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dense parts, as well parts with designed porosity, to estab-
lish a baseline for mechanical properties. Orientation-based 
mechanical anisotropy was seen in these 3D printed porous 
specimens. Finally, we demonstrate how such architectures 
can be embedded into anatomical shapes.

Keywords  Tissue engineering · Scaffold design · 
Biofabrication · Additive manufacturing · 3D printing

1  Introduction

Tissue engineering (TE) is a rapidly evolving biotechnol-
ogy field that aims to reconstruct and regenerate tissue lost 
to trauma or disease [1]. One of the most important aspects 
of TE is the design and fabrication of the scaffold [2]. TE 
scaffolds provide a temporary platform to hold bioactive 
molecules and facilitate the growth of neotissue. An ideal 
scaffold should have a porous structure which guides tissue 
formation and be composed of a biodegradable material 
that can safely resorb inside the body [3]. Other attributes 
which need to be addressed with regard to the design of 
TE scaffolds include biocompatibility, mechanical proper-
ties, and degradation rate. These last three attributes are, 
at least partially, dependent on the inner architecture of a 
porous scaffold. Conventional and subtractive methods for 
fabricating TE scaffolds and medical devices (e.g., molds 
for porous particulate materials, salt leaching or other poro-
gens, and electrospun weaves) allow for some control over 
porosity and pore size but prohibit fine control of scaf-
fold geometry [4]. Scaffolds with stochastic porosity lack 
repeatability in fabrication, potentially contain isolated 
void spaces, and present issues involving anisotropic degra-
dation, tissue ingrowth, and stress distribution.

Abstract  The primary goal of tissue engineering is to 
repair a defect by encouraging new tissue growth and 
remodeling of that tissue within a biodegradable scaffold. 
The scaffold is the centerpiece of tissue engineering efforts, 
and its design and properties are of paramount impor-
tance. The architecture of the scaffold will directly impact 
its mechanical strength, degradation characteristics, and 
capacity to guide neotissues into the defect. Scaffold poros-
ity is frequently used as a solitary description of architec-
ture, while feature dimensions such as strut size and pore 
size are largely ignored. It is well known that pore size and 
shape influence tissue regeneration while strut size (i.e., 
wall thickness) dramatically affect mechanical strength and 
resorption kinetics. In this work, we propose a methodol-
ogy that places special emphasis on feature dimensions 
using a mathematical approximation of Schoen’s gyroid, a 
triply periodic minimal surface, as the foundation for pore 
architecture. By modulating the gyroid and making vir-
tual measurements of the resulting structures, we establish 
important relationships between feature dimensions and the 
governing equation. Using this foundation, scaffolds with 
gyroid-type porosity were designed and 3D printed out 
of a bioresorbable poly(propylene fumarate)-based resin. 
Unconfined compression testing was conducted on fully 

 *	 David Dean 
	 David.Dean@osumc.edu

1	 Department of Plastic Surgery, The Ohio State University, 
460 West 12th Ave., Rm. 388, Columbus, OH 43210, USA

2	 Department of Mechanical and Industrial Engineering, 
Youngstown State University, 1 University Plaza, 
Youngstown, OH 44555, USA

3	 Department of Polymer Science, The University of Akron, 
170 University Ave Akron, Akron, OH 44325‑3909, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s40964-017-0021-3&domain=pdf


100	 Prog Addit Manuf (2017) 2:99–108

1 3

Many TE researchers are turning to additive manufac-
turing (AM), also referred to as 3D printing, technolo-
gies to fabricate complex scaffolds designed in Computer 
Aided Design (CAD) software [5–8]. Using these meth-
odologies, pore geometry is not dependent on the stochas-
tic spatial distribution of pores or porogens; instead, pore 
geometry can be designed and printed. Indeed [9–11], these 
new manufacturing technologies are driving an increas-
ing amount of research on pore geometry. In general, the 
size and shape of pores within the scaffold must balance 
mechanical integrity with bioactive molecule delivery, tis-
sue infusion, and degradation characteristics [5, 12]. Pores 
should be gently curving and minimally tortuous so as 
not to hinder cell in-migration [13, 14]. They should also 
be interconnected to encourage vascularization [15] and 
highly permeable to permit the inflow of nutrients, bioac-
tive molecules, and disposal of metabolic waste [16]. Issues 
of flow in a scaffold are relevant both in vivo and perhaps 
even more so where shear forces may occur during in vitro 
(e.g., bioreactor) pre-culturing of a TE scaffold. Finally, the 
pore design should be easily created and rendered in the 3D 
modeling software (i.e., CAD software) and scaffold fabri-
cation setup and monitoring software (i.e., Computer Aided 
Manufacture or CAM software).

