
Romano and Thorne Res. Number Theory (2018) 4:21
https://doi.org/10.1007/s40993-018-0110-5

RESEARCH

On the arithmetic of simple singularities of
type E
Beth Romano

∗
and Jack A. Thorne

*Correspondence:
blr24@dpmms.cam.ac.uk
Department of Pure
Mathematics and Mathematical
Statistics, University of
Cambridge, Wilberforce Road,
Cambridge CB3 0WB, UK

Abstract

An ADE Dynkin diagram gives rise to a family of algebraic curves. In this paper, we use
arithmetic invariant theory to study the integral points of the curves associated to the
exceptional diagrams E6, E7, E8. These curves are non-hyperelliptic of genus 3 or 4. We
prove that a positive proportion of each family consists of curves with integral points
everywhere locally but no integral points globally.
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1 Introduction
Background Consider the following families of affine plane curves over Q:

y3 = x4 + y(c2x2 + c5x + c8) + c6x2 + c9x + c12 (1.1)

y3 = x3y + c10x2 + x(c2y2 + c8y + c14) + c6y2 + c12y + c18 (1.2)

y3 = x5 + y(c2x3 + c8x2 + c14x + c20) + c12x3 + c18x2 + c24x + c30. (1.3)

These families arise as versal deformations of the simple plane singularities of types E6,
E7, and E8, respectively (see [25]). In each family, the singularity can be recovered by
setting all coefficients ci equal to 0; yet the generic member of each family is smooth, and
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its smooth projective completion acquires rational points at infinity. Thus it is natural to
study the arithmetic of these families of pointed smooth projective curves. The study of
these families can be viewed as a variation on a classical theme: if we started instead with
the singularity of type A2 (given by the equation y2 = x3), then we would be studying the
arithmetic of elliptic curves in standard Weierstrass form.
We recall that if Y is a smooth projective curve over a global field k and P ∈ Y (k) is a

rational point, then one can define the 2-Selmer set Sel2 Y of the curve Y ; it is a subset
of the 2-Selmer group of the Jacobian of Y that serves as a cohomological proxy for the
set Y (k) of k-rational points. In the paper [26], the second author studied the behaviour
of the 2-Selmer sets of the curves in the family (1.1), proving the following theorem ([26,
Theorem 4.3]):

Theorem 1.1 Let F0 ⊂ Z
6 denote the set of tuples (c2, c5, c8, c6, c9, c12) ∈ Z

6 such the the
affine curve given by Eq. (1.1) is smooth (over Q). If b ∈ F0, then call ht(b) = supi |ci(b)|72/i
the height of b, and let Yb denote the smooth projective completion of the fibre Xb as an
algebraic curve over Q. If F ⊂ F0 is a subset defined by congruence conditions, then we
have

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a} < ∞.

Moreover, for any ε > 0, we can find a subset F ⊂ F0 defined by congruence conditions
such that

1 ≤ lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a} < 1 + ε.

For the definition of a subset defined by congruence conditions, see (1.4) below. This
theorem has the following Diophantine consequence ([26, Theorem 4.8]):

Theorem 1.2 Let ε > 0, and letF0 be as in the statement of Theorem 1.2. If b ∈ F0, letXb
denote the affine curve over Z given by Eq. (1.1). Then there exists a subsetF ⊂ F0 defined
by congruence conditions that satisfies the following conditions:

1. For every b ∈ F and for every prime p, Xb(Zp) �= ∅.
2. We have

lim inf
a→∞

#
{
b ∈ F | ht(b) < a, Xb(Z) = ∅}

#{b ∈ F | ht(b) < a} > 1 − ε.

In other words, a positive proportion of curves in the family (1.1) have noZ-points despite
having Zp-points for every prime p. (The presence of marked points at infinity implies
that for every b ∈ F0, the curve Xb also has R-points.)

The results of this paper The goal of this paper is to generalize these results to the
other two families (1.2) and (1.3) described above. The techniques we use are broadly
similar to those of [26], and are based around the relation, introduced in [25], between
the arithmetic of these families of curves and certain Vinberg representations associated
to the corresponding root systems. We study this relation and then employ the orbit-
counting techniques of Bhargava to prove our main theorems. We refer the reader to [26,
Introduction] for a more detailed discussion of these ideas.
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In order to state the main theorems of this paper precisely, we must introduce some
more notation.Wewill find it convenient to state our results in parallel for the two families
(1.2) and (1.3). When it is necessary to split into cases, we will say that we are either in
Case E7 or in Case E8. We specify the following notation:

CaseE7:We letB denote the affine schemeA
7
Z
with coordinates (c2, c6, c8, c10, c12, c14 ,

c18), and let B = BQ. We let X ⊂ A
2
B denote the affine curve over B given by Eq.

(1.2), and X = XQ. We let Y → B denote the family of projective curves defined
in [25, Lemma 4.9] (this family is a fibre-wise compactification of X that is smooth
at infinity. It can be realized as the closure of X in P

2
B). We let F0 denote the set of

b ∈ B(Z) such that Xb is smooth. If b ∈ F0, then we define ht(b) = supi |ci(b)|126/i.
CaseE8:We letB denote the affine schemeA

8
Z
with coordinates (c2, c8, c12, c14 , c18, c20,

c24 , c30), and let B = BQ. We let X ⊂ A
2
B denote the affine curve over B given by Eq.

(1.3), and X = XQ. We let Y → B denote the family of projective curves defined in
[25, Lemma 4.9] (again, this family is a fibre-wise compactification ofX that is smooth
at infinity. It can be realized as the closure ofX in a suitable weighted projective space
over B). We let F0 denote the set of b ∈ B(Z) such that Xb is smooth. If b ∈ F0, then
we define ht(b) = supi |ci(b)|240/i.

In either case, we say that a subset F ⊂ F0 is defined by congruence conditions if there
exist distinct primes p1, . . . , ps and a non-empty open compact subset Upi ⊂ B(Zpi ) for
each i ∈ {1, . . . , s} such that

F = F0 ∩ (Up1 × · · · × Ups ), (1.4)

where we are identifying F0 with its image in B(Zp1 ) × · · · × B(Zps ) under the diagonal
embedding. Our first main result is then as follows.

Theorem 1.3 1. Let F0 ⊂ F be a subset defined by congruence conditions. Then we
have

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a} < ∞.

2. For any ε > 0, we can find a subset F ⊂ F0 defined by congruence conditions such
that

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a} <

{
2 + ε Case E7;
1 + ε Case E8.

(We note that the average in Case E7 is at least 2, because the family of curves (1.2) has two
marked points at infinity; for a generic member of this family, these rational points define
distinct elements inside the 2-Selmer set Sel2 Yb). In either case, we can apply Theorem
1.3 to deduce the following consequence.

Theorem 1.4 Let ε > 0. Then there exists a subset F ⊂ F0 defined by congruence condi-
tions satisfying the following conditions:

1. For every b ∈ F and for every prime p, Xb(Zp) �= ∅.
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2. We have

lim inf
a→∞

#{b ∈ F | ht(b) < a, Xb(Z) = ∅}
#{b ∈ F | ht(b) < a} > 1 − ε.

Informally, we have shown that a positive proportion of each of the families (1.2) and (1.3)
consists of curves with Zp-points for every prime p but no Z-points.

Methodology We now describe some new aspects of the proofs of Theorems 1.3 and
1.4. The main steps of our proofs are the same as those of [26]: we combine the param-
eterization (constructed in [25]) of 2-Selmer elements by rational orbits in a certain rep-
resentation (G,V ) arising from a graded Lie algebra with a technique of counting integral
orbits (i.e. of the groupG(Z) in the setV (Z)). We thus gain information about the average
size of 2-Selmer sets.
Although our proofs are similar in outline to those of [26], we need to introduce several

new ideas here. For example, the most challenging technical step in the argument is to
eliminate the contribution of integral pointswhich lie ‘in the cusp’. (In the notation of Sect.
2.3, these points correspond to vectors v such that vα0 = 0, where α0 is the highest root
in the ambient Lie algebra h.) For this step we prove an optimized criterion (Proposition
2.15) for when certain vectors are reducible (this implies that they cannot contribute to
the non-trivial part of the 2-Selmer set of a smooth curve in our family).This criterion
is based in large part on the Hilbert–Mumford stability criterion. Its application in this
context is very natural, but seems to be new.
We then use a computer to carry out a formidable computation to bound the contri-

bution of the parts of the cuspidal region that are not eliminated by this criterion (see
Proposition 4.5). For comparison, we note that in [26], the cuspidal region was broken up
into 68 pieces; here the analogous procedure leads to a decomposition into 1429 (resp.
9437) pieces inCaseE7 (resp. in CaseE8). It would be very interesting if one could discover
a ‘pure thought’ way to tackle this problem that does not rely on case-by-case calculations.
The current setting also differs from that of [26] in that the curves of family (1.2) have

more thanonemarkedpoint at infinity. (The geometric reason for this is that theprojective
tangent line to a flex point P of a plane quartic curve intersects the curve in exactly one
other point Q. This implies that the family (1.2), essentially the universal family of plane
quartics with amarked flex point, has two canonical sections.)We find that the orbits that
parameterize the divisor classes arising from these points match up in a very pleasant way
with a certain subgroup of the Weyl group of the ambient Lie algebra h. (More precisely,
while the trivial divisor class is represented by the orbit of the Kostant section, the class
of the divisor P − Q is represented by the image of this orbit under a certain element of
the Weyl group of h. This element is described in Lemma 2.5.)
It remains an interesting open problem to generalize the results of this paper and of [26]

to study the average size of the 2-Selmer group of the Jacobians of the curves in (1.1)–
(1.3) (and not just the size of their 2-Selmer sets). The rational orbits necessary for this
study were constructed in [27], but we do not yet understand how to construct integral
representatives for these orbits, in other words, how to prove the analogue of Lemma 3.5
below after replacing the set Yb(Qp) by Jb(Qp). If this can be achieved, then the work we
do in this paper to bound the contribution of the cuspidal region will suffice to obtain the
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expected upper bound on the average size of the 2-Selmer group (namely 6 in Case E7
and 3 in Case E8).

Notation Given a connected reductive group H and a maximal torus T ⊂ H , we write
X∗(T ) = Hom(T,Gm) for the character group of T , X∗(T ) for the cocharacter group of
T , and W (H,T ) for the (absolute) Weyl group of H with respect to T . Similarly, if c is a
Cartan subalgebra of h = Lie(H ), then we write �(h, c) for the roots of c and W (H, c) for
theWeyl group of c. If α ∈ �(h, c), then we write hα ⊂ h for the root space corresponding
to α. We write NH (T ) (resp. NH (c)) for the normalizer of T (resp. c) in H , and ZH (T )
(resp. ZH (c)) for the associated centralizer. Similarly, if V is any subspace of h and x ∈ h,
then we write zV (x) for the centralizer of x in V .
We write � = R>0 for the multiplicative group of positive reals, and d×λ = dλ/λ for

its Haar measure (where dλ is the usual Lebesgue measure on the real line). IfG is a group
defined over a ring R, V is an representation of G, and A ⊂ V , then we write G(R)\A for
the set of equivalence classes of A under the relation a ∼ a′ if there exists γ ∈ G(R) such
that γ a = a′.

2 A stable grading
In this sectionwe establish the algebraic foundation for the proofs of ourmain theorems: in
each of our two cases, we describe the parameterization of certain 2-coverings of Jacobians
of algebraic curves by orbits in a representation arising from a Z/2Z-graded Lie algebra.
Our set-up parallels that of [26]; however, wemust address the complications arising from
the presence of an additional point at infinity on the curves in the family (1.2). This point
makes its presence known in the disconnectedness of the group Hθ defined below and in
the fact that the central fibre of the family (1.2) is not irreducible.

