 15   Results comparison for three runs of the EDGAR benchmark with homomorphic filter operations

@info ( name = ’ query5 ’ ) from
inpu tEdga rS t r e am s e l e c t i i j t i m e s t amp , ip , da t e , t ime ,
zone , c ik , a c c e s s i o n , e x t e n s i o n , code−100 as code , s i z e ,
i dx +30 as idx , n o r e f e r +20 as n o r e f e r , noagen t , f i nd −10
as f i nd , c r aw l e r , b rowse r i n s e r t i n t o ou t pu tEdga rS t r e am ;

Listing 5 EDGAR add/subtract siddhi query.
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The architecture of EDGAR Add/Subtract benchmark is 
shown in Fig. 9. Note that EDGAR Multiply benchmark 
also has similar architecture although Q2 and Q5 operators 
conduct multiply operations instead.

5.6 � EDGAR Multiply Benchmark

In EDGAR Multiply benchmark, we have changed the 
input format to an Integer, for ‘code’ and ‘idx’ fields. As in 

EDGAR filter benchmark, here also we add lengthy string 
of 1024 characters to the existing value of ‘noagent’ field, in 
order to increase the packet size. We multiply code field by 
2 and idx field by 3. The corresponding Siddhi query which 
depicts the multiplication operation done by this benchmark 
is shown in Listing 6. The architecture of EDGAR Multiply 
benchmark is shown in Fig. 10. 

Fig. 16   Average latency of elastic scaling of the EDGAR benchmark with homomorphic comparison operations

Fig. 17   Average latency of elastic scaling of the EDGAR benchmark with homomorphic add/subtract operations

d e f i n e s t r e am inpu tEdga rS t r e am ( i i j t i m e s t am p long , i p
s t r i n g , d a t e s t r i n g , t ime s t r i n g , zone s t r i n g , c i k s t r i n g ,
a c c e s s i o n s t r i n g , e x t e n s i o n s t r i n g , code i n t , s i z e s t r i n g ,
i dx i n t , n o r e f e r i n t , noagen t s t r i n g , f i n d i n t , c r aw l e r
s t r i n g , b rowse r s t r i n g ) ;
@info ( name = ’ query5 ’ ) from inpu tEdga rS t r e am s e l e c t
i i j t i m e s t amp , ip , da t e , t ime , zone , c ik , a c c e s s i o n ,
e x t e n s i o n , code ∗2 as code , s i z e , i dx ∗3 as idx , n o r e f e r ,
noagen t , f i nd , c r aw l e r , b rowse r i n s e r t i n t o
ou t pu tEdga rS t r e am ;

Listing 6 EDGAR multiply siddhi query.
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6 � Evaluation

We conducted the experiments using three VMs in Amazon 
EC2. In this experiment, two VMs were hosted in North 
Virginia, USA, and they were used as private cloud while 
the VM used as public cloud was located in Ohio, USA. We 
used the E-mail Filter benchmark in this experiment which 
does filtering of an e-mail event stream. Out of the two VMs 
in North Virginia, one was a m4.4xlarge instance which had 
16 cores, 64 GB RAM while the private CEP Engine was 
deployed in a m4.xlarge instance which had four CPU cores, 
16 GB RAM. In m4.4xlarge VM, we have deployed ‘Event 
Publisher’ (Event Publisher) and ‘statistic-collector’ (Event 
Receiver) modules. The Stream Processor engine running in 
the public cloud was deployed on the VM running in Ohio 
which was a m4.xlarge instance. All the VMs were running 
on Ubuntu 16.04.2 LTS (Long-Term Support). Using a net-
work speed measurement tool, we observed that network 
speed between the two VMs in North Virginia was around 

730 Mbits/s while the network speed between North Virginia 
and Ohio was 500 Mbits/s. Figure 11 shows the architecture 
of the experimental setup. The input data rate variation of 
the E-mail benchmark and the EDGAR benchmark datasets 
is shown in Fig. 12a, b respectively. The two charts indicate 
that the workloads imposed by the two benchmarks have 
significantly different characteristics.