Non-intersecting, triply periodic minimal surfaces 
(TPMS) offer an attractive foundation for the design of 
smooth, curved, interconnected pore networks [17–19]. 
One TPMS in particular, the gyroid (also known as Sch-
oen’s G surface), was presented by Alan Schoen in 1970 
[20]. Since then, gyroid structures have been found to 
occur naturally in many different systems including block 
copolymers [21, 22], butterfly wing scales [23, 24], and cell 
membranes [25, 26]. The gyroid surface can be described 
implicitly by a relatively simple nodal equation [27]. The 
surface itself separates 3D space into two complex and 
intertwined, but separate, phases. Subsequently, one phase 
is established as a solid network of struts, while the sec-
ond phase is void and constitutes the porous volume. Due 
to their mathematical complexion, gyroid-type porous 
structures are extremely manipulable and computationally 
efficient.

In this paper, we demonstrate an algorithm for creating 
gyroid-type porous structures with user-defined pore size, 
strut size, and/or percent porosity based on Schoen’s gyroid 
triply periodic minimal surface. A primary advantage of 
this method is that it provides the engineer/clinician the 
ability to define exact pore and strut sizes. Often, too much 
emphasis is placed on percent porosity when quantifying 
the geometry of TE scaffolds, while feature dimensions are 
largely ignored. Figure 1 illustrates the inadequacy of using 
porosity alone as a measure of scaffold geometry. Full con-
trol over the pore and strut dimensions makes it easier to 
tune scaffolds for optimal tissue ingrowth, mechanical 

properties, and degradation characteristics. We will show 
in this study that the gyroid surface can be used to create a 
wide range of porous configurations ranging from approxi-
mately 2–98% porous.

2 � Porous scaffold design

2.1 � Level surfaces

The level set method is a tool for representing a closed 
curve using a level set function, Φ. In two dimensions, the 
level set function takes negative values inside the curve 
and positive values outside. The level set method can be 
expanded to three dimensions, whereby the level set func-
tion is used to represent a closed surface and takes nega-
tive values inside the surface and positive values outside. 
Values that lie directly on the surface take the value zero 
and form the zero level set. Using this method, Φ is defined 
at every point in a space, not just on the surface, leading to 
the creation of a 3D scalar field. At each point, the function 
specifies a scalar value which indicates whether the point is 
inside, outside, or on the surface:

For example, a sphere is represented implicitly by the 
zero level set of the algebraic function:

where r is the radius of the sphere. Figure 2 displays a two-
dimensional scalar field for ΦSphere at z = 0, with r = 3.5 and 
within the bounds x = y = [–4, 4]. The surface of the sphere 
is constructed on the zero level set of ΦSphere; that is, eve-
rywhere ΦSphere = 0. All of the points inside of the surface 
have negative values, while all of the points outside of the 
surface are positive.

(1)Φ(x, y, z) − C =

⎧
⎪⎨⎪⎩

<0, inside

0, on

>0, outside.

(2)ΦSphere = x2 + y2 + z2 − r2

Fig. 1   Comparison of two different porous spherical architectures 
with the same external dimensions (i.e., diameter) and the same per-
cent porosity
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2.2 � The gyroid surface

Schoen identified gyroid surfaces as belonging to a fam-
ily known as triply periodic minimal surfaces [20]. The 
gyroid can be described implicitly, to the first order of 
approximation, by the nodal equation [27]:

The gyroid surface is only truly minimizing when 
the level constant, C, is zero. In this case, the mean cur-
vature everywhere on the surface becomes zero. With 
non-zero values of C, the mean curvature also becomes 
non-zero but remains constant over the entire surface. 
Using this approximation, the mean curvature loses its 
constancy [28] but such an effect bears no consequence 
in the development of TE scaffolds. Figure  3 displays 
a two-dimensional scalar field for ΦG at z = 0, with 
C = 0.67, N = 0.67π and within the bounds x = y = [−4, 
4]. The surface of the gyroid is constructed on the zero 
level set, ΦG = 0.