2.1 Definition of the grading

Let k be a field of characteristic 0 with fixed separable closure ks, and let H be a simple
adjoint group over k of rank r that is equipped with a k-split maximal torus T . Let
h = Lie(H ) and t = Lie(T ). We let �H = �(h, t) and choose a set of simple roots
SH = {α1,α2, . . . ,αr} ⊂ �H . We also choose a Chevalley basis for h with root vectors
{eα | α ∈ �H }. Suppose that −1 is an element of the Weyl group W (H,T ) (this is true,
e.g., if H has type E7 or E8, but not if H has type E6). Let ρ̌ ∈ X∗(T ) be the sum of
the fundamental coweights with respect to our choice of simple roots SH . Then, up to
conjugation by H (k), the automorphism θ := Ad(ρ̌(−1)) is the unique involution of H
such that hdθ=−1 contains a regular nilpotent element of h ([25, Corollary 2.15]). The
grading induced by this involution is stable in the sense of [19, Sect. 5.3].
We defineG = (Hθ )◦ and V = hdθ=−1. ThenG is a split semisimple group, and V is an

irreducible representation of G, of the type studied by Kostant–Rallis in the case k = C

[13]. The invariant theory ofV is closely related to that of the adjoint representation ofH .
We now summarize some aspects of the invariant theory of the pair (G,V ). Proofs may be
found in [13,28], or [16]. We refer the reader to [25, Sect. 2] for a more detailed summary
in the present setting.

Definition 2.1 Let c ⊂ h be a Cartan subalgebra. If c ⊂ V , then c is called a Cartan
subspace of V .
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Theorem 2.2 1. Any two Cartan subspaces c, c′ ⊂ V are conjugate by an element of
G(ks).

2. Let c ⊂ V be aCartan subspace, anddefineW (G, c) = NG(c)/ZG(c). Then the natural
maps

W (G, c) → W (H, c)

and

k[h]H → k[V ]G → k[c]W (G,c)

are isomorphisms. In particular, k[V ]G is isomorphic to a polynomial algebra on
r = rankH generators.

Let us call a vector v ∈ V semisimple (resp. nilpotent, resp. regular) if it has this property
when viewed as an element of h. We have the following proposition:

Proposition 2.3 Let v ∈ V .

1. The components of the Jordan decomposition v = vs + vn in h in fact lie in V .
2. The vector v has a closed G-orbit in V if and only if it is semisimple.
3. The stabilizer of v in G is finite (and hence the G-orbit of v has maximal dimension)

if and only if v is regular.

We see in particular that a vector v ∈ V has both a closed orbit and a finite stabilizer
(i.e. v is stable in the sense of [15]) if and only if it is regular semisimple. Let 
̃ ∈ k[h]H

be the image under the isomorphism k[t]W (H,T ) → k[h]H of the product of all roots
α ∈ �H . Then 
̃(v) �= 0 if and only if v ∈ h is regular semisimple. We call 
 := 
̃|V the
discriminant polynomial. Then
 is homogeneous of degree #�H . If v ∈ V is a vector such
that 
(v) �= 0, then zh(v) ⊂ V , and zh(v) is the unique Cartan subspace of V containing
v.
Before stating the next result, we review some basic definitions fromgeometric invariant

theory. Recall that given a one-parameter subgroup λ : Gm → Gks , we may decompose
V (ks) as ⊕i∈ZVi, where Vi = {v ∈ V (ks) | λ(t) · v = tiv}. If we decompose a vector v ∈ V
as v = ∑

vi where vi ∈ Vi for all i, then {i | vi �= 0} is called the set of weights for v with
respect to λ.

Corollary 2.4 Let v ∈ V . Then the following are equivalent:

1. v is regular semisimple.
2. 
(v) �= 0.
3. For any non-trivial one-parameter subgroup λ : Gm → Gks , the vector v has a positive

weight with respect to λ.

Proof What remains to be shown is that the third condition is equivalent to the vector
v having a closed orbit and a finite stabilizer in G. This is the Hilbert–Mumford stability
criterion (see e.g. [15]). ��
We now describeG and V more explicitly. By our definition of θ , it is clear that T ⊂ G.

Let �G = �(G,T ); then �G ⊂ �H , and the complement �V := �H − �G is the set of
weights for the action of T on V . The Weyl group WG := W (G,T ) is the subgroup of
WH := W (H,T ) generated by reflections corresponding to the roots of �G .
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Lemma 2.5 Let s = ρ̌(−1) ∈ T (k).

1. The stabilizer of s under the action of WH on T is given by StabWH (s) = {w ∈ WH |
w(�G) = �G}.

2. There is a split short exact sequence of groups

1 WG StabWH (s) Hθ /G 1.

More precisely, let SG ⊂ �G be a choice of root basis and define

� = {w ∈ WH | w(SG) = SG} ⊂ StabWH (s).

Then StabWH (s) ∼= WG � �, and the inclusion NHθ (T ) ↪→ Hθ induces an isomor-
phism � ∼= Hθ /G.

We remark that if H is of type E7, then the group Hθ /G has order 2; if H is of type E8,
then Hθ /G is trivial.

Proof For the first item, note that since H is adjoint, w · s is completely determined by
its action on the root spaces hα . We have that w · s acts trivially on hα if and only if
α ∈ w−1(�G), and otherwise w · s acts on hα as multiplication by−1. For the second item,
note that by item 1, the group StabWH (s) is a subgroup of Aut(�G) ∼= WG � D, where
D = {σ ∈ Aut(�G) | σ (SG) = SG}. ClearlyWG ⊂ StabWH (s) and StabWH (s) ∩ D = �, so
StabWH (s) ∼= WG � �. The isomorphism with Hθ /G follows from [11, Sect. 2.2]. ��

2.2 Transverse slices over V�G

We continue to use the notation of Sect. 2.1, and now begin our study of the categorical
quotient map

π : V → B,

where B = V�G = Spec k[V ]G . If b ∈ B(k), we write Vb = π−1(b) for the corresponding
fibre. We can write down sections of the map π using the theory of sl2-triples. We recall
that an sl2-triple in h is a tuple (e, h, f ) of elements of h − {0} satisfying the relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

We call an sl2-triple normal if e, f ∈ V and h ∈ hθ . A graded version of the Jacobson–
Morozov theorem ([25, Lemma 2.17]) states that if e ∈ V is a non-zero nilpotent element,
then there exists a normal sl2-triple containing it. If (e, h, f ) is a normal sl2-triple, then we
define S(e,h,f ) = e + zh(f ) ∩ V ⊂ V . Then S(e,h,f ) is an affine linear subspace containing e,
and one can show ([25, Proposition 3.4]) that the map π |S(e,h,f ) : S(e,h,f ) → B is faithfully
flat, with smooth generic fibre. If we let λ : Gm → H be the cocharacter such that
dλ(1) = h, then we may define a contracting action of Gm on S(e,h,f ) by t · v = t2λ(t−1)v.
With this action on S(e,h,f ), if Gm acts on B by the square of its usual action, then π |S(e,h,f )
is Gm-equivariant (see [25, Sect. 3]). If e is regular nilpotent, then we call S(e,h,f ) a Kostant
section.1

We consider these affine subspaces for the sl2-triples corresponding to two conjugacy
classes of nilpotent elements, namely the regular and subregular classes.

1We note that the definition of a Kostant section is often more general than the one stated here, but in this paper we
restrict our attention to sections of this form.
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Proposition 2.6 Let E ∈ V be a regular nilpotent element. Then:

1. There exists a unique normal sl2-triple containing E. Let κ be the Kostant section
associated to this sl2-triple. Then π |κ is an isomorphism.

2. Let b ∈ B(k), and let κb = (π |κ )−1(b). If 
(b) �= 0, then Vb forms a single G(ks)-orbit.
Consequently, there is a canonical bijection

G(k)\Vb(k) ∼= ker[H1(k, ZG(κb)) → H1(k, G)],

where theG(k)-orbit ofκb ∈ Vb(k) corresponds to theneutral element ofH1(k, ZG(κb)).

Proof The first part follows from work of Kostant and Rallis as applied in [25]: see espe-
cially lemmas 2.17 and 3.5. The second part follows from [2, Proposition 1] as applied in
[25, Proposition 4.13]. ��
For b ∈ B(k), we continue to write κb for the fibre over b. We observe that if H has type
E7, then there are two G-conjugacy classes of regular nilpotent elements in V . If H has
type E8, then there is a single G-conjugacy class of regular nilpotent elements (see [25,
Corollary 2.25]). In either case, two regular nilpotent elements E, E′ ∈ V (k) are G(k)-
conjugate if and only if they are G(ks)-conjugate (see e.g. [25, Lemma 2.14]). Combined
with the first part of Proposition 2.6, this implies a strong uniqueness property for the
sections κ → B:

Corollary 2.7 Let κ , κ ′ ⊂ V be Kostant sections.

1. We have κ = κ ′ if and only if κ0 = κ ′
0.

2. The sections κ and κ ′ are G(k)-conjugate if and only if κ0 and κ ′
0 lie in the same

G(ks)-orbit in V .

Next recall that V contains a subregular nilpotent element e (by definition, this means
that e is nilpotent and dim StabG(e) = 1; the existence of subregular nilpotents in V is
proved in [25, Proposition 2.27]). We now discuss the sections corresponding to such an
element.

Theorem 2.8 Let (e, h, f ) be a normal sl2-triple, and suppose that e is subregular nilpotent
element of h. Let X = S(e,h,f ).

1. The fibres of X → B are reduced connected affine curves. If b ∈ B(k), then Xb is
smooth if and only if 
(b) �= 0.

2. Let b ∈ B(k), and suppose that
(b) �= 0. Let Yb denote the smooth projective comple-
tion of Xb, and let Jb = Pic0 Yb be the Jacobian of Yb. There is a canonical isomorphism
Jb[2] ∼= ZG(κb) of finite étale k-groups, where κ is any choice of Kostant section.

Proof For the first part, see [25, Theorem 3.8] and [25, Corollary 3.16]. For the second
part, see [25, Corollary 4.12]. ��
The next two theorems identify the fibres of the morphism X → B in Theorem 2.8 when
H has type E7 or E8. We find it convenient to split into cases.

Theorem 2.9 (Case E7) Suppose that H is of type E7. Fix a choice of regular nilpotent
E, and define κ as in Proposition 2.6. Also fix a normal sl2-triple (e, h, f ) such that e is
subregular nilpotent, and define X = S(e,h,f ) as above.
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1. We may choose homogeneous generators c2, c6, c8, c10, c12, c14 , c18 of k[V ]G and func-
tions x, y ∈ k[X] so that k[X] is isomorphic to a polynomial ring in the elements
c2, c6, c8, c10, c12, c14 , x, y, and the morphism X → B is determined by the relation
(1.2):

y3 = x3y + c10x2 + x(c2y2 + c8y + c14) + c6y2 + c12y + c18.

Moreover, the elements c2, c6, c8, c10, c12, c14 , c18, x, y ∈ k[X] are eigenvectors for the
action of Gm on X mentioned above, with weights as in the following table:

c2 c6 c8 c10 c12 c14 c18 x y
4 12 16 20 24 28 36 8 12

2. Let Y → B denote the natural compactification of X → B as a family of plane quartic
curves, given in homogeneous coordinates as

y30z0 = x30y0 + c10x20z
2
0 + x0

(
c2y20z0 + c8y0z20 + c14z30

)

+c6y20z
2
0 + c12y0z30 + c18z40 .

This compactification has two sections P1 and P2 at infinity, given by the equations
[x0 : y0 : z0] = [0 : 1 : 0] and [x0 : y0 : z0] = [1 : 0 : 0] respectively (note that
P1 is a flex point). Assume that under the bijection of [25, Lemma 4.14] the section
corresponding to E is P1. Then for each b ∈ B(k) such that 
(b) �= 0, the following
diagram commutes:

Xb(k)
ιb

ηb

G(k)\Vb(k)

γb

Jb(k)
δb H1(k, Jb[2]),

where the maps in the diagram are specified as follows. The top arrow ιb is induced by
the inclusion X ↪→ V . The left arrow ηb is the restriction of the Abel–Jacobi map P �→
[(P)− (P1)]. To define γb, we use Proposition 2.6 to obtain an injective homomorphism
to G(k)\Vb(k) → H1(k, ZG(κb)), and then compose with the identification ZG(κb) ∼=
Jb[2] of Theorem 2.8. The bottomarrow δb is the connecting homomorphismassociated
to the Kummer exact sequence

0 Jb[2] Jb
×2 Jb 0.

Proof In this theorem and the next, the first part (i.e. the explicit determination of the
family X) is carried out in [25, Theorem 3.8], the weights for the Gm action are given in
[25, Proposition 3.6], and the second part is the content of [25, Theorem 4.15]. ��

We note that, having fixed a choice of regular nilpotent E, we can always assume, after
possibly replacing e by aHθ (k)-conjugate, that E corresponds to P1 under the bijection of
[25, Lemma 4.14] referred to in the second part of Theorem 2.9.

