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Abstract We present a 3D numerical model for

hydraulic fracturing and damage of low permeable

rock in an anisotropic stress field. Themodel computes

the intermittent damage propagation, microseismic

event-locations, microseismic event-distribution,

damaged rock volume and injection pressure. The

model builds on concepts from invasion percolation

theory, where cells in a regular grid are connected by

transmissibilities, also called bonds. An intact bond

breaks when the fluid pressure exceeds the least

compressive stress and random uniformly distributed

bond strength. Analytical expressions are obtained for

the fractions of the weakest bonds in the x-, y- and

z-directions as a function of the stress anisotropy and

the rock strength anisotropy. A strategy is suggested

for a fast solution of the pressure equation when the

fluid pressure is restricted to the damaged rock

volume. An expression for the volume of damaged

rock is obtained in the cases where it has a high

permeability. The model is demonstrated on a pub-

lished case from the Barnett Shale and it reproduces

the observed main features, such as the spatial and

temporal distribution of the events, the magnitude–

frequency distribution and the injection pressure. The

microseismic event-distribution and the b-value

depend on the permeability of the damaged rock

volume. The b-value increases with decreasing per-

meability from a little\ 0.6 to a value above 2 for the

maximum possible permeabilities. The damaged rock

volume is non-compact and similar to a percolation

cluster for ‘‘high’’ damaged rock permeabilities, and it

becomes increasingly compact with decreasing per-

meabilities. The resulting loop-less fracture network is

found to have similar characteristics for different

damaged rock permeabilities.

Keywords Hydraulic fracturing � Rock damage �
Microseismicity

1 Introduction

Hydraulic fracturing is the basis for US shale gas and

shale oil production. The year 2016 had an average

production of 4.25 million barrels daily of crude oil

from tight shales (EIA 2017). The oil- and gas-rich

shales are practically impermeable, and oil and gas

production would have been nearly impossible unless

large volumes of rock had its bulk permeability greatly

enhanced by stimulation. How the hydraulic fracturing

process creates a dense and pervasive fracture network

is being debated, but it seems linked to the geohistory

of the shales (Turcotte et al. 2014). Shale units, which

are petroleum source rocks, are rich in organic matter.

Burial brings the source rocks down to depths where
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hydrocarbon generation is active (Allen and Allen

2013). The conversion of solid organic matter to less

dense oil and gas leads to a volume increase and

thereby an internal pressure build-up. The pressure

build-up produces fracturing of the tight shales and

hydrocarbon expulsion through a pervasive fracture

network. Hydrocarbon expulsion may fill a conven-

tional reservoir if the source rock is adjacent to porous

and permeable sandstone (Allen and Allen 2013).

The naturally generated fracture network created by

hydrocarbon generation seems to be important for

hydraulic fracturing to efficiently enhance petroleum

production. It appears that hydraulic fracturing is less

effective in shales where hydrocarbon generation and

expulsion are active processes and where the fracture

network is open. On the other hand, hydraulic

fracturing is effective in shales which has been

uplifted and where generation and expulsion have

stopped. In these shales, the naturally generated

fracture network may have been cemented by quartz,

calcite or other minerals. The injection of large

volumes of water under high pressure reopens the

sealed fracture network and mobilizes the hydrocar-

bons that are trapped in the source rock (Turcotte

et al. 2014).

There are few means to directly observe the

hydraulic fracturing process in the field and to detect

how the injected fluid makes its way through nearly

impermeable shales. One of the few means to observe

the process is indirectly by microseismic monitoring.

Microseismicity provides data about how the fractur-

ing process spreads out away from the injection point.

Microseismicity, like large-scale seismicity, has a

magnitude–frequency distribution, which indicates

that hydraulic fracturing is not a smooth process.

Instead, fracture propagation takes place in discrete

steps of different sizes. Additional information about

the hydraulic fracturing process comes from the well-

pressure response.

We present a 3D numerical model for hydraulic

fracturing and the damage of low permeable rocks,

which aims at producing realistic results in terms of

injection pressure and microseismicity. The suggested

modelling approach builds on a 2D invasion percola-

tion model for microseismicity developed by Norris

et al. (2015a, b, 2016). Their invasion percolation

model has burst dynamics similar to microseismicity.

Wangen (2017) added a fluid pressure equation to a

2D model similar to the one presented by Norris et al.