2.3 � Combining implicit surfaces

Boolean operations can be used to combine two or more 
scalar fields. For example, the sphere in Fig. 2 can be made 
porous with pore architecture derived from the gyroid in 

(3)
ΦG = sin (Nx) cos (Ny) + sin (Nz) cos (Nx) + sin (Ny) cos (Nz) − C.

Fig.  3 by taking the maximum scalar value at each point 
and reconstructing the surface along the new zero level set 
(Fig. 4):

Fig. 2   Two-dimensional slice of the surface of a sphere represented 
by the zero level set with r = 3.5 at z = 0 in algebraic scalar field 
ΦSphere

Fig. 3   Two-dimensional slice of the surface of a gyroid represented 
by the zero level set with C = 0.67 and N = 0.67π at z = 0 in algebraic 
scalar field ΦG

Fig. 4   Two-dimensional slice of the surface of a sphere with gyroid-
type porous architecture represented by the zero level set at z = 0 in 
algebraic scalar field ΦSphereG
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Figure 5 illustrates the process of combining surfaces 
using scalar fields in three dimensions: (A) a sphere with 
radius = 3.5 [analogous to Fig.  2]; (B) a gyroid surface 
with its inside colored red and its outside colored blue 
[analogous to Fig. 3]; (C) an overlay of a gyroid surface 
and a sphere; (D) a sphere partitioned into two separate 
phases by a gyroid surface; (E) a cutaway of that par-
titioned sphere at z = 0 [analogous to Fig.  4]; and (F) a 
sphere with a gyroid pore architecture after the blue 

(4)ΦSphereG
= max

(
ΦSphere, ΦG

)
.

phase is voided. This could be done with virtually any 
shape implant, including the arbitrary shape of a defect 
site-specific scaffold.

2.4 � Signed distance fields for arbitrarily‑shaped objects

The object to be made porous, Φobject, can be a shape 
defined by an implicit function (such as a sphere, cylinder, 
ellipsoid, etc.), but this is not a requirement. It is possible to 
use an arbitrarily-shaped object, such as CT-derived bone 
anatomy. Since there is no governing equation to describe 

Fig. 5   Illustration of the process of combining surfaces using their scalar fields in three dimensions (see inline text for explanation)
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the surface of an arbitrarily-shaped object, the scalar field 
must be determined manually. In this case, we implemented 
a custom algorithm in MATLAB® (MathWorks, Natick, 
MA) to calculate the signed distance field of a polygo-
nal mesh. This algorithm iterates through every point in a 
bounded space and determines its distance to the surface, 
as well as whether the point is inside, outside, or on the sur-
face [29]. Points inside of the surface are assigned negative 
distance values, while points outside of the surface remain 
positive and points on the surface are equal to zero by 
definition. The surface of the object which was discretely 
defined by a polygonal mesh becomes implicitly described 
by the zero level set of its signed distance field.

The signed distance field is a special case of a scalar 
field where each value gives the exact geometric distance 
to the zero level set. This is different than the scalar fields 
described in Sects.  2.1, 2.2, and 2.3 which give the alge-
braic distance to the zero level set. However, since both 
types of scalar fields capture their surfaces implicitly as 
zero level sets, they can be used interchangeably within the 
methods described here.

2.5 � Modulating the gyroid architecture

The period of the gyroid surface can be modulated analo-
gously to a simple sine or cosine wave. For example, with 
a period coefficient N = 2π, the gyroid surface is periodic in 
all three directions with a period, or unit side length, of 1. 
By scaling the period, the size and number of pores can be 
tailored.