Theorem 2.10 (Case E8) Suppose that H is of type E8. Fix a choice of regular nilpotent
E, and define κ as in Proposition 2.6. Also fix a normal sl2-triple (e, h, f ) such that e is
subregular nilpotent, and define X = S(e,h,f ) as above.
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1. We may choose homogeneous generators c2, c8, c12, c14 , c18, c20, c24 , c30 of k[V ]G and
functions x, y ∈ k[X] so that k[X] is isomorphic to a polynomial ring in the elements
c2, c8, c12, c14 , c18, c20, c24 , x, y, and themorphismX → B is determined by the relation
(1.3):

y3 = x5 + y(c2x3 + c8x2 + c14x + c20) + c12x3 + c18x2 + c24x + c30.

Moreover, the elements c2, c8, c12, c14 , c18, c20, c24 , c30, x, y ∈ k[X] are eigenvectors for
the action of Gm on X mentioned above, with weights as in the following table:

c2 c8 c12 c14 c18 c20 c24 c30 x y
4 16 24 28 36 40 48 60 12 20

2. Let Y → B denote the compactification of X → B described in [25, Lemma 4.9]. Let
P : B → Y denote the unique section at infinity (so that Y = X ∪ P). Then for each
b ∈ B(k) such that 
(b) �= 0, the following diagram commutes:

Xb(k)
ιb

ηb

G(k)\Vb(k)

γb

Jb(k)
δb H1(k, Jb[2]),

where the maps in the diagram are specified as follows. The top arrow ιb is induced by
the inclusion X ↪→ V . The left arrow ηb is the restriction of the Abel–JacobimapQ �→
[(Q)− (P)]. To define γb, we use Proposition 2.6 to obtain an injective homomorphism
to G(k)\Vb(k) → H1(k, ZG(κb)), and then compose with the identification ZG(κb) ∼=
Jb[2] of Theorem 2.8. The bottomarrow δb is the connecting homomorphismassociated
to the Kummer exact sequence

0 Jb[2] Jb
×2 Jb 0.

Lemma 2.11 In Case E7, suppose b ∈ B(k) is such that 
(b) �= 0. Then δb([(P2) − (P1)])
is in the image of G(k)\Vb(k) under γb, and δb([(P2) − (P1)]) is non-trivial if and only if
H0(k, ZG(κb)) = H0(k, ZH (κb)[2]).

Proof Let ω ∈ � be the non-trivial element, and let E′ = ∑
α∈SH eω(α). Then E′ is a

regular nilpotent element of V . Since Hθ (k) acts simply transitively on the set of such
elements, there is a unique element w ∈ Hθ (k) lifting ω such that w(E) = E′. Let κ ′

denote the Kostant section corresponding to E′. Then wκ = κ ′ and so κ ′
b = wκb. We

claim that γb(κ ′
b) = δb([(P2)− (P1)]). The proof is essentially the same as the proof of [24,

Theorem 5.3], but for the convenience of the reader, we give the details here. Let Xb be
the base change of Xb to the fixed separable closure ks/k , and define Y b similarly. There
is a short exact sequence of étale homology groups:

0 μ2 H1(Xb,F2) H1(Y b,F2) 0. (2.1)

There is a natural symplectic duality on H1(Xb,F2) which has radical μ2, and which
descends to the usual Poincaré duality (or Weil) pairing on H1(Y b,F2) = Jb[2]. Through
an explicit calculation, one can see that δb([(P2) − (P1)]) is the image of the non-trivial
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element of μ2 under the connecting homomorphism associated to the dual short exact
sequence

0 Jb[2] H1(Xb,F2) μ2 0,

where we have used the Weil pairing to identify Jb[2] with its dual.
Let H sc denote the simply connected cover of H with centre AH sc . Note that θ lifts

naturally to an automorphism ofH sc, whichwill again denote by θ , and that becauseH sc is
simply connected, the fixed-point subgroupG′ := (H sc)θ is connected [22, Theorem 8.1].
Let C = ZH (κb) and let Csc = ZH sc (κb). Then C ⊂ H and Csc ⊂ H sc are maximal tori,
and we have ZG′ (κb) = Csc[2] and ZG(κb) = im(Csc[2] → C[2]). It follows from the proof
of [25, Theorem 4.10] that the short exact sequence (2.1) is isomorphic to

0 AH sc Csc[2] ZG(κb) 0,

and its dual is isomorphic to

0 ZG(κb) C[2] π0(Hθ ) 0, (2.2)

wherewehaveused theWH -invariantduality onX∗(C) and the isomorphismC[2]/ZG(κb) ∼=
π0(Hθ ); see also [25,Corollary 2.12],which states that thisWeyl-invariant duality descends
to a non-degenerate symplectic alternating duality on ZG(κb).
Therefore to prove the claim we must show that γb(κ ′

b) is equal to the image in
H1(k, ZG(κb)) of the non-trivial element of π0(Hθ ) under the connecting homomorphism
associatedwith the short exact sequence (2.2). This follows froma computationwith cocy-
cles. Indeed, the second part of Proposition 2.6 asserts that there exists g ∈ G(ks) such that
κ ′
b = gκb. Then the cohomology class γb(κ ′

b) is represented by the cocycle σ �→ g−1(σ g).
But c := g−1w ∈ ZHθ (κb) = C[2] is a lift of the non-trivial element of π0(Hθ ), so the claim
follows from the fact that σ cc−1 = (σ cc−1)−1 = g−1(σ g) for all σ ∈ Gal(ks/k).
We have established the claim, and the first part of the lemma. To finish the the proof,

we note that δb([(P2) − (P1)]) is non-trivial if and only if the connecting homomorphism
π0(Hθ ) → H1(k, ZG(κb)) is injective. By exactness, this is equivalent to the surjectivity of
themapH0(k, ZG(κb)) → H0(k, C[2]), which is exactly the criterion given in the statement
of the lemma. ��

Corollary 2.12 In Case E7, let b ∈ B(k) be such that 
(b) �= 0, and let C = ZH (κb).
Suppose that the mapGal(ks/k) → W (Hks , Cks ) induced by the action ofGal(ks/k) on Cks

is surjective. Then δb([(P2) − (P1)]) is non-trivial in H1(k, Jb[2]).

Proof By the lemma, it is equivalent to show that themapH0(k, ZG(κb)) → H0(k, C[2]) is
surjective.WehaveH0(k, C[2]) = CW (H,C)[2](k) = ZH [2](k). Since the groupH is adjoint,
the centre ZH is trivial, so the map H0(k, ZG(κb)) → H0(k, C[2]) is clearly surjective. ��

2.3 Reducibility conditions

We now define the notion of k-reducibility and study the properties of k-reducible ele-
ments of V (k).

Definition 2.13 Let v ∈ V . We say that v is k-reducible if 
(v) = 0 or if v is G(k)-
conjugate to an element of a Kostant section. Otherwise, we say that v is k-irreducible.
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The factors of the Cartan decomposition h = t⊕⊕
α∈�H hα are invariant under the action

of θ ; this leads to a corresponding decomposition

V =
⊕

α∈�V

hα . (2.3)

If v ∈ V , then we write v = ∑
α∈�V vα for the corresponding decomposition of v as a

sum of T -eigenvectors. Now choose a set of simple roots SG = {β1, . . . ,βr} of �G . Since
the βi form a basis for X∗(T ) ⊗ Q, each element γ ∈ X∗(T ) may be written uniquely as
γ = ∑r

i=1 ni(γ )βi for some ni(γ ) ∈ Q. Our choice of simple roots SH ⊂ �H determines
a set of positive roots �+

H . We write �+
V for �+

H ∩ �V .

Lemma 2.14 Let v ∈ V and decompose v as
∑

α∈�V vα as in (2.3). Suppose one of the
following holds:

1. There exist rational numbers a1, . . . , ar not all equal to zero such that if α ∈ �V and
vα �= 0, then

∑
aini(α) ≤ 0.

2. There exists w ∈ � such that vα = 0 if α ∈ w(�+
V − SH ).

Then v is k-reducible.

(We recall that the subgroup � ⊂ WH was defined in Lemma 2.5.)

Proof For the first part of the lemma, we will apply the criterion of Corollary 2.4. This
corollary implies that if v ∈ V and there exists a non-trivial cocharacter λ ∈ X∗(T ) such
that v has no (strictly) positive weights with respect to λ, then
(v) = 0. Let {ω̌1, . . . , ω̌r} ⊂
X∗(T )⊗ Q be the basis dual to the basis {β1, . . . ,βr} of X∗(T )⊗ Q, and let λ = ∑r

i=1 aiω̌i.
Then there exists a positive integer m such that mλ ∈ X∗(T ). The weights of v with
respect to mλ are exactly the values 〈α, mλ〉 = m

∑r
i=1 aini(α) for those α ∈ �V such

that ni(α) �= 0, so v has no positive weights with respect tomλ.
For the second item, let E = ∑

α∈SH eα , where each eα is a root vector of our fixed
Chevalley basis (see Sect. 2.1). Then E is a regular nilpotent element ofV , and is therefore
contained in a unique normal sl2-triple, which in turn determines a Kostant section
κ ⊂ V (see Proposition 2.6). Suppose that the vector v ∈ V satisfies the condition vα = 0
if α ∈ �+

V − SH . We may assume that if α ∈ SH , then vα �= 0; otherwise v also satisfies
the condition in the first part of the lemma. In this case, exactly the same argument as in
the proof of [26, Lemma 2.6] shows that v is G(k)-conjugate to an element of κ , hence is
k-reducible.
Now suppose that there is a non-trivial element w ∈ � such that the vector v ∈ V

satisfies the condition vα = 0 if α ∈ w(�+
V − SH ). We can again assume that vα �= 0

if α ∈ w(SH ). Let E′ = ∑
α∈w(SH ) eα , and let κ ′ be the Kostant section corresponding to

E′. Since the group Hθ (k) acts simply transitively on the set of regular nilpotents of V
([25, Lemma 2.14]), there is a unique element x ∈ Hθ (k) such that x · E′ = E. Then x
normalizes the torus T , since t = Lie(T ) is the unique Cartan subalgebra of h containing
the semisimple parts of the normal sl2-triples containing E and E′ respectively. Thus x
corresponds to an element of the Weyl group WH ; since WH acts simply transitively on
the set of root bases ofH , we see that x is a representative inHθ (k) ofw. As in the previous
paragraph, the proof of [26, Lemma 2.6] shows that x−1v is G(k)-conjugate to an element
of κ , hence that v is G(k)-conjugate to an element of κ ′. ��
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Given a subsetM ⊂ �V , we define the linear subspace

V (M) = {v ∈ V | vα = 0 for all α ∈ M} ⊂ V.

Proposition 2.15 Let M be a subset of �V , and suppose that one of the following three
conditions is satisfied:

1. There exists w ∈ � such that w(�+
V − SH ) ⊂ M.

2. There exist integers a1, . . . , ar not all equal to zero such that if α ∈ �V and
∑r

i=1 aini(α) > 0, then α ∈ M.
3. There exist β ∈ SG, α ∈ �V − M, and integers a1, . . . , ar not all equal to zero such

that the following conditions hold:

(a) We have {γ ± β | γ ∈ M} ∩ �V ⊂ M.
(b) α − β ∈ �V − M.
(c) If γ ∈ �V and

∑r
i=1 aini(γ ) > 0, then γ ∈ M ∪ {α}.

Then every element of V (M)(k) is k-reducible.