(2015a, b, 2016), where a dynamic fluid pressure was

used to trigger the propagation of fracturing and

damage.

The term damage is used to describe the fracturing

of intact rocks. It implies that a pervasive fracture

network has developed, which allows the injected fluid

to reach a large part of the pore space of the damaged

rock. It also implies that the hydrocarbons that once

were sealed in the rock are mobilized and can be

produced.

A number of different simulation approaches have

been suggested for the modelling of intermittent

fracturing triggered by fluid pressure. Examples are

the beam model (Tzschichholz et al. 1994; Tzschich-

holz and Herrmann 1995; Tzschichholz and Wangen

1998; Wangen 2011, 2013), discrete element mod-

els (Bruel 2007; Bruel and Charlety 2007; Riahi and

Damjanac 2013; Itasca International 2016), models

populated with discrete fractures that may be acti-

vated (Izadi and Elsworth 2014; Verdon et al. 2015).

These models have in common that each fracture is

represented explicitly. Another approach is taken here

because the fracture network in a damaged rock

volume is too fine to be represented explicitly. Instead,

the effect of a pervasive fracture network is repre-

sented by means of a damage permeability. The intact

cells in the grid have their permeability changed from

impermeable to damage permeability when they

fracture.

This paper is organized as follows: A short review

of percolation models is given before the proposed

model is presented. The paper then accounts for how

an anisotropic stress state is implemented and how the

pressure is obtained in the damaged rock volume.

Then, the model is demonstrated by a case study from

the Barnett Shale. How the frequency–magnitude

distribution depends on the permeability of the

damaged rock is studied before some properties of

the loop-less fracture network are discussed.

2 Percolation models

Percolation theory is the study of the connectivity of

clusters, normally by use of regular numerical

grids (Stauffer and Aharony 1992; Feder 1989;

Sahimi 1994). The ideas of the invasion percolation

theory were developed by Wilkinson and Willemsen

(1983) as a model for the slow displacement of
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immiscible fluids in a porous medium, for instance the

displacement of oil by water. When the displacement

is slow, capillary forces completely dominate viscous

forces, and the process is determined on the pore level

by the capillary thresholds of the pore throats. The

porous rock may be represented by a regular grid,

where the cells are pores, and the pore throats are

bonds connecting neighbour cells. The invading fluid

is represented by occupied cells on the grid. The

displacement proceeds by searching for the bond with

the least capillary threshold, which connects a vacant

cell with the invaded cluster. This vacant cell becomes

the next cell to be invaded, and the process repeats

itself by searching a vacant cell to invade.

The invasion percolation model of Wilkinson and

Willemsen (1983) addressed the final cluster of

invaded cells that connects the two opposite sides of

a regular grid (Feder 1989). The dynamics of the

invasion process were subsequently studied by Furu-

berg et al. (1988). The displacement of water in a

porous medium by injection of air at a constant rate

leads to burst dynamics. These kinds of bursts have

been extensively studied both experimentally and

numerically using invasion percolation models

by Måløy et al. (1992), Furuberg et al. (1996).

A wide range of phenomena with intermittent

behaviour have event-sizes with a power-law distri-

bution Turcotte (1997). Examples of models for such

phenomena are the sand pile model of Bak et al.

(1987), earthquake models (Crampin and Gao 2015),

natural hydraulic fracturing (Miller and Nur 2000),

pore throat models for immiscible displacement in

porous media (Furuberg et al. 1988; Aker et al. 1998)

and acoustic emissions by the triaxial testing of

rocks (Amitrano 2003, 2012). The modelling of bursts

with a regular grid has in common that when one cell

becomes critical it shares mass, energy or stress with is

neighbours cells, which in turn can become critical

and thereby trigger an avalanche of critical cells.

3 A model based on concepts from invasion

percolation

The proposed model of hydraulic fracturing is an

extension of a 2D model (Wangen 2017) to a 3D rock

volume in an anisotropic stress field. Both the 2D

model (Wangen 2017) and the suggested 3D model

are in turn based on a 2D invasion percolation model

for hydraulic fracturing developed by Norris et al.