The gyroid can be further modulated by changing the 
level constant, C. When C = 0, the surface divides space 
into two congruent domains, each with a 50% volume 
fraction of the space. By adding or subtracting a non-
zero constant, C, from the scalar field, the zero level 
set is shifted and porosities ranging from approximately 
2–98% can be obtained. Figure 6 demonstrates how vary-
ing C changes the geometry and porosity, n, of the gyroid 
structure.

2.6 � Porosity, pore size, and strut size

Porosity, n, is expressed as a decimal fraction in terms of 
the solid volume, VS, and the total volume, VT, where the 
total volume constitutes the sum of the solid and porous 
volumes:

Another important parameter for describing the gyroid 
is the ratio of the pore dimension, dp, to the strut dimen-
sion, ds, and is represented by ξ:

This ratio is of particular interest, because like poros-
ity, it is a function of the level constant, C, independent 
of the period coefficient, N, which makes it easy to draw 
direct relationships between the implicit equation and the 
resultant geometry.

In the absence of a closed-form solution, these dimen-
sions were determined by virtual measurements. The 
pore and strut dimensions were measured along the space 
diagonal [1 1 1] of a unit cell of the porous gyroid struc-
ture (Fig. 7). The unit cell was constructed by installing 
the gyroid architecture with N = 2π in a unit cube with 
bounds x = y = z = [0, 1] and level constant, Cn, using 
the level set method previously described. To achieve 
high accuracy, a grid size of 749 × 749 × 749 was used. A 
cubic grid with odd dimensions is required to have scalar 
values that lie directly on the space diagonal.

The marching cube algorithm was used to extract a 
polygonal mesh of the isosurface from the scalar field [30]. 
For porosity calculations, the solid volume is the volume 
enclosed by the polygonal mesh and was calculated using the 
divergence theorem [31], while the total volume is equal to 
the unit side length cubed.

(5)n =

(
1 −

VS

VT

)
.

(6)� =
dp

ds
.

Fig. 6   Illustration of the effect of the level constant, C, on the geometry and porosity, n, of the gyroid unit cell
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2.7 � Computation of parameters

Using a polynomial fit (R2 = 1.0000), a direct relationship is 
drawn between the level constant, C, and porosity (as a deci-
mal fraction), n (Fig. 8):

Alternatively, the level constant can be calculated from 
the ratio of the pore dimension to the strut dimension, ξ 
(R2 = 0.9996; Fig. 8):

Once the level constant has been determined, it can be 
used to help calculate the appropriate period coefficient, 

(7)C = 0.7864n3 − 1.1798n2 − 2.5259n + 1.4597.

(8)
C = − 0.0006�5 + 0.0162�4 − 0.1722�3 + 0.9142�2

− 2.5329� + 1.7889.

N. First, the level constant is related to the pore and strut 
dimensions (independently) for the period coefficient, 
N0 = 2π (Fig.  9). The following models give the pore and 
strut dimensions, respectively, as a function of C with 
N0 = 2π (both R2 = 0.9999):

The pore and strut dimensions scale linearly by N. 
Therefore, the output of either model can be related to the 
appropriate desired value, dp or ds, to calculate a scale fac-
tor, γ:

which can then be used to determine the proper period 
coefficient, N:

(9)

d
2�
p

= − 11.7311C5 − 0.1307C4 − 1.7987C3 + 0.2070C2

− 186.9928C + 433.0114

(10)
d
2�
s

= 11.7311C5 − 0.0466C4 + 1.7987C3 + 0.0175C2

+ 186.9928C + 433.0937.

(11)� =
d2�
p

dp
=

d2�
s

ds

(12)N = �N0 = �2�.

Fig. 7   Illustrations of the pore and strut dimensions of the gyroid 
unit cell along the space diagonal [1 1 1]

Fig. 8   (left) Level constant as a function of pore/strut ratio and porosity for gyroid shapes with polynomial fits; (right) Surface area per unit vol-
ume as a function of porosity showing increase in surface area as porosity and level constant increase

Fig. 9   Pore and strut dimensions as a function of level constant for 
the gyroid shapes with polynomial fits
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To fully define the gyroid architecture, two of the fol-
lowing three input parameters must be specified: pore size, 
strut size, and porosity.