Proof If either of the first two conditions is satisfied, then the desired reducibility follows
from Lemma 2.14.We now show that if the third condition is satisfied, then every element
of V (M)(k) is k-reducible. Let v ∈ V (M)(k). If vα = 0, then v ∈ V (M ∪{α})(k), and so v is
k-reducible by the second part of the proposition. We can therefore assume that vα �= 0.
Let VM = {v ∈ V | vγ = 0 for all γ ∈ �V − M}. Then there is a T -invariant direct

sum decomposition V = V (M) ⊕ VM . Fix a homomorphism SL2 → Gβ where Gβ is
the subgroup of G generated by the root groups corresponding to β and −β . Condition
(a) implies that the decomposition V = V (M) ⊕ VM is Gβ-invariant. Since the ambient
group H is simply laced, the β-root string through α has length two, and thus hα ⊕ hα−β

is an irreducible Gβ-submodule of V . The existence of an irreducible representation of
degree two implies that Gβ

∼= SL2.
Since SL2(k) acts transitively on the non-zero vectors in the unique two-dimensional

irreducible representation of SL2, we can find g ∈ Gβ (k) ⊂ G(k) such that (gv)α = 0. This
shows that gv ∈ V (M ∪ {α}), hence that v is k-reducible, as required. ��

2.4 Roots and weights

We conclude Sect. 2 by fixing coordinates in H and G. From now on we assume H has
type E7 or type E8. As above we let �+

H be the set of positive roots corresponding to our
choice of root basis SH . Similarly, we define �−

H ⊂ �H to be the subset of negative roots.
We note that there exists a unique choice of root basis SG of �G such that the positive
roots �+

G determined by SG are given by �+
G = �G ∩ �+

H . Indeed, this follows from a
consideration of Weyl chambers: theWeyl chambers forH (resp. G) are in bijection with
the root bases of �H (resp. �G), and each Weyl chamber for H is contained in a unique
Weyl chamber for G. If CH is the fundamental Weyl chamber of H corresponding to SH ,
and CG is the uniqueWeyl chamber for G containing CH , then defining SG to be the root
basis corresponding to CG yields the desired property. We note that the set of negative
roots �−

G determined by SG is given by �−
G = �G ∩ �−

H .
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Wewill later need to carry out explicit calculations, so we now define SG in terms of the
simple roots of SH in each case E7 and E8. We number the simple roots of H and G as in
Bourbaki [7, Planches].

2.4.1 CaseE7

We have SH = {α1, . . . ,α7}, where the Dynkin diagram of H is as follows:

H :
α1 α3 α4 α5 α6 α7

α2

The root basis SG = {β1, . . . ,β7} described above consists of the roots

β1 = α3 + α4

β2 = α5 + α6

β3 = α2 + α4

β4 = α1 + α3

β5 = α4 + α5

β6 = α6 + α7

β7 = α2 + α3 + α4 + α5

where the Dynkin diagram is as follows:

G :
β1 β2 β3 β4 β5 β6 β7

We note that the existence of a diagram automorphism for G implies that there are
two possible choices of numbering of the roots in SG consistent with the conventions of
Bourbaki; we keep the above choice for the rest of this paper.

2.4.2 CaseE8

We have SH = {α1, . . . ,α8}, where the Dynkin diagram of H is as follows:

H :
α1 α3 α4 α5 α6 α7 α8

α2

The root basis SG = {β1, . . . ,β8} described above consists of the roots

β1 = α2 + α3 + α4 + α5

β2 = α6 + α7

β3 = α4 + α5

β4 = α1 + α3

β5 = α2 + α4

β6 = α5 + α6

β7 = α7 + α8

β8 = α3 + α4

where the Dynkin diagram is as follows:
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G :
β1 β2 β3 β4 β5 β6 β7

β8

Once again the existence of a diagram automorphism for G means that there are two
possible choices of numbering of the roots in SG consistent with Bourbaki; we keep the
above choice for the rest of this paper.

3 Integral structures, measures, and orbits
In Sect. 2, we introduced the following data:

• the groupH over k , together with split maximal torusT ⊂ H , root basis SH ⊂ X∗(T ),
involution θ = Ad ρ̌(−1), and Lie algebra h = LieH ;

• the group G = (Hθ )◦ and its representation on V = hdθ=−1, together with a root
basis SG ⊂ X∗(T ) and Lie algebra g = LieG;

• the categorical quotient B = V�G and quotient map π : V → B;
• the discriminant polynomial 
 ∈ k[B].

From now on, we also fix the regular nilpotent element E = ∑
α∈SH eα ∈ V . We now

assume that k = Q and study integral structures on these objects.

3.1 Integral structures andmeasures

Our choice of Chevalley basis of hwith root vectors {eα | α ∈ �H } determines a Chevalley
basis of g, with root vectors {eα | α ∈ �G}. It hence determines Z-forms hZ ⊂ h and
gZ ⊂ g (in the sense of [4]). Moreover, V = V ∩hZ is an admissibleZ-lattice that contains
E.
We extend G to a group scheme over Z given by the Zariski closure of the group G

in GL(V). By abuse of notation, we also refer to this Z-group scheme as G. Then the
group G(Z) acts on the lattice V(Z) ⊂ V (Q). The Cartan decomposition V = ⊕α∈�V hα

is defined over Z, so extends to a decomposition V = ⊕α∈�V Vα . Since there exists a
subregular nilpotent element inV = V(Q), wemay choose a subregular nilpotent element
e ∈ V(Z). In Case E7, we impose the additional condition that E corresponds to P1 in the
sense described in Theorem 2.9.
Fix a maximal compact subgroup K ⊂ G(R). Let P = TN ⊂ G be the Borel subgroup

corresponding to the root basis SG , and let P = TN ⊂ G be the opposite Borel subgroup.
Given c ∈ R, we define Tc = {t ∈ T (R)◦ | β(t) ≤ c for all β ∈ SG}.
Proposition 3.1 We can find a compact subset ω ⊂ N (R) and a constant c > 0 such that
G(A) = G(Q) · (G(Ẑ) × S), whereS = ωTcK and A denotes the adeles of Q.

Proof It suffices to show that G(A∞) = G(Q) · G(Ẑ) (where A
∞ = ∏′

p Qp denotes the
ring of finite adeles of Q) and that we can chooseS so thatG(Z) ·S = G(R). This is true:
see [3, Sect. 6], [17, Theorem 4.15], and [17, Theorem 8.11, Corollary 2]. ��

Henceforth we fix a choice ofS = ωTcK as in Proposition 3.1.
After rescaling the polynomials ci ∈ Q[V ]G and x, y ∈ Q[X] appearing in Theorem 2.9

(resp. Theorem 2.10), we can assume that each polynomial ci lies in Z[V]G . We define
B = SpecZ[c2, c6, . . . , c18] in Case E7 (resp. SpecZ[c2, c8, . . . , c30] in Case E8), and write
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π : V → B for the natural morphism, which recovers our existing map π : V → B after
extension of scalars to Q. If b ∈ B(R) = B(R), then we define the height of b to be

ht(b) = sup
i

|ci(b)|deg
/i. (3.1)

If v ∈ V (R), then we define ht(v) = ht(π (v)). Since deg ci = i, the height function is
homogeneous: for all λ ∈ R

×, we have ht(λv) = |λ|deg
 ht(v).
We define X = SpecZ[x, y, c2, c6, . . . , c14] in Case E7 (resp. SpecZ[x, y, c2, c8, . . . , c24]

in Case E8). Thus X is isomorphic to affine space A
r+1
Z

, and the morphism X → B
naturally extends to a morphism X → B, still given in coordinates by Eq. (1.2) in Case
E7 (resp. (1.3) in Case E8). For any ring R and any subset A ⊂ V(R), we write Areg.ss.

for {a ∈ A | 
(a) �= 0}. Similarly if A′ ⊂ B(R) then we write (A′)reg.ss. for the set
{a ∈ A′ | 
(a) �= 0}.
Fix a left-invariant top form ωG on G; it is determined uniquely up to multiplication by

Z
× = {±1}. For any place v of Q, we define a Haar integral on G(Qv) using the volume

element dg = |ωG|v .
If Qv = R, then we can use the Iwasawa decomposition on G(R) = T (R)◦N (R)K =

N (R)T (R)◦K to decompose dg = dt dn dk onG(R) as follows (cf. [26, Sect. 2.7]). We give
T (R)◦ the measure pulled back from the isomorphism

∏
α∈SG α : T (R)◦ ∼= R

r
>0. We give

K its normalized (probability) Haar measure. We then choose the unique Haar measure
dn on N (R) such that dg = dt dn dk . For t ∈ T (R), we define δG(t) = ∏

α∈�−
G

α(t). Then
for any continuous compactly supported function f : G(R) → C, we have the equalities

∫

g∈G(R)
f (g) dg =

∫

t∈T (R)◦

∫

n∈N (R)

∫

k∈K
f (tnk) dk dn dt

=
∫

t∈T (R)◦

∫

n∈N (R)

∫

k∈K
f (ntk)δG(t)−1 dk dn dt.

We also define measures on V and B as in [26, Sect. 2.8] by fixing an invariant differential
top form ωV on V and by defining ωB = dc2 ∧ dc6 ∧ · · · ∧ dc18 in Case E7 (resp. ωB =
dc2 ∧ dc8 ∧ · · · ∧ dc30 in Case E8). If v is a place of Q, then the formulae db = |ωB|v and
dv = |ωV |v define measures on B(Qv) and V (Qv) respectively. Fixing these choices, we
have the following useful result.

Lemma 3.2 There exists a rational numberW0 ∈ Q
× with the following property: let k ′/Q

be any field extension, and let c ⊂ V (k ′) be a Cartan subspace. Let μc : Gk ′ × c → Vk ′ be
the natural action map. Then μ∗

cωV = W0ωG ∧ π |∗cωB.

Proof The proof is identical to that of [26, Proposition 2.13]. ��

Proposition 3.3 Let p be a prime.

1. Let φ : V(Zp)reg.ss. → R be a function of compact support that is locally constant
(resp. continuous) and invariant under the action of G(Zp). Then the function Fφ :
B(Qp)reg.ss. → R defined by the formula

Fφ(b) =
∑

v∈G(Zp)\Vb(Zp)

φ(v)
# StabG(Zp)(v)
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is of compact support and locally constant (resp. continuous), andwe have the formula
∫

v∈V(Zp)
φ(v) dv = |W0|p vol(G(Zp))

∫

b∈B(Zp)
Fφ(b) db.

2. Define a function mp : V(Zp)reg.ss. → R by the formula

mp(v) =
∑

v′∈G(Zp)\(G(Qp)·v∩V(Zp))

# StabG(Qp)(v)
# StabG(Zp)(v′)

.

Then mp is locally constant.
3. Let ψ : V(Zp)reg.ss. → R be a continuous function of compact support that is G(Qp)-

invariant, in the sense that if v, v′ ∈ V(Zp), g ∈ G(Qp), and gv = v′, thenψ(v) = ψ(v′).
Then we have the formula

∫

v∈V(Zp)
ψ(v) dv = |W0|p vol(G(Zp))

∫

b∈B(Zp)

∑

v∈G(Qp)\Vb(Zp)

mp(v)ψ(v)
# StabG(Qp)(v)

db.

Proof The first part follows from Lemma 3.2 and the p-adic formula for integration
in fibres; see [12, Sect. 7.6]. To prove the second part, we note that the function v �→
# StabG(Qp)(v) is locally constant, because the universal stabilizer Z → V reg.ss. is finite
étale. It therefore suffices to show that the function

np(v) :=
∑

v′∈G(Zp)\(G(Qp)·v∩V(Zp))

1
# StabG(Zp)(v′)

is locally constant. Suppose v ∈ V (Qp)reg.ss.. Let c ⊂ V (Qp) be the uniqueCartan subspace
containing v. Since π |c is étale above B(Qp)reg.ss., we can find an open compact neighbour-
hood Bv of π (v) in B(Qp)reg.ss. such that π−1(Bv) ∩ c = �s

i=1Ui is a disjoint union of open
subsets of c and each π |Ui : Ui → Bv is a homeomorphism. LetU = Uj be the open subset
containing v. Let μ : G(Qp) × U → V (Qp) ∩ π−1(Bv) be the restriction of the natural
action map. Then μ is proper, and so μ−1(V(Zp) ∩ π−1(Bv)) is compact. It follows that
the characteristic function χ of the set μ(μ−1(V(Zp) ∩ π−1(Bv))) ⊂ V(Zp)reg. ss. is locally
constant and of compact support. For v′ ∈ U , we have np(v′) = Fχ (π (v′)), where Fχ is as
defined in the statement of the first part of the proposition. Thus by the first part of the
proposition np is locally constant. The third part of the proposition follows from the first
two. ��

3.2 Selmer elements and integral orbits

We now discuss the construction of elements of V(Zp) and V(Z) from rational points of
algebraic curves. The idea behind this construction is as follows. In Theorems 2.9 and
2.10, we have described how a transverse slice X to a subregular nilpotent in V can be
identified with an explicit family of curves over B. The embedding X → V is defined over
Q. After we fix integral structures, thismeans that a point ofX (Z) (resp.X (Zp)) defines an
element of V(Z) (resp. V(Zp)), after possibly clearing a bounded denominator. The main
problem in this section is therefore to show if b ∈ B(Zp) is of non-zero discriminant, then
a class in Jb(Qp)/2Jb(Qp) which is represented by a point of Yb(Qp) is in fact represented
either by a point Xb(Zp), or by a point at infinity.