(2014, 2015a, 2016), which is able to produce realistic

microseismic event-distributions. The invasion perco-

lation model of Norris et al. (2014, 2015a, 2016)

grows a cluster of bonds by always invading the

‘‘weakest’’ bond on the perimeter. The bonds are

assigned random strength, which is uniformly dis-

tributed at an interval from 0 to 1. Burst dynamics are

introduced by a ‘‘water-level’’. A burst of broken

bonds begins when a bond strength falls below the

water-level, and it continues until there are no other

bonds that are weaker than the water-level. Norris

et al. (2014) show that choosing the water-level right

below the strongest failed bond in a cluster gives a

power-law distribution of the burst sizes. The busts are

the microseismic events, where the number of bonds in

the burst is the event-size. The total number of the

broken bonds is termed the cluster mass, and it

corresponds to the total volume of injected fluid.

The 2D model (Wangen 2017) and the suggested

3D model have in common with percolation models

that they are based on a regular grid of cells, where the

cells are of two types: intact rock and damaged rock.

The nearest neighbour cells are connected by trans-

missibilities (bonds), and the fracture condition is

assigned to these bonds. Fluid injection builds up the

pressure in the near-well area, which can lead to

fracturing. A bond fractures when the fluid pressure

exceeds the sum of the least compressive stress on the

bond and a random rock strength. When an intact bond

and the associated intact cell become damaged, the

fluid will invade the newly damaged cell, and the fluid

pressure decreases slightly. Just like an invasion

percolation model, fracturing an intact cell can lead

to a burst of fractured cells, where the bursts are

responsible for the microseismicity. The proposed

model in 3D defines the event-size in terms of a cluster

of connected cells rather than connected bonds. The

event-size is the number of broken and connected cells

in a cluster formed during a time step. The magnitude

of the event is the log10 of the event-size.

The fractured cells form a loop-less network as in

the model of Norris et al. (2014, 2015a, 2016). A

loop-less network means that the different branches of

fractured cells are never connected by a fractured

bond. This also implies that the number of fractured

cells in the grid is always one more than the number of

fractured bonds.
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4 Classical models of hydraulic fracturing

The suggested modelling approach is different from

the classical models of hydraulic fracturing, such as

the PKN-model. The PKN-model was first introduced

by Perkins and Kern (1961), where a vertical fracture

with an elliptical cross-section propagates by fluid

injected at a constant rate. The approach of Perkins

and Kern was considerably improved by Nordgren

(1972) who added fluid loss to the model, and obtained

analytical and numerical results for the fracture width,

length and volume as a function of time (Charlez

1997). A particular feature of the single fracture

models, such as the PKN-model and a number of other

analytical models for hydraulic fracturing (Savitski

and Detournay 2002; Wangen 2017), is that fracture

propagation is assumed to take place in a homoge-

neous rock and that the fracture is planar. The PKN-

model has a well-defined fracture in terms of length,

height and width, and it can be used for benchmarking

numerical models where the fractures are explicitly

represented. Examples from nature of planar hydraulic

fractures are magmatic intrusions such as sills and

dikes (Spence and Turcotte 1985). Since the intruding

magma solidifies, it allows these hydraulic fractures to

be mapped out.

The model suggested here is for hydraulic fractur-

ing of low-permeable oil- and gas-shales, where a

dense network of a large number of fractures are

produced. The assumption of a dense fracture network

is built into the model, where the fracture network is

characterized by fine fractures. The number of frac-

tures is assumed so large that it is practically

impossible to represent them even at a marcroscopic

scale. The macroscopic to megascopic properties of a

fracture network are represented by a fracture porosity

and a fracture permeability, instead of detailed fluid

flow in explicit fractures. Since this model does not

have an explicit fracture representation, it cannot deal

with a single fracture. Therefore, it is difficult to

compare the suggested modelling approach with the

results of single fracture models, such as the PKN-

model.

Nevertheless, parts of the model can be tested

separately. For example, it is verified that the numer-

ical pressure solution approaches the correct station-

ary solution for long time spans. The horizontal 2D

version of this 3D model becomes the 2D model of

Wangen (2017), and it produces events with a radius

that is proportional to square root of time (Shapiro and

Dinske 2009) using the same input data.