3 � Poly(propylene fumarate) test specimens

3.1 � Resin formulation

For all of the experiments, specimens were fabricated 
using a poly(propylene fumarate) (PPF)-based resin. PPF 
is a bioresorbable and photocrosslinkable polyester [1] 
and was synthesized via a chain-growth mechanism [32, 
33]. To reduce the viscosity for 3D printing, PPF (Mn = 
1500  Da, PDI = 1.6) was diluted with diethyl fumarate 
(DEF, Sigma–Aldrich, St. Louis, MO) in a 1:1 ratio. Pho-
toinitiators Irguacure 819 and Irgacure 784 (BASF, Lud-
wigshafen, Germany) were added in concentrations of 3.0 
and 0.4% by mass, respectively. Finally, 0.7% oxybenzone 
(Sigma–Aldrich) was added to mitigate light scattering 
within layers.

3.2 � Cast PPF cylinders

Solid cylinders were cast from PPF resin using transparent 
glass tubes with 4.5 mm inner diameter. Tubes were loaded 
with PPF resin and placed into a ProCure 350 UV cham-
ber (3D-Systems, Rock Hill, SC) for 480 min to ensure a 
fully crosslinked network. After curing, PPF cylinders were 
removed from the glass tubes and cut to approximately 
9.0 mm height.

3.3 � 3D printed PPF cylinders

Solid cylinders with a diameter of 4.5 mm were additively 
manufactured from PPF resin using an EnvisionTEC Per-
factory Micro Advantage 3D printer (EnvisionTEC, Dear-
born, MI). The printer was configured with the following 
parameters: layer thickness = 50 µm, irradiance = 350 mW/
dm2, and layer projection time = 180 s. Cylinders were ori-
ented vertically and at a 45° angle. After printing, cylinders 
were immediately rinsed with acetone, 70% ethanol (v/v), 
and distilled water for 30  s each using wash bottles. Cyl-
inders were then post-cured for 480 min at ambient condi-
tions in a ProCure 350 UV chamber.

3.4 � 3D printed PPF porous cubes

Porous PPF cubes were designed with 10 mm side length 
and a pore architecture consisting of 400  µm struts and 
1400 µm pores, resulting in a designed porosity of 88.2%. 
Porous cubes were additively manufactured from PPF resin 

on an EnvisionTEC Perfactory P3 Mini Multi Lens 3D 
printer. The build parameters were: layer thickness = 50 µm, 
irradiance = 350 mW/dm2, and layer projection time = 30 s. 
Porous cubes were oriented vertically, at a 45° angle, and at 
a 90° angle. After printing, porous cubes were cleaned and 
post-cured per the same protocol as the solid cylinders.

4 � Compression testing

Compressive mechanical properties were evaluated by 
uniaxial unconfined compression on a TestResources load 
frame with a 250 lbf load cell (TestResources, Shakopee, 
MN). All samples were compressed at a rate of 1.0% strain 
per second. Young’s Moduli and compressive stiffness 
were calculated according to the slope of the linear por-
tion of the stress–strain curve and the yield strength was 
evaluated with a 0.2% offset. ANOVA methods were used 
to compare quantitative data across two or more groups 
(Minitab Inc., State College, PA, USA). Data are presented 
as mean ± standard deviation from n = 6 sample groups for 
solid cylinders and n = 8 groups for porous cubes.

5 � Results and discussion

The compressive mechanical properties of cast and addi-
tively manufactured PPF solid cylinders are shown in 
Fig.  10. The cast cylinders exhibited an average Young’s 
Modulus of 593 ± 31  MPa and an average yield stress 
of 37 ± 1  MPa. Compared to both 3D printed groups, the 
cast specimens exhibited significantly higher mechani-
cal properties (P < 0.005). Neither the average Young’s 
Modulus of the 3DP-Vertical (481 ± 29 MPa) and 3DP-45° 
(456 ± 39  MPa) nor the average yield stress of the 3DP-
Vertical (29 ± 2 MPa) and 3DP-45° (27 ± 4 MPa) were sig-
nificantly different than each other. The drop in mechanical 
strength between the cast and 3D printed specimens could 
be due to the layer-based process with which the 3D printed 
specimens were fabricated. The lack of a measurable differ-
ence between the two 3D printed orientations is an encour-
aging demonstration of mechanical isotropy in layer-fabri-
cated parts. It must be noted, however, that the 3D printed 
solid cylinders were fabricated with an increased exposure 
time of 180 s per layer. The long exposure time was neces-
sary to overcome the capillary force between the part and 
the 3D printer vat, a problem common to mask projection 
stereolithography [34], and may serve to strengthen the 
bond between layers.