Lemma 3.4 There exists an integer N0 ≥ 1 with the following properties:

1. For any prime p and any b ∈ B(Zp), we have N0 · κb ∈ V(Zp).
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2. In Case E7, let w ∈ � be the non-trivial element and let κ ′ denote the Kostant section
corresponding to the regular nilpotent element E′ = ∑

α∈SH ewα . Then for any prime
p and for any b ∈ B(Zp), we have N0 · κ ′

b ∈ V(Zp).
3. For any prime p and any x ∈ X (Zp), we have N0 · x ∈ V(Zp).
4. If b ∈ N 2

0 · B(Z), then b ∈ π (V(Z)).
In the first three items N0 is acting via the Gm-action discussed in Sect. 2.2. In the third
item N0 is acting via the natural Gm-action on B.

Proof This follows from the existence of the contracting Gm-actions on κ , κ ′, and X , cf.
[26, Lemma 2.8]. ��
Lemma 3.5 There exists an integer N1 ≥ 1 with the following property: for any prime p
and any b ∈ N1 ·B(Zp) such that
(b) �= 0, the canonical image of Yb(Qp) in H1(Qp, Jb[2])
is contained in the image of the composite map:

Vb(Zp) → G(Qp)\Vb(Qp)
γb−→ H1(Qp, Jb[2])

(where γb is as in Theorems 2.9 and 2.10 for the case when k = Qp).

Proof We just treat the case when H is of type E7; the E8 case is more straightforward,
since there is only one point at infinity. We will show that we can take N1 = 24N 2

0 , where
N0 is as in Lemma 3.4. We recall that the curve Yb is given by the equation

y30z0 = x30y0 + c10x20z
2
0 + x0

(
c2y20z0 + c8y0z20 + c14z30

) + c6y20z
2
0 + c12y0z30 + c18z40 ,

and has two sections P1 = [0 : 1 : 0] and P2 = [1 : 0 : 0] at infinity; the map Yb(Qp) →
Jb(Qp)/2Jb(Qp) sends a point P to the class of the divisor (P) − (P1). We define Y to be
the closed subscheme of P

2
B defined by the same equation; then the complement in Y

of its sections at infinity is naturally identified with X by Theorem 2.9. For b ∈ B(Qp),
Yb is smooth in an open neighbourhood of these sections at infinity. If t ∈ Q

×
p , then the

isomorphism Xb → Xt2b induced by the action of Gm on X extends to an isomorphism
Yb → Yt2b that maps [x0 : y0 : z0] to [t8x0 : t12y0 : z0].
We first claim that if b ∈ 24B(Zp), then every divisor class in the image of the map

Yb(Qp) → Jb(Qp)/2Jb(Qp) is represented by either the zero divisor, the divisor P2 − P1,
or a divisor of the form P − P1 for some P ∈ Xb(Zp).
If P ∈ Yb(Qp), then we write P for the image of P in Yb(Fp). The special fibre Yb,Fp

is reduced, and has at most two irreducible components, which are geometrically irre-
ducible. Moreover, if there are two irreducible components, then P1 and P2 lie on distinct
irreducible components. Indeed, due to the presence of the contracting Gm-action, any
property of themorphismY → B which is open on the base can be checked in the central
fibre. Thus [23, Tag 0C0E] implies that all of the fibres of Y are geometrically reduced;
and then [23, Tag 055R] implies that the two sections P1, P2 together meet all irreducible
components in every geometric fibre. In particular, every irreducible component of Yb,Fp
is geometrically irreducible.
LetJb = Pic0Yb/Zp

be the open subscheme of PicYb/Zp corresponding to those invertible
sheaves that are fibrewise of degree 0 on each irreducible component (see [5, Sect. 8.4]).
Then Jb is a smooth and separated scheme over Zp (see [5, Sect. 9.4, Theorem 2]). We
note that if Q ∈ Jb(Zp) has trivial image in Jb(Zp/23pZp), then Q is divisible by 2 in
Jb(Zp) (this follows from [21, Theorem 6.1] and its generalization [8, Proposition 3.1]).



Romano and Thorne Res. Number Theory (2018) 4:21 Page 19 of 34 21

Let P = (x, y) ∈ Yb(Qp). To prove the claim, it suffices to show that if P /∈ Xb(Zp),
then one of the divisor classes [(P) − (P1)] or [(P) − (P2)] is divisible by 2 in Jb(Qp). We
can assume that xy �= 0. We note that if P /∈ Xb(Zp), then (at least) one of x, y must be
non-integral. If x is integral then the defining equation of Yb shows that y is integral too.
We can therefore write x = pmu, y = pnv, with u, v ∈ Z

×
p and m < 0. We note that if

n < 0, then we must have 2n = 3m, hence we can write n = 3k ,m = 2k for some k < 0.
We first treat the case where p is odd. If n < 0, then we have

P = [p2ku : p3kv : 1] = [p−ku : v : p−3k ] ≡ P1 mod p,

and we see that [(P) − (P1)] is divisible by 2 in Jb(Qp). If n ≥ 0, then P ≡ P2 mod p, and
[(P)− (P2)] is divisible by 2 in Jb(Qp). This establishes the claim in the case when p is odd.
Now suppose that p = 2. Our assumption b ∈ 24B(Z2) means that ci(b) is divisible by

24i for each i ∈ {2, . . . , 18}. We write ι : Yb → Y 1
4 b

for the map [x0 : y0 : z0] �→ [2−8x0 :
2−12y0 : z0] = [24x0 : y0 : 212z0]. If n < 0, then we get

ι(P) = [24−ku : v : 212−3k ] ≡ P1 mod 24 .

This shows that [(ι(P)) − (P1)] is divisible by 2 in J 1
4 b
(Q2), hence [(P) − (P1)] is divisible

by 2 in Jb(Q2). If n ≥ 0, then we have P = [1 : 2n−mv/u : 2−m/u] = [1 : w : z], say, and
we have an equation

w(1 − w2z) = O(28z)

in Z2. It follows that n − m > 8. Then we get

ι(P) = [24 : 2n−mv/u : 212−m/u] = [1 : 2n−m−4v/u : 28−m/u] ≡ P2 mod 24 ,

hence [(P) − (P2)] is divisible by 2 in Jb(Q2). This completes the proof of the claim.
We now show how the claim implies the lemma.We drop our assumption on the parity

of p, and take b = N 2
0 c, where c ∈ 24B(Zp). Given a class φ in H1(Qp, Jc[2]), if φ is in the

image of Yc(Qp), then φ is represented by either P1, P2, or an element of Xc(Zp). Let φ′

denote the corresponding class inH1(Qp, Jb[2]). If P1 is a representative, then κb ∈ Vb(Qp)
represents the corresponding rational orbit. By Lemma 3.4, we have κb = N0 ·κc ∈ V(Zp),
so κb is even an integral representative for this rational orbit. If P2 is a representative, then
κ ′
b ∈ V(Zp) is an integral representative, by the same argument.
Suppose instead that φ is represented by a divisor (P)− (P1), where P ∈ Xc(Zp). Then φ′

is represented by the divisor (N0 ·P)− (P1), where nowN0 ·P ∈ N0 ·X (Zp). By Lemma 3.4,
we have N0 · X (Zp) ⊂ V(Zp), showing that N0 · P ∈ Vb(Zp) is an integral representative
for the rational orbit corresponding to the class φ. This completes the proof. ��

Proposition 3.6 Let N1 ∈ Z≥1 be an as in Lemma 3.5. Then for any b ∈ N1 · B(Z) such
that 
(b) �= 0, the 2-Selmer set Sel2(Yb) ⊂ H1(Qp, Jb[2]) is contained in the image of the
composite map

Vb(Z) → G(Q)\Vb(Q) γb−→ H1(Q, Jb[2]).

Consequently, for any b ∈ B(Z) such that
(b) �= 0, we have # Sel2(Yb) ≤ #G(Q)\VN1·b(Z).

Proof Suppose c ∈ Sel2(Yb). We first show that c ∈ γb(G(Q)\V (Q)); by Proposition 2.6
this is the case exactly when the image c′ of c under the map

H1(Q, Jb[2]) → H1(Q, G)
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is trivial. By commutativity of the diagram in Theorem 2.9 in Case E7 (resp. Theorem
2.10 in Case E8) and the definition of the 2-Selmer set, we see that c′ is locally trivial, in
the sense that its image in H1(Qv, G) is trivial for every place v of Q. We claim that this
implies that c′ is itself trivial. Indeed, write Gsc for the simply connected cover of G. The
centre of G has order 2 in both cases (see, e.g., [27, Proof of Proposition A.1]). Thus we
see that there is a short exact sequence of groups over Q:

1 μ Gsc G 1,

where μ = μ4 (in Case E7) or μ2 (in Case E8). This leads to the following commutative
diagram of pointed Galois cohomology sets, in which the rows are exact:

H1(Q,μ)

loc1

H1(Q, Gsc)

loc2

H1(Q, G)

loc3

H2(Q,μ)

loc4
∏

v H1(Qv,μ)
∏

v H1(Qv, Gsc)
∏

v H1(Qv, G)
∏

v H2(Qv,μ).

SinceGsc is simply connected, themap loc2 is bijective, andH1(Qp, Gsc) is trivial for every
prime p. By class field theory, the map loc4 is injective. Using these facts, a diagram chase
shows that the triviality of loc3(c′) forces c′ itself to be trivial.
We can therefore choose a vector v ∈ Vb(Q) representing our class c. By Lemma 3.5, for

each prime p there exists an element gp ∈ G(Qp) such that gp · v ∈ Vb(Zp). By Proposition
3.1, there is an element g ∈ G(Q) such that gp ∈ G(Zp)g for every prime p. It follows that
g · v ∈ Vb(Z), as required. ��

3.3 Subsets of V (R) and V (Qp)

We conclude this section by constructing some useful subsets of V (R) and V (Qp). We
first consider V (R). Let c1, . . . , cn denote representatives of the distinct G(R)-conjugacy
classes of Cartan subspaces ofV (R). For each i ∈ {1, . . . , n}, let c′i denote the closed subset
of creg.ss.i given by c′i = {v ∈ c

reg.ss.
i | ht(v) = 1}. Arguing as in [26, Sect. 2.9], we can find

a cover of c′i by finitely many connected semialgebraic open subsets Uij such that each
map π |Uij : Uij → {b ∈ B(R)reg.ss. | ht(b) = 1} is a homeomorphism onto its image.
We write L1, . . . , Lm for the sets π (Uij) for all ij in any order, and for Lk = π (Uij) we set
sk := (π |Uij )−1 : Lk → V (R)reg.ss.. We can extend sk to a map sk : � · Lk → V (R)reg.ss. by
the formula sk (λb) = λsk (b) for any λ ∈ �, b ∈ Lk .

Lemma 3.7 With notation as above, each map sk : � ·Lk → V (R)reg.ss. is a semialgebraic
map, and sk (Lk ) has compact closure in V (R). The quantity rk := # StabG(R)(sk (b)) is
independent of the choice of b ∈ Lk . We have ∪m

k=1G(R) · � · sk (Lk ) = V (R)reg.ss.. For any
continuous function f : V (R)reg.ss → R of compact support, we have

∫

v∈G(R)·�·Lk
f (v) dv = |W0|∞

rk

∫

b∈�·Lk

∫

g∈G(R)
f (g · sk (b)) dg db.

Consequently for any x ≥ 1 we have:

vol(S · [1, x1/ deg
] · sk (Lk )) ≤ |W0|∞ vol(S) vol([1, x1/ deg
] · Lk ).
Proof Let μk : G(R) × (� · Lk ) → V (R)reg.ss. be given by (g, b) �→ g · sk (b). Then μk is a
local diffeomorphism onto its image, with fibres of cardinality rk . By Lemma 3.2 we have
μ∗
kωV = W0ωG ∧ ωB. The displayed formulae follow from this identity. ��
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We now consider V (Qp).

Lemma 3.8 There exists a constant ε ∈ (0, 1) with the following property: let p be a prime
congruent to 1 mod 6. Then there exists a non-empty open compact subset Up ⊂ B(Zp)
such that for all b ∈ Up, we have 
(b) �= 0, Xb(Zp) �= ∅, and

#(im(Yb(Qp) → Jb(Qp)/2Jb(Qp)))
#Jb(Qp)/2Jb(Qp)

≤ ε.