5 Stress anisotropy

It is assumed that the principal stress increases with

depth. Therefore, the background stress field in the

principal system is taken to be

rz ¼ .bgz; rx ¼ fxrz and ry ¼ fyrz; ð1Þ

where the rx, ry and rz are the principal stresses in the
x-, y- and z-directions, respectively, .b is the bulk rock
density, z is the depth and g is gravitational acceler-

ation. The factors fx and fy give the size of the principal

stress in the x- and y-directions relative to the vertical

stress. An alternative way to specify the stress

anisotropy is to introduce the similar coefficients f 0x
and f 0y for the effective stress

r0z ¼ rz � ph; r0x ¼ f 0xr
0
z and r0y ¼ f 0yr

0
z; ð2Þ

where r0x, r
0
x and r

0
x are the principal effective stress in

the x-, y- and z-directions, respectively, where ph ¼
.f gz is the hydrostatic pressure and where .f is the

pore fluid density. The two pairs of coefficients are

related by

fx ¼ f 0x þ ð1� f 0xÞð.f =.bÞ and

fy ¼ f 0y þ ð1� f 0yÞð.f =.bÞ;
ð3Þ

which follows from the definitions (1) and (2).

6 Anisotropic bond strength

Norris et al. (2015b) introduce an anisotropic stress

field in 2D by assigning uniformly distributed random

numbers in the interval [0, 1) for the x-direction and

uniformly distributed random numbers in the interval

[0, a) for the y-direction, where a[ 1. For instance,

the case a ¼ 2 makes it twice as likely that the weakest

bond is in the x-direction rather than in the y-direction.

We introduce anisotropy in a slightly different way.

The algorithm is still based on bonds that break. The

bonds are transmissibilities that connect nearest

neighbours cells, as shown in Fig. 1a. The condition

for breaking an intact bond is that fluid pressure in the

broken element exceeds the bond strength plus the

123

20 Geomech. Geophys. Geo-energ. Geo-resour. (2019) 5:17–35



least compressive stress acting normal to the bond.

This rule makes it more likely for bonds to break that

are oriented normally to the least compressive stress

than the bonds with a larger compressive stress.

Figure 1b illustrates how the compressive stress acts

on the bonds in 3D, where it is assumed that the grid is

aligned with the direction of the principal stress.

The stress anisotropy suggested by Norris et al.

(2015b) is represented by random bond strength. The

breaking condition suggested here is different by

having the stress anisotropy and the random bond

strength as separate quantities. The fracture pressure

for a bond in direction i ¼ x; y; z is expressed as

pi;max ¼ si þ miui; ð4Þ

where si is the least compressive stress normal to the

bond, mi is a constant characterisitic bond strength for

direction i and ui is a uniformly distributed random

number in the interval [0, 1). The least compressive

bond stresses are

sx ¼minðrH ; rvÞ ¼ rH
sy ¼minðrh; rvÞ ¼ rh
sz ¼minðrh; rHÞ ¼ rh

ð5Þ

since it is assumed that

ðrx ¼ rhÞ \ ðry ¼ rHÞ \ ðrz ¼ rvÞ; ð6Þ

where rh and rH are the minimum and the maximum

principal stresses in the xy-plane, respectively. In the

following, we will assume that compressive stress in

the xy-plane is less than the vertical compressive

stress, such that fx\fy\1. Furthermore, we assume

that themy ¼ mx and thatmz �mx. The layered texture

of shales is the reason for introducing an isotropic

random strength in the xy-plane (mx ¼ my), with the

possibility of a different strength in the vertical

direction. The critical pressures for bonds in the x-,

y- and z-directions can now be written

σ

σh

v

σh

σH

(a)

(b)
σv

σH

Fig. 1 a A bond (or a transmissibility) is a hydraulic connection between two nearest neighbour cells. b The bonds are oriented

orthogonally to the directions of the principal stress
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px;max ¼rH þ mxux

py;max ¼rh þ mxuy

pz;max ¼rh þ mzuz

ð7Þ

The largest compressive stress is on the x-bonds, which

means that it is more likely that y-bond or a z-bond will

break in the case of anisotropic bond strength. The

critical bond pressure can also be written in terms of

effective pressure by subtracting the hydrostatic pres-

sure ph on both sides in Eq. (7), and we get

p0x;max ¼r0H þ mxux

p0y;max ¼r0h þ mxuy

p0z;max ¼r0h þ mzuz

ð8Þ

where p0i;max ¼ p� ph is the critical effective pressure

and where r0h and r0H are the effective principal

stresses in the xy-plane, respectively.