Porous PPF specimens which were designed with 
gyroid architecture and 3D printed are shown in Fig. 11. 
Specimens with a cubic shape were manufactured at 
three orientations: vertical, 45°, and 90°. In Fig. 12, the 
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compressive mechanical properties of the three groups 
are shown. There was no significant difference found 
between the vertically oriented specimens and the 90° 
oriented specimens in any metric; however, the speci-
mens oriented at 45° were significantly different in all 

three metrics (P < 0.005). With an average stiffness of 
7.94 ± 0.63  MPa, the specimens oriented at 45° were 
approximately 30% less stiff than the other two orienta-
tions. The yield stress (0.54 ± 0.05  MPa) and ultimate 

Fig. 10   Young’s Modulus and yield stress of solid PPF cylinders that 
were cast and 3D printed at different orientations. Significance indi-
cated refers to P < 0.005; (upper right) photograph of cast PPF cyl-

inders; (lower right) photograph of 3D printed solid PPF cylinders 
oriented vertically and at a 45° angle

Fig. 11   (left) 10 mm 3D printed porous PPF cubes with 400 µm struts and 1400 µm pores. L to R build orientation: vertical, 45°, and 90°; (mid-
dle) CAD model: close-up of pore architecture; (right) SEM image of 3D printed PPF cube (scale bar 1.0 mm)

Fig. 12   Young’s Modulus, yield stress, and ultimate stress of porous PPF cubes that were 3D printed at different orientations. Significance indi-
cated refers to P < 0.005
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stress (0.69 ± 0.04  MPa) were each approximately 15% 
lower than the vertical and 90° orientations.

In Fig.  13, a human vertebra is used to demonstrate 
how gyroid-type porous architecture can be imposed 
onto an arbitrarily-shaped anatomical object. The ver-
tebra was chosen for this example because it is a com-
plex yet common anatomical shape, although any shape 
which is described by a polygonal mesh is sufficient. The 
3D vertebra model was reconstructed from a CT scan 
and exported as an STL file. Using the mesh data in the 
STL file, a signed distance field was generated to implic-
itly describe the surface of the vertebra. The scalar field 
of the vertebra was then intersected with the scalar field 
of the gyroid surface. Subsequent discretization of the 
new scalar field resulted in a surface describing the ver-
tebra with porous gyroid architecture. In this model, 
the gyroid architecture features a strut size of 200  μm, 
a pore size of 700 μm, and an overall porosity of 88.2% 
(N = 1.9138π, C = −1.1445).

6 � Conclusion

Computer-assisted reconstructive techniques (i.e., CAD/
CAM) have been shown to be superior to manual fabri-
cation methods since the early 2000s [35, 36]. With the 
continued advancement of 3D printers and resorbable 
biomaterials [37], computer-assisted procedures can posi-
tively impact not just reconstructive medicine, but regen-
erative medicine. While the gyroid and other triply periodic 

minimal surfaces have been previously linked to tissue 
engineering scaffolds, this is, to our knowledge, the first 
presentation of the gyroid surface which directly addresses 
feature dimensions other than percent porosity, such as 
strut diameter, pore size, and surface area. This design phi-
losophy greatly increases the capacity of the gyroid as tool 
in tissue engineering. The ability to tailor the geometry of 
the solid and porous phases of a tissue engineering scaf-
fold using virtual CAD techniques such as those presented 
in this paper, paired with 3D printing technologies, will 
empower researchers and clinicians to design and fabricate 
scaffolds with mechanical, degradation, and tissue-guid-
ing properties that current implant CAD and conventional 
implant CAM methods cannot attain.
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