Proof Let p be a prime with p ≡ 1 mod 6. It suffices to show that we can find a single
b ∈ B(Zp) with 
(b) �= 0, Xb(Zp) �= ∅, and

#(im(Yb(Qp) → Jb(Qp)/2Jb(Qp)))
#Jb(Qp)/2Jb(Qp)

< 1.

By continuity considerations of the type in [18, Sect. 8], we can then take Up to be any
sufficiently small open compact neighbourhood of b in B(Zp). We will in fact exhibit
b ∈ Up such that 
(b) �= 0, Xb(Zp) �= ∅, the component group � of the Néron model of
Jb is isomorphic to (Z/2Z)2, and the image of Yb(Qp) in � is the identity. This will imply
that the lemma holds with ε = 1

4 .
We first return to the E6 family of curves (1.1):

y3 = x4 + y(c2x2 + c5x + c8) + c6x2 + c9x + c12

described in Sect. 1 of this paper. In this case the existence of such a point b is asserted in
[26, Proposition 2.15]. The proof given there is incorrect; more precisely, the description
of the special fibre of a regular model of the curve y3 = x4 − p2 is incorrect. We will
first remedy this error. The calculation in this case will also play a role in the proof of the
lemma in Cases E7 and E8.
We consider instead the curve given by the equation y3 = (x − 1)(x3 − p2). (This curve

can be put into the canonical form (1.1) by a linear change of variable in x.) Let Y be the
curve inside P

2
Zp

given by the projective closure of this equation, and let Z ⊂ A
2
Zp

denote
the complement of the unique point at infinity. It is clear that Z(Zp) �= ∅. Moreover, Y
has a unique point that is not regular, namely the point corresponding to (x, y) = (0, 0) in
the special fibre ZFp .
This singularity can be resolved by blowing up. Let Y ′ → Y denote the blow-up at the

unique non-regular point of Y . Then Y ′ has exactly 3 non-regular points. The special
fibre of Y ′ has two irreducible components, namely the strict transform of YFp and a
smooth exceptional divisor. LetY ′′ → Y ′ denote the blow-up of the 3 non-regular points.
Then Y ′′ is regular, and the special fibre Y ′′

Fp
has 5 irreducible components: the strict

transform C1 of YFp , the strict transform C5 of the exceptional divisor in Y ′
Fp
, and the

smooth exceptional divisors C2, C3, C4 of the blow-up Y ′′ → Y .
We note that blow-up commutes with flat base change, so to verify our claims about

the component group � it suffices to perform these blow-ups in the completed local ring
of Y at the maximal ideal (p, x, y), which is in turn isomorphic to Zp�x, w�/(w3 − x3 + p2).
Here we find that all the irreducible components in the special fibre of Y ′′

Fp
are smooth

and geometrically irreducible, and their intersection graph is given as follows:
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1

2

2

2

3

All intersections are transverse, and the multiplicities of C1, C2, C3, C4 and C5 are respec-
tively 1, 2, 2, 2, and 3. The intersection matrix of the special fibre of Y ′′ is therefore

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−6 1 1 1 0
1 −2 0 0 1
1 0 −2 0 1
1 0 0 −2 1
0 1 1 1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let v = (1, 2, 2, 2, 3). ThenMv = 0 and there is an isomorphism� ∼= v⊥/ imM, where we
consider v as an element ofZ5 andM as aZ-module homomorphism (see [5, Sect. 9.6]). A
calculation shows that � ∼= (Z/2Z)2, as claimed. Each point of Y(Zp) = Y ′′(Zp) reduces
modulo p to a smooth point of the special fibre Y ′′

Fp
. Since there is exactly one component

of Y ′′
Fp

of multiplicity one, we see that all points of Y(Zp) reduce to this component;
consequently, their image in the Néron component group � is trivial (to see this, use the
recipe in [14, Sect. 5]).
We now turn to Case E7. Consider a perturbation

y3 = (x − 1)(x3 − p2) + λx3y,

where λ ∈ Zp − {0}. Using the procedure of Proposition 5.1, we can make a change of
variable to put this curve in the form (1.2): the perturbation causes the point [0 : 1 : 0] at
infinity to be a flex point, but no longer a hyperflex point. One may check that the curve
obtained in this way has non-trivial integral points. For λ close enough to 0, this curve will
also satisfy the condition

#(im(Yb(Qp) → Jb(Qp)/2Jb(Qp)))
#Jb(Qp)/2Jb(Qp)

≤ 1
4
.

Finally, we turn to Case E8. We now let Z be the curve given by the equation y3 =
(x2 − 1)(x3 − p2), and let Y denote the projective curve over Zp containing Z and given
by the multihomogeneous equation y3 = z(x2 − z2)(x3 − p2z3). Then Y is smooth along
the unique section at infinity. We see that Y has a unique non-regular point, namely the
point insideZ corresponding to the maximal ideal (p, x, y). The completed local ring ofZ
at this point is isomorphic to Zp�x, w�/(w3 − x3 + p2). It follows that the singularities of
Y can be resolved by two blow-ups, exactly as in the E6 case described above. Moreover,
the intersection matrix is equal to M as defined above, and the isomorphism class of
the component group of the Néron model of the Jacobian of YQp is also (Z/2Z)2. This
concludes the proof. ��

Lemma 3.9 There exists an open subset U2 ⊂ B(Z2) such that for all b ∈ U2, we have

(b) �= 0, Xb(Z2) �= ∅, and the image of the map Xb(Z2) → Jb(Q2)/2Jb(Q2) does not
intersect the subgroup generated by the divisor class [(P1)− (P2)] in Case E7 (resp. does not
contain the identity in Case E8).
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Proof If c ∈ B(F2) is such that Xc is smooth, let us write Yc for the smooth projective
completionofXc andJc for Pic0Yc . In order to prove the lemma, it suffices to exhibit a single
point c ∈ B(F2) such that Xc is smooth, and such that the image of the map Xc(F2) →
Jc(F2)/2Jc(F2) is non-trivial and does not intersect the given subgroup. Indeed, suppose
c is such a point, and define U2 to be the preimage of c under the natural map B(Z2) →
B(F2). If b ∈ U2, then there is a commutative diagram

Xb(Z2) Jb(Q2)/2Jb(Q2)

Xc(F2) Jc(F2)/2Jc(F2).

By Hensel’s Lemma, the existence of a point in Xc(F2) implies that Xb(Z2) is non-empty.
Since the diagram is commutative, the image of Xb(Z2) does not intersect the subgroup
generated by the divisor class [(P1)− (P2)] in Case E7 (resp. does not contain the identity
in Case E8).
It remains to exhibit such a point c ∈ B(F2) in each case. In Case E7, we consider the

curve

Xc : y3 = x3y + y + 1.

We have thatXc is smooth over F2, andXc(F2) consists of exactly one point (x, y) = (1, 1).
There is an isomorphism Jc(F2) ∼= Z/18Z, hence an isomorphism Jc(F2)/2Jc(F2) ∼=
Z/2Z. The subgroup of Jc(F2)/2Jc(F2) generated by the divisor class [(P1) − (P2)] is the
trivial subgroup, while the point (1, 1) has non-trivial image in Jc(F2)/2Jc(F2) (in fact, its
image in Jc(F2) is a generator).
In Case E8, we consider the curve

Xc : y3 = x5 + y(x3 + x2) + x3 + 1.

We have that Xc is smooth over F2, and Xc(F2) consists of the two points (x, y) = (0, 1)
and (x, y) = (1, 1). There is an isomorphism Jc(F2) ∼= Z/30Z, hence an isomorphism
Jc(F2)/2Jc(F2) ∼= Z/2Z. Both of the rational points of Xc(F2) have non-trivial image in
Jc(F2)/2Jc(F2).
We verified all these properties of the given curves Xc using the ClassGroup func-

tionality in magma [6]. ��

Lemma 3.10 1. For every prime p, there exists an open compact subset Up ⊂ B(Zp)
such that for every b ∈ Up, 
(b) �= 0 and Xb(Zp) �= ∅.

2. There exists an integer N3 ≥ 1 such that for every prime p > N3 and for every
b ∈ B(Zp) such that 
(b) �= 0, we have Xb(Zp) �= ∅.

Proof For each prime p, it is not difficult to find a point c ∈ B(Fp) such thatXc is smooth
and Xc(Fp) is non-empty. Taking Up to be the preimage of c in B(Zp) establishes the first
part of the lemma. The second part follows from Hensel’s Lemma and the Weil bounds;
here we are implicitly using the fact, already established in the proof of Lemma 3.5, that
for any c ∈ B(Fp), the irreducible components of Xc are geometrically irreducible. ��
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4 Counting points
In Sect. 3 we have defined an algebraic group over Z and a representation V , as well as
various associated structures. In Sect. 4, we continue with the same notation and now
show how to estimate the number of points in G(Z)\V(Z) of bounded height.
Wefirst prove a simplified result, Theorem4.1. Themore refined version (Theorem4.7),

which is needed for applications, will be given at the end of this section. Let L ⊂ B(R) be
one of the subsets Lk described in Lemma 3.7, and let s : L → V (R) be the corresponding
section. Then L is a connected semialgebraic subset of B(R); s is a semialgebraic map; and
s(L) has compact closure in V (R). The map � × L → B(R), (λ, �) �→ λ · � given by the
Gm-action on B is an open immersion, and ht(λ · �) = λdeg
.
For any subset A ⊂ V(Z), we write Airr for the subset of points a ∈ A that are Q-

irreducible, in the sense of Sect. 2.3. We recall that r is the rank ofH . Our first result is as
follows.

Theorem 4.1 There exist constants C, δ > 0, not dependent on choice of L, such that

#G(Z)\ {
v ∈ [G(R) · � · s(L)] ∩ V(Z)irr | ht(v) < a

}

≤ C · vol
([

1, a1/ deg

]

· L
)

+ O
(
a

1
2+r/ deg
−δ

)
.

Our proof is very similar to that of [26, Theorem 3.1], except that a significant amount of
case-by-case computation is required in order to control the contribution of elements that
are ‘in the cusp’ (i.e. elements that lie in the codimension-one subspace of V where the
coordinate corresponding to the highest root of H vanishes; see Proposition 4.5 below).
To avoid repetition, we omit the details of proofs that are essentially the same as proofs
appearing in [26, Sect. 3].
First we introduce some notation. Recall that we have fixed a choice of S = ωTcK ⊂

G(R) as in Proposition 3.1, where ω ⊂ N (R) is a compact subset and Tc ⊂ T (R)◦ is open.
As in [26, Sect. 3.1], we fix a compact semialgebraic set G0 ⊂ G(R) × � of non-empty
interior with the property that K · G0 = G0. We assume that the projection of G0 to � is
contained in [1, C0] for some constant C0 and that vol(G0) = 1. Given a subset A ⊂ V(Z)
we let

N (A, a) =
∫

h∈G0
#(Sh · � · s(L) ∩ {v ∈ Airr | ht(v) < a}) dh

N ∗(A, a) =
∫

h∈G0
#(Sh · � · s(L) ∩ {v ∈ A | ht(v) < a}) dh.

The following two lemmas are the analogues in our situation of [26, Lemma 3.3] and [26,
Lemma 3.4]; the proofs are the same.

Lemma 4.2 Let A ⊂ V (Z) be a G-invariant subset. Then

#G(Z)\{v ∈ [G(R) · � · s(L)] ∩ Airr | ht(v) < a} ≤ N (A, a)

and

#G(Z)\{v ∈ [G(R) · � · s(L)] ∩ A | ht(v) < a} ≤ N ∗(A, a).
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Lemma 4.3 Given a ≥ 1, n ∈ N (R), t ∈ T (R), and λ ∈ �, define E(n, t, λ, a) =
ntλG0s(L) ∩ {v ∈ V (R) | ht(v) < a}. For any subset A ⊂ V (Z), we have

N (A, a) ≤ 2r
∫

λ∈�

∫

t∈Tc

∫

n∈ω

#[E(n, t, λ, a) ∩ Airr]δG(t)−1dn dt d×λ

and

N ∗(A, a) ≤ 2r
∫

λ∈�

∫

t∈Tc

∫

n∈ω

#[E(n, t, λ, a) ∩ A]δG(t)−1dn dt d×λ,

where δG is as defined in Sect. 3.1.

In order to actually count points, we will use the following result, which follows from
[1, Theorem 1.3]. This replaces the use of [26, Proposition 3.5], itself based on a result
of Davenport [9]. We prefer to cite [1] since the possibility of applying [9] to a general
semialgebraic set rests implicitly on the Tarski–Seidenberg principle (see [10]).