7 Fraction of weakest bonds

When the random critical pressures pi;max are gener-

ated, it is of interest to know how large the fraction of

the bonds in a given direction i that have the least

critical pressure, pi;max. For example, the fraction of

the bonds in the x-direction that have the least critical

pressure are the bonds where px;max\py;max and

px;max\pz;max. The fraction of the bonds in the y-

direction with least critical pressure have

py;max\px;max and py;max\pz;max and similarly, for

the z-direction, where the condition is pz;max\px;max

and pz;max\py;max. The answer to these questions is

given as volume fractions of the rectangular cuboid

with sides mx, my and mz, because the uniformly

distributed random variables ux, uy and uz span this

cuboid by Eq. (7). The fraction of the i-bonds with

least critical pressure is denoted vi, and we have that

vxða; sÞ ¼
ð1� aÞ2s
2ð1þ sÞ þ ð1� aÞ3

3ð1þ sÞ

vyða; sÞ ¼
1

2ð1þ sÞ �
ð1� aÞ3

6ð1þ sÞ þ
s

ð1þ sÞ �
ð1� aÞ2s
2ð1þ sÞ

vzða; sÞ ¼
1

2ð1þ sÞ �
ð1� aÞ3

6ð1þ sÞ ð9Þ

when it is assumed that mx ¼ my and mz [mx, and

where

a ¼ðrH � rhÞ=mx ¼ ðfy � fxÞrv=mx ð10Þ

s ¼ðmz � mxÞ=mx: ð11Þ

The parameter a is a dimensionless expression for the

stress anisotropy, and parameter s is a dimensionless

measure of strength anisotropy. The sum of the

volume fractions vi (i ¼ x; y; z) is 1, as expected. The

volume fractions (9) show that parameter a is limited

to the interval 0 to 1. It means that the maximum

random strengthmx has to be larger than the difference

in the stress anisotropy, mx [ rH � rh. If not, py;max

can never be larger than px;max, even when the random

variable uy reaches its upper limit uy ¼ 1.

Figure 2a shows the volume fraction of the weakest

bonds for increasing anisotropy (a-parameter), when

the rock strength is isotropic (s ¼ 0). For an isotropic

stress state (a ¼ 0) the distribution is equal, and

therefore 1/3 for each of the three directions. With

increasing anisotropy, the fraction of x-bonds goes to

zero and the since the strength is isotropic, the fraction

of the y-bonds and z-bonds are the same and therefore

approach 1/2.

The distribution of weak bonds between the y- and

z-directions becomes different when the strength

increases in the vertical direction. With increasing

anisotropy, the fraction of weakest y-bonds increases

at the expense of the x-bonds, while the fraction of

weakest z-bonds increases slowly at the expense of the

x-bonds. A doubling of the rock strength in the

z-direction gives a similar distribution, where the

x-bonds go to zero, while the fraction of the weakest

y-bonds and z-bonds are approximately 0.2 and 0.8,

respectively.

Notice that principal stress increases with depth,

which implies that the dimensionless anisotropy a also

increases with depth because the rock strength mx and

my are taken as constant. If these rock strength

parameters were proportional to depth z, as the

principal stress, the distribution of the weakest bonds

would have been depth independent.

8 The fluid pressure and rock damage

During each time step Dt, a fixed volume DV ¼ Q0Dt
is injected into the center cell of the grid, where Q0 is

the injection rate. The resulting fluid pressure in the

cells is obtained by solving a discrete parabolic
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pressure equation. A derivation of the pressure equa-

tion and its numerical representation are given in

Appendix 1.

Injection of a fluid volume leads to a pressure increase

in thedamaged rockvolume and intact cellsmaybecome

critical. The breaking of a bond and the associated intact

cell changes the permeability field of the model. The

damaged bond allows the fluid to enter the damaged cell,

and the pressure decreases in the damaged rock volume

outside the cell. In order to model the pressure decrease,

it is, therefore, necessary to recompute the fluid pressure

each time a bond and a cell is fractured. A new and

reduced fluid pressure may still be large enough to

fracture new intact bonds and cells, and the damage

process may continue further into the rock. The process

of breaking cells and recomputing thefluid pressure does

not stop until there are no more critical cells.

Resolving the fluid pressure for all cells in a grid

with fine resolution may be a time-consuming task. In

the case of a nearly impermeable rock, there will be no

changes in the fluid pressure in the intact cells. These

cells keep their initial pressure. Therefore, it is only

necessary to resolve the pressure in the fractured and

damaged cells—the cells that allow for fluid flow. The

implementation of such an approach saves a consid-

erable amount of computer time. The only overhead is

the allocation of a new mass matrix at each time step,

which corresponds to the currently connected network

of damaged cells.