6.1 � E‑mail Filter Benchmark

In the first round, we used E-mail Filter benchmark. The 
results of this experiment are shown in Fig. 13. The curve 
in the blue color (dashed line) indicates the private cloud 
deployment. The red color curve indicates the deployment 
with switching to public cloud. A clear reduction in average 
latency can be observed when switched to the public cloud 
in this setup compared to the private cloud-only deploy-
ment. With homomorphic elastic scaling, an overall average 
latency reduction of 2.14 s per event can be observed. This 

Fig. 18   Average latency of elastic scaling of the EDGAR benchmark with homomorphic multiplication operation

Fig. 19   Average Latency of running E-mail Filter benchmark with HomoESM for multiple VM test



237Latency‑Aware Secure Elastic Stream Processing with Homomorphic Encryption﻿	

1 3

is 10.24% improvement compared to the private cloud-only 
deployment. Note that in all the following charts, we have 
marked the times where VM start/VM stop operations have 
been invoked in order to start/stop the VM in the public 
cloud. Since VM startup and data sending times are almost 
similar, in this paper we assume VM startup time as the data 
sending time and VM stop time as the point where we stop 
sending data to public cloud.

6.2 � EDGAR Filter Benchmark

In the second round, we used EDGAR Filter benchmark 
for evaluation of our technique. The results are shown in 
Fig. 14. Significant performance gain in terms of latency 
can be observed when switching to public cloud with the 
EDGAR benchmark. A notable fact is that EDGAR dataset 
had relatively smaller message size. The average message 
size of the EDGAR benchmark was 1.1 KB. The HomoESM 
mechanism was able to reduce the delay with considera-
ble improvement of 17%. Furthermore, multiple rounds of 
experiments done with EDGAR Filter benchmark indicate 
that our approach provides consistent results (see Fig. 15).

6.3 � EDGAR Comparison Benchmark

Next, we evaluated the homomorphic comparison opera-
tion. Here, we have used a slightly modified version of the 
EDGAR Filter benchmark to facilitate comparison operation 
in a homomorphic manner. Here, also we add lengthy string 
of 1024 characters to the existing value of ‘noagent’ field. 
The results are shown in Fig. 16.

We could see only a slight improvement in latency with 
EDGAR comparison benchmark. The improvement in the 

average latency was around 449 ms which is 3% improve-
ment compared to the private-only deployment. Compared 
to equal-only operation, less-than and greater-than opera-
tions consume more XOR and AND gate operations in the 
homomorphic encryption (HE) level. Due to that, Siddhi 
engine processing throughput, when having homomorphic 
less-than and greater-than operations, is quite low compared 
to equal operation-only case. Therefore, the portion of events 
sent to public Siddhi is lesser than other cases. That’s why 
we could not see much advantage (only 3%) on latency 
curves for both private and public Siddhi setup compared to 
private Siddhi-only setup. During the middle spike shown 
in Fig. 16, a 26.17% improvement in latency was observed.

6.4 � EDGAR Add/Subtract Benchmark

We evaluated the homomorphic add/subtract operation using 
the EDGAR benchmark. The addition and subtraction HE 
operations’ supported message space range is from 0 to 
1201. Although 32-bit full adder circuits using HElib could 
increase the range further, we keep this as a further work. 
The overall improvement was 3.68% for the scenario where 
1.5% of the load was sent to the public VM. We observed 
a maximum 6.13% performance improvement in the third 
spike shown in Fig. 17.

6.5 � EDGAR Multiplication Benchmark

Next, we studied the performance behavior of the homomor-
phic multiplication functionality. The multiply HE opera-
tion’s supported message space range is from 0 to 1201. If 
we need to support full-range multiply operation, we need to 
come up with at least 32-bit binary multiplier circuit using 

Fig. 20   CPU utilization at Event Publisher/statistics collector VM when sending data to public SP engine
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HElib. But in this work we do not address this issue. The 
results of this experiment are shown in Fig. 18.

Multiplication had similar performance curve to the 
Add/Subtract benchmark. The third spike has performance 
improvement of 7.81%.