Theorem 4.4 Let m, n ≥ 1 be integers, and let Z ⊂ R
m+n be a semialgebraic subset. For

T ∈ R
m, let ZT = {x ∈ R

n | (T, x) ∈ Z}, and suppose that all such subsets ZT are bounded.
Then for any unipotent upper-triangular matrix u ∈ GLn(R), we have

#(ZT ∩ uZ
n) = vol(ZT ) + O(sup{1, vol(ZT,j)}),

where ZT,j runs over all orthogonal projections of ZT to any j-dimensional coordinate
hyperplane (1 ≤ j ≤ n − 1). Moreover, the implied constant depends only on Z.

To state the next proposition, we recall that for any subset M ⊂ �V , V (M) ⊂ V is the
linear subspace consisting of vectors v = ∑

α∈�V vα with vα = 0 for all α ∈ M. Given
disjoint subsetsM0,M1 ⊂ �V , we define an open subscheme V (M0,M1) ⊂ V (M0) by

V (M0,M1) = {v ∈ V (M0) | vα �= 0 for all α ∈ M1}.
We also define S(M0) = V (M0)(Q) ∩ V(Z) and S(M0,M1) = V (M0,M1)(Q) ∩ V(Z). For
ease of notation, ifM = {α} is a single root, we write S(M) as S(α).

Proposition 4.5 Let α0 ∈ �V denote the highest root of H with respect to the root basis
SH . Then there exists δ > 0 such that N (S(α0), a) = O(a

1
2+r/ deg
−δ).

Proof We call a pair (M0,M1) of disjoint subsets of �V a cusp datum. To prove the
proposition, it suffices to find a set C of cusp data such that

1. S(α0)irr ⊂ ⋃
(M0 ,M1)∈C S(M0,M1)

2. If (M0,M1) ∈ C, then N ∗(S(M0,M1), a) = O(a
1
2+r/ deg
−δ).

Consider the partial order on �V given by β ≥ α if and only if ni(β − α) ≥ 0 for
all i, where ni is as defined in Sect. 2.3. Let M be the collection of subsets M ⊂ �V
such that if α ∈ M and β ≥ α then β ∈ M. Given a subset M ∈ M, we let
λ(M) = {α ∈ �V − M | M ∪ {α} ∈ M}. We let C be the collection of cusp data defined
inductively as follows: in step 1, we form the cusp datum ({α0}, λ({α0})). In each suc-
cessive step we create the set of cusp data {(M0 ∪ {α}, λ(M0 ∪ {α})) | α ∈ M1} for
each cusp datum (M0,M1) formed in the previous step, and then remove any cusp data
(M0 ∪ {α}, λ(M0 ∪ {α})) such thatM0 ∪ {α} satisfies any of the conditions of Proposition
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2.15. By construction the collection C satisfies condition 1 above. For each cusp datum
(M0,M1) ∈ C, we check that N ∗(S(M0,M1), a) = O(a

1
2+r/ deg
−δ). To do so, by the same

logic as in [26, Sect. 5], it suffices to find a function f : M1 → R≥0 satisfying the following
two conditions:

•
∑

α∈M1 f (a) < #M0
• For each 1 ≤ i ≤ r, we have

∑
α∈�+

G
ni(α) − ∑

α∈M0 ni(α) + ∑
α∈M1 f (α)ni(α) > 0.

One can program a computer to generate the list of cusp data in C, after inputting the root
datum of h and the description of its 2-grading, and then to verify that there exists such a
function f for each (M0,M1) ∈ C. We have carried out this verification process. Our code
is available in theMathematica notebooksE7CuspData.nb and E8CuspData.nb.2 (In
the name of efficiency, we actually follow a slightly different procedure, since it is time-
consuming to check the condition in part 3 of Proposition 2.15. Namely, we generate a list
of cusp data by eliminating only those pairs (M0,M1) such thatM0 satisfies the condition
in part 2 of Proposition 2.15. For the cusp data on this list, we check that either a function f
as above exists, or that one of the remaining conditions, i.e. part 1 or part 3 of Proposition
2.15, holds. When verifying the condition in part 3, we restrict our search to α ∈ M1. The
end result is a collection of cusp data satisfying items 1 and 2 above, which suffices to
prove the proposition.) ��

Proposition 4.6 Let N ≥ 1 be an integer, and let v ∈ V(Z). Let Av,N = v+N ·V(Z). Then
there exists δ > 0 such that

N ∗(Av,N − S(α0), a) ≤ 2r |W0|∞ vol(S)
NdimV vol

(
[1, a1/deg
] · L

)
+ O

(
a

1
2+r/ deg
−δ

)
.

Proof Let ‖ · ‖ : V (R) → R≥0 denote the supremum norm with respect to the decompo-
sition V = ⊕α∈�V Vα as a direct sum of free Z-modules of rank 1. Let J > 0 be a constant
such that ‖v‖ ≤ J for all v ∈ ω ·G0 · s(L). Let F (n, t, λ, a) = {v ∈ E(n, t, λ, a) | |vα0 | ≥ 1}. If
F (n, t, λ, a) �= ∅, then λα0(t) ≥ 1/J . By Theorem 4.4, we have

#((V(Z) − S(α0)) ∩ E(n, t, λ, a))

= #(V(Z) ∩ F (n, t, λ, a)) = vol(F (n, t, λ, a)) + O
(
λdimV−1α0(t)−1

)
.

Similarly we have

#((Av,N − S(α0)) ∩ E(n, t, λ, a)) = N− dimV vol(F (n, t, λ, a)) + O
(
λdimV−1α0(t)−1

)
.

(4.1)

By Lemma 4.3, N ∗(Av,N − S(α0), a) is bounded above by

2r
∫

λ∈�

∫

t∈Tc

∫

n∈ω

N− dimV vol(F (n, t, λ, a))δG(t)−1 dn dt d×λ

+ 2r
∫ a1/ deg


λ=C−1
0

∫

t∈Tc

∫

n∈ω

O(λdimV−1α0(t)−1)δG(t)−1 dn dt d×λ.
(4.2)

2These Mathematica notebooks may be found at https://www.dpmms.cam.ac.uk/~jat58/E7CuspData.nb and https://
www.dpmms.cam.ac.uk/~jat58/E8CuspData.nb respectively.

https://www.dpmms.cam.ac.uk/~jat58/E7CuspData.nb
https://www.dpmms.cam.ac.uk/~jat58/E8CuspData.nb
https://www.dpmms.cam.ac.uk/~jat58/E8CuspData.nb
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The second term in (4.2) is O(a
1
2+(r−1)/ deg
). Lemma 3.7 shows that the first term is

bounded above by

2r
∫

λ∈�

∫

t∈Tc

∫

n∈ω

N− dimV vol(E(n, t, λ, a))δG(t)−1 dn dt d×λ

= 2r

NdimV

∫

λ∈�

∫

g∈S

∫

v∈V (R)

∫

h∈G0
1v∈ghλs(L),ht(v)<a dh dv dg d×λ

≤ 2r |W0|∞
NdimV

∫

h∈G0
vol(S) vol([1, a1/ deg
] · L) dh.

= 2r |W0|∞
NdimV vol(S) vol([1, a1/ deg
] · L).

This completes the proof. ��

We can now finish the proof of Theorem 4.1. By Lemma 4.2, we have

G(Z)\{v ∈ [G(R) · � · s(L)] ∩ V(Z)irr | ht(v) < a}
≤ N (V(Z), a) ≤ N (V(Z) − S(α0), a) + N ∗(S(α0), a).

The result now follows on combining Propositions 4.5 and 4.6.
We now state the more refined version of Theorem 4.1 mentioned at the beginning of

this section.

Theorem 4.7 Let p1, . . . , ps be distinct primes, and for each i ∈ {1, . . . , s}, let Vpi ⊂
V(Zpi ) ∩ V (Qpi )reg.ss. be an open compact subset that is G(Qpi )-invariant, in the sense
that if v ∈ Vpi , g ∈ G(Qpi ) and gv ∈ V(Zpi ), then gv ∈ Vpi . Let A = V(Z) ∩ (Vp1
× · · · ×Vps ) (where we are identifying V(Z) with its image in V(Zp1 )× · · · × V(Zps ) under
the diagonal embedding). Then there exist constants C, δ > 0 not depending on s or the sets
Vp1 , . . . , Vps such that

#G(Q)\{v ∈ Airr | ht(v) < a}

≤ C
( s∏

i=1

∫

b∈B(Zpi )

#(G(Qpi )\(Vpi ∩ Vb(Qpi )))
# StabG(Qpi )(κb)

db
)

a
1
2+r/ deg
 + O

(
a

1
2+r/ deg
−δ

)
.

Proof We recall that for each prime p we have defined in the statement of Proposition
3.3 a locally constant functionmp : V (Qp)reg.ss. → R by the formula

mp(v) =
∑

v′∈G(Zp)\(G(Qp)·v∩V(Zp))

# StabG(Qp)(v)
# StabG(Zp)(v′)

.

The same argument as in the proof of [26, Corollary 3.9] leads to an estimate

#G(Q)\{v ∈ Airr | ht(v) < a} ≤ 2r
∑

v∈G(Z)\A
ht(v)<a

1
mpi (v)

.

CombiningLemma4.2, Proposition 4.6, andProposition 4.5, and summingover all choices
of L as in Lemma 3.7, yields absolute constants C, δ > 0 such that

∑

v∈G(Z)\A
ht(v)<a

1
mpi (v)

≤ C
( s∏

i=1

∫

v∈Vpi

1
mpi (v)

dv
)

a
1
2+r/ deg
 + O(a

1
2+r/ deg
−δ).
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By the third part of Proposition 3.3, this expression is equal to

C
( s∏

i=1
|W0|pi vol(G(Zpi ))

) ( s∏

i=1

∫

b∈B(Zpi )

#(G(Qpi )\(Vpi ∩ Vb(Qpi )))
# StabG(Qpi )(κb)

db
)

a
1
2+r/ deg


+O
(
a

1
2+r/ deg
−δ

)
.

The products
∏s

i=1 |W0|pi vol(G(Zpi )) can be bounded independently of s and the primes
p1, . . . , ps. They can therefore be absorbed into the constant, giving the estimate in the
statement of the theorem. ��

5 Applications to 2-Selmer sets
In this final section, we prove our main theorems, including the results stated in Sect. 1,
by combining all the theory developed so far. In order to avoid confusion, we treat each
of the two families of curves (corresponding to Case E7 and Case E8) in turn.

5.1 Applications in CaseE7

As above, we write B = SpecZ[c2, c6, c8, c10, c12, c14 , c18] for affine space over Z in 7
variables, and write X → B for the family of affine plane curves given by Eq. (1.2):

y3 = x3y + c10x2 + x
(
c2y2 + c8y + c14

) + c6y2 + c12y + c18.

This family has the following interpretation:

Proposition 5.1 Let k/Q be a field. Then:

1. The locus insideBk above which themorphismXk → Bk is smooth is the complement
of an irreducible closed subset of Bk of codimension 1.

2. The set of points b ∈ B(k) for which Xb is smooth is in bijection with the set of
equivalence classes of triples (C, P1, t), where:

(a) C is a smooth, non-hyperelliptic curve of genus 3 over k.
(b) P1 ∈ C(k) is a flex point in the canonical embedding, i.e. the projective tangent

line to C at P1 intersects C with multiplicity 3 at the point P1.
(c) t ∈ TP1C is a non-zero Zariski tangent vector at the point P1.

If b corresponds to (C, P1, t), thenXb is isomorphic to C −{P1, P2}, where P2 ∈ C(k) is
the unique point such that 3P1 +P2 is a canonical divisor. For λ ∈ k×, the coefficients
ci satisfy the equality

ci(C, P1, λt) = λi/2ci(C, P1, t).

Proof Part 1 follows from the fact that Xb is smooth if and only if 
(b) �= 0. The proof
of the second part is very similar to the proof of [26, Lemma 4.1], although here we
cannot appeal to Pinkham’s Theorem. Let (C, P1, t) be a tuple of the type described in the
proposition, and let P2 ∈ C(k) be the point such that 3P1 + P2 is a canonical divisor. The
Riemann–Roch Theorem shows that h0(C,OC (3P1)) = 2 and h0(C,OC (2P1 + P2)) = 2.
We can therefore find functions y, x ∈ k(C)×, uniquely determined up to addition of
constants, such that the polar divisor of y is 3P1 and the polar divisor of x is 2P1 + P2, and
such that y = z−3 + · · ·, x = z−2 + · · · locally at the point P1, where z is a local parameter
at P1 such that dz(t) = 1. We can also assume that y vanishes at the point P2.
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The 10 monomials

1, x, x2, y, yx, yx2, yx3, y2, y2x, y3

all lie in the 9-dimensional space H0(C,OC (9P1 + 2P2)). Moreover, the two sets of 9
monomials obtained by removing either y3 or yx3 from this list are linearly independent,
as can be seen by considering polar divisors. It follows that there is a unique linear relation
of the form

y3 = x3y + x2(c4y + c10) + x
(
c2y2 + c8y + c14

) + c6y2 + c12y + c18. (5.1)

The function y is uniquely determined by the above data. We also see that there is a
unique translate x + a (a ∈ k) such that, after replacing x by x + a, we have c4 = 0 in
Eq. (5.1). The homogenization of Eq. (5.1) then describes the canonical embedding of the
curve C . ��

If k/Q is a field extension and b ∈ B(k) is such thatXb is smooth, then we write Yb for the
unique smooth projective completion of Xb.
As in Sect. 1, we define F0 = {b ∈ B(Z) | Xb,Q is smooth}. We say that a subset

F ⊂ F0 is defined by congruence conditions if there exist distinct primes p1, . . . , ps and
a non-empty open compact subset Upi ⊂ B(Zpi ) for each i ∈ {1, . . . , s} such that

F = F0 ∩ (Up1 × · · · × Ups ),

where we are identifying F0 with its image in B(Zp1 ) × · · · × B(Zps ) under the diagonal
embedding.
We recall that for b ∈ B(R) we have defined ht(b) = supi |ci(b)|126/i. This function is

homogeneous of degree 126, in the sense that for λ ∈ R
×, we have ht(λ · b) = |λ|126 ht(b).

(We note that 126 is the number of roots in the root system of type E7, and so also the
degree of the discrimimant polynomial 
 considered in Sect. 2.1.)

Lemma 5.2 There exists a constant δ > 0 such that if F ⊂ F0 is a subset defined by
congruence conditions as above, then

#{b ∈ F | ht(b) < a} =
( r∏

i=1
vol(Upi )

)

a
1
2+ 7

126 + O
(
a

1
2+ 7

126−δ
)

as a → ∞.

Proof This is an easy consequence of Theorem 4.4. ��

Our main theorems are now as follows.

Theorem 5.3 Let F ⊂ F0 be a subset defined by congruence conditions. Then

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a} < ∞.

In order to state the next theorem, we observe that if b ∈ B(Q) is such that Xb is smooth,
then the 2-Selmer set Sel2(Yb) always contains the ‘trivial’ classes arising from divisors
supported on the points P1, P2 at infinity (as in the statement of Proposition 5.1). We
write Sel2(Yb)triv for the subset of Sel2(Yb) consisting of these classes, and note that
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# Sel2(Yb)triv ≤ 2, with equality if and only if the divisor class [(P2) − (P1)] is not divisible
by 2 in Jb(Q).

Theorem 5.4 For any ε > 0, there exists a subset F ⊂ F0 defined by congruence condi-
tions such that

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a} < 2 + ε.

Consequently, for any such choice of F we have

lim inf
a→∞

#{b ∈ F | ht(b) < a and Sel2(Yb) = Sel2(Yb)triv}
#{b ∈ F | ht(b) < a} > 1 − ε.

The proof of Theorem 5.4 is essentially a refined version of the proof of Theorem 5.3, so
we just give the proof of Theorem 5.4.

Proof of Theorem 5.4 Let p1, . . . , ps be primes congruent to 1 modulo 6. Let ε ∈ (0, 1) be
as in Lemma 3.8, and for each i ∈ {1, . . . , s}, let Upi ⊂ B(Zpi ) be the set described in the
statement of Lemma 3.8. These sets have the following property: define

Vpi = π−1(Upi ) ∩ V(Zpi ) ∩ ([G(Qpi ) · X(Qpi )] ∪ [G(Qpi ) · κ(Qp)] ∪ [G(Qpi ) · κ ′(Qp)]),

where κ ′ is any Kostant section that is notG-conjugate to κ . Then Vpi is an open compact
subset of V(Zpi )reg.ss., and for any b ∈ Upi we have 
(b) �= 0 and

#(G(Qpi )\(Vpi ∩ Vb(Qpi ))
# StabG(Qpi )(κb)

≤ ε. (5.2)

We let F = F0 ∩ (Up1 × · · · × Ups ). For any b ∈ F , let Sel2(Yb)irr ⊂ Sel2(Yb) denote
the subset of ‘nontrivial’ elements, i.e. the complement of Sel2(Yb)triv in Sel2(Yb). Let
A = V(Z) ∩ (Vp1 × · · · × Vps ). Then by Proposition 3.6, for any a > 0 we have

∑

b∈F
ht(b)<a

# Sel2(Yb)irr ≤ G(Q)\{v ∈ Airr | ht(v) < Ndeg


1 a}.

By combining Theorem 4.7, Lemma 5.2, and the inequality (5.2), we see that there exist
constants C, δ > 0, not depending on s or the choice of primes p1, . . . , ps, such that

∑
b∈F

ht(b)<a
# Sel2(Yb)irr

#{b ∈ F | ht(b) < a} ≤ εsC + O(a−δ)
1 + O(a−δ)

.

Since # Sel2(Yb) ≤ 2+# Sel2(Yb)irr, the first sentence in the statement of the theorem now
follows on choosing s sufficiently large and letting a → ∞. The second sentence follows
from the first on combining it with the following lemma. ��

Lemma 5.5 Let F ⊂ F0 be a family defined by congruence conditions. Then the limit

lim
a→∞

#{b ∈ F | ht(b) < a, # Sel2(Yb)triv = 2}
#{b ∈ F | ht(b) < a}

exists and equals 1.

Proof Let b ∈ F , and let Cb = ZH (κb), a maximal torus of H . The Galois action on
Cb induces an associated homomorphism Gal(Qs/Q) → W (H,Cb). Corollary 2.12 shows
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that if this homomorphism is surjective, then # Sel2(Yb)triv = 2. It therefore suffices to
show that the limit

lim
a→∞

#{b ∈ F | ht(b) < a,Gal(Qs/Q) → W (H,Cb) surjective}
#{b ∈ F | ht(b) < a}

exists and equals 1. This is a variant of the Hilbert Irreducibility Theorem and can be
proved along similar lines to the arguments in [20, Sect. 13.2]. ��

Theorem 5.6 For any ε > 0, there exists a subset F ⊂ F0 defined by congruence condi-
tions such that the following conditions are satisfied:

1. For every b ∈ F and every prime p, we have Xb(Zp) �= ∅.
2. We have

lim inf
a→∞

#{b ∈ F | Xb(Z(2)) = ∅}
#{b ∈ F | ht(b) < a} > 1 − ε.

Here Z(2) ⊂ Q denotes the subring of rational numbers of denominator prime to 2. For
the setsF constructed in Theorem 5.6, wemay say that a positive proportion of the curves
Xb (b ∈ F ) have integral points everywhere locally, but no integral points globally.

Proof By Lemma 3.9 and Lemma 3.10, we can choose for every prime p an open compact
subset Up ⊂ B(Zp) such that the following conditions are satisfied:

1. For each b ∈ U2,
(b) �= 0 and the image of the mapXb(Z2) → Jb(Q2)/2Jb(Q2) does
not intersect the subgroup generated by [(P1) − (P2)].

2. For every prime p and for every b ∈ Up such that 
(b) �= 0, the set Xb(Zp) is
non-empty.

3. For every sufficiently large prime p, Up = B(Zp).

Let F ⊂ F0 be the corresponding subset defined by congruence conditions. Fix ε > 0.
By modifying Up at sufficiently many primes congruent to 1 modulo 6, as in the proof of
Theorem 5.4, we can assume moreover that the following condition is satisfied:

4. We have

lim inf
X→∞

#{b ∈ F | ht(b) < a and Sel2(Yb) = Sel2(Yb)triv}
#{b ∈ F | ht(b) < a} > 1 − ε.

To complete the proof of the theorem, we just need to show that if b ∈ F is such that
Sel2(Yb) = Sel2(Yb)triv, then X (Z(2)) = ∅. To this end, we consider the commutative
diagram

Xb(Z(2)) Xb(Z2)

Sel2(Yb) Jb(Q2)/2Jb(Q2),

where the maps are the natural ones. By construction of U2, the image of the right-hand
vertical map is contained in the complement of the subgroup generated by the divisor
class [(P1)− (P2)]. By assumption, the image of the bottom horizontal map is contained in
the subgroup generated by the divisor class [(P1)− (P2)]. This forcesXb(Z(2)) to be empty,
as desired. ��
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5.2 Applications in CaseE8

Wenowforget thenotationof Sect. 5.1, andwriteB = SpecZ[c2, c8, c12, c14 , c18, c20, c24 , c30]
for affine space overZ in 8 variables, and writeX → B for the family of affine plane curves
given by Eq. (1.3):

y3 = x5 + y
(
c2x3 + c8x2 + c14x + c20

) + c12x3 + c18x2 + c24x + c30.

This family has the following interpretation:

Proposition 5.7 Let k/Q be a field. Then:

1. The locus insideBk above which themorphismXk → Bk is smooth is the complement
of an irreducible closed subset of Bk of codimension 1.

2. The set of points b ∈ B(k) for which Xb is smooth is in bijection with the set of
equivalence classes of triples (C, P, t), where:

(a) C is a smooth, non-hyperelliptic curve of genus 4 over k.
(b) P ∈ C(k) is a point such that 6P is a canonical divisor and h0(C,OC (3P)) = 2.
(c) t ∈ TPC is a non-zero Zariski tangent vector at the point P.

If b corresponds to (C, P, t), thenXb is isomorphic toC−{P}. Forλ ∈ k×, the coefficients
ci satisfy the equality

ci(C, P, λt) = λici(C, P, t).

The proof is very similar to the proof of [26, Lemma 4.1] and to the proof of Proposition
5.1, so we omit it.
If k/Q is a field extension and b ∈ B(k) is such that Xb is smooth, then we write Yb for

the unique smooth projective completion ofXb. As inCaseE7, we defineF0 = {b ∈ B(Z) |
Xb,Q is smooth}, and we say that a subset F ⊂ F0 is defined by congruence conditions if
there exist distinct primes p1, . . . , ps and a non-empty open compact subsetUpi ⊂ B(Zpi )
for each i ∈ {1, . . . , s} such that

F = F0 ∩ (Up1 × · · · × Ups ).

If b ∈ B(R), then we have ht(b) = supi |ci(b)|240/i. This function is homogeneous of
degree 240, in the sense that for λ ∈ R

×, we have ht(λb) = |λ|240 ht(b). As in Case E7, an
application of Theorem 4.4 shows that there exists a constant δ > 0 such that if F ⊂ F0
is a subset defined by congruence conditions as above, then

#{b ∈ F | ht(b) < a} =
( s∏

i=1
vol(Upi )

)

a
1
2+ 1

30 + O(a
1
2+ 1

30−δ)

as a → ∞.
Our main theorems in Case E8 are as follows.We omit the proofs since they are similar,

and simpler, than those in Case E7 in the previous section.

Theorem 5.8 Let F ⊂ F0 be a subset defined by congruence conditions. Then

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a} < ∞.



Romano and Thorne Res. Number Theory (2018) 4:21 Page 33 of 34 21

Theorem 5.9 For any ε > 0, there exists a subset F ⊂ F0 defined by congruence condi-
tions such that

lim sup
a→∞

∑
b∈F

ht(b)<a
# Sel2(Yb)

#{b ∈ F | ht(b) < a} < 1 + ε.

Consequently, we have

lim inf
a→∞

#{b ∈ F | ht(b) < a and # Sel2(Yb) = 1}
#{b ∈ F | ht(b) < a} > 1 − ε.

Theorem 5.10 For any ε > 0, there exists a subset F ⊂ F0 defined by congruence
conditions such that the following conditions are satisfied:

1. For every b ∈ F and every prime p, we have Xb(Zp) �= ∅.
2. We have

lim inf
a→∞

#{b ∈ F | Xb(Z(2)) = ∅}
#{b ∈ F | ht(b) < a} > 1 − ε.
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