6.6 � Multiple VM Test for E‑mail Filter Benchmark

Up to this point, we had evaluated the performance improve-
ment we could obtain using only one public cloud VM. In 
this experiment, we evaluated the advantage of using mul-
tiple VMs and scaling the homomorphic stream processor 
among those VMs. We conducted E-mail Filter benchmark 
performance test with two public VMs and four public VMs 
in two separate tests. The purpose of the experiment was to 
investigate whether adding more VMs in the public cloud 
may improve the performance. We identified that when we 
used a single public VM with a routing load percentage of 
1.5%, the public VM is still not overloaded. Therefore, even 
if we increased the number of public VMs, the expected 
advantage could not be achieved. On the other hand, we can-
not increase the routing load percentage more than 1.5% due 
to higher CPU utilization in Event Publisher VM instance. 
Therefore, we have ended up with similar latency curves for 
all cases with single, two, and four public VMs (Fig. 19).

7 � Discussion

In this paper, we have not only implemented a mechanism 
for elastic privacy-preserving data stream processing but 
also shown considerable performance benefits on real-world 
experimental setups. Results comparing HomoESM to the 
private cloud-only deployments demonstrate 3–17% latency 
improvements. Furthermore, during large workload spikes, 
HomoESM has shown 6–26% latency improvements which 
is almost doubled performance improvement. Workload 
spikes are the key situations where HomoESM needs to be 
deployed which indicates HomoESM’s effectiveness in han-
dling such situations.

According to the above experiments, we can see bet-
ter results only in E-mail Filter and EDGAR Filter bench-
marks. These benchmarks’ evaluations undergo only with 
single homomorphic XOR gate computations per composite 
event. Therefore, the complexity of computation at public 
SP engine is low, compared to EDGAR comparison and 
Add/Subtract benchmarks. This is why we see higher per-
formance gains with the E-mail Filter and EDGAR Filter 
benchmarks compared to other benchmarks.

Apart from the above, EDGAR comparison and Add/
Subtract benchmark experiments have limitations. EDGAR 
comparison benchmark experiment is performed only on 
two-bit numbers. This is due to the increment of circuit 

complexity in HElib, with the increment of no. of bits. 
EDGAR Add/Subtract benchmark also supports the range 
from 0 to 1201, which is the message space of HElib accord-
ing to our selected settings. If we want to have support for 
larger numbers like 32-bit integers, we need to come up with 
HElib circuitry that will take longer time.

Although one could argue that the techniques presented 
in this paper are restricted due to the nature of the modern 
homomorphic encryption techniques, we have overcome the 
difficulties via batching and compressing the events, which 
is one of the key contributions of this paper. We have used 
high-performance VM instance type m4.4xlarge in the eval-
uations, because composite event composing and decompos-
ing require more CPU for publisher and statistics collector. 
In the multi-VM experiment for example when we routed 
1.5% load into the public cloud VM, the CPU utilization 
almost reached 100%. This is due to higher CPU consump-
tion when performing composition and decomposition by 
Event Publisher and statistics collector, respectively. Java 
Flight Recorder (JFR) output for Event Publisher when send-
ing data to public SP engine is shown in Fig. 20.

A limitation of FHE is that it needs prior knowledge of 
the data to conduct different operations on the encrypted 
data. Hence, HomoESM is applicable only for data streams 
with finite and unchanging data.

8 � Conclusion

Privacy has become an utmost important barrier which hin-
ders leveraging IaaS for running stream processing appli-
cations. In this paper, we introduce a mechanism called 
HomoESM which conducts privacy-preserving elastic data 
stream processing. We evaluated our approach using two 
benchmarks called E-mail Filter and EDGAR on Amazon 
AWS. We observed significant improvements in overall 
latency of 10% and 17% for E-mail Processors and EDGAR 
datasets with using HomoESM on equality operation. We 
also implemented comparison, add/subtract, and multiplica-
tion operations in HomoESM which resulted in maximum 
26.17%, 6.13%, and 7.81% improvements in the average 
latencies, respectively. In the future, we plan to extend this 
work to handle more complicated streaming operations. We 
also plan to experiment with multiple query-based tuning for 
privacy-preserving elastic scaling.
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