Models can also be rapidly tested using stationary

pressure (25), which does not require any solution of a

large linear equation system (see Appendix 1). The

stationary solution becomes a good approximation in

the case of a high permeability of the damaged rock

volume.

The stationary solution can also be used to estimate

the damaged rock volume during a time step (Wangen

2017). The overpressure has to be larger than the least

compressive effective stress r0h for a bond and a cell to
fracture. The least compressive effective stress r0h is

therefore a lower limit for the fracture pressure. The

stationary solution (25) allows for an estimate of the

maximum bulk volume of damaged rock during a time

step, which is

DVD ¼ Q0 Dt
/DaD r0h

ð12Þ

because r0x is a lower limit for the fluid pressure during

fracturing. The porosity of the damaged rock is

denoted by /D and aD is the effective compressibility

of damaged rock. How many cells there are in bulk

volume DVD is found by division with the cell size

Vcell ¼
l2 h

n20n1
; ð13Þ

where l is length in the x- and y-directions, h is the

layer thickness, n0 is the number of cells in the x- and

y-directions and n1 is the number of cells in the

z direction. Therefore, an estimate for the maximum

event-size is

Smax ¼
DVD

Vcell

¼ Q0 Dt n20n1
/DaD r0hl

2 h
; ð14Þ

and the corresponding estimate for the maximum

magnitude is
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Fig. 2 The distribution of weakest bonds given by the normalized volume fractions (9)
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Mmax ¼ log10ðSmaxÞ: ð15Þ

These estimates are useful for the interpretation of

simulation results.

9 A case study of Barnett Shale

The 3D model is demonstrated with data similar to a

case from the Barnett shale in Texas presented

by Shapiro and Dinske (2009), which builds on data

from Fisher et al. (2002, 2004), Maxwell et al. (2009).

In the Barnett case, hydraulic fracturing took place in a

60 m thick shale layer at a depth interval from 2340 to

2400 m, where 2916 m3 of fluid was injected in 5.4 h,

which gives an injection rate of 150 l s�1. The

parameters for the case are shown in Table 1. The

hydraulic fracturing process was observed by moni-

toring microseismic events that spread out laterally to

a distance of about 300 m away from the injection

point in two opposite directions. These directions are

the main directions. The spreading of the microseismic

cloud normal to the main directions is roughly 75 m on

each side. The different sizes of the microseismic

cloud in the two orthogonal directions indicate an

anisotropic stress field. The bottomhole injection

pressure increases slowly from 40 MPa at the begin-

ning of injection to 43 MPa at the end. Therefore, the

least compressive stress appears to be larger than

40 MPa.

The Barnett case is constructed within a box sized

990 m � 990 m � 60 m, which is oriented parallel

to the principal stress directions. The box is discretized

with cells sized 10 m � 10 m � 10 m, which gives a

grid of 99 � 99 � 6 cells. The layers above and

below the shale unit are assumed to be much stronger

than the shale in the middle and are therefore not

included in the simulation.

The vertical stress at the center of the shale unit, at

the injection depth of 2370 m, is taken to be

rv ¼ 51:1 MPa. This corresponds to an average bulk

density of . ¼ 2200 kgm�3 when the constant of

gravity is 9.8 m2 s�1. The effective vertical stress

becomes r0v ¼ 27:9 MPa when it is assumed an

initially hydrostatic fluid pressure, ph ¼ 23:2 MPa.

To simulate an anisotropy similar to the one reported

by Shapiro and Dinske (2009), the factors fx ¼ 0:836

and fy ¼ 0:918 are used. In terms of effective stress,

the companion factors are f 0x ¼ 0:70 and f 0y ¼ 0:85.

The factors fx and f 0x give the least compressive stress,

and the least effective compressive stress is rx ¼
42:7 MPa, or alternatively r0x ¼ f 0xr

0
z ¼ 19:5 MPa.

The porosity of intact samples from the Barnett

shale is measured with an average of 5.7% by Kale

et al. (2010), an average around 7% by (Morsy and

Sheng 2014) and an average of 9.9% by Fu et al.

(2015). These porosity measurements cover a range

from below 4% to more than 10%. There are little

data on what the damage porosity could be, but it

depends on how much the fracture network is

opened by the fluid pressure. The porosity of the

damaged rock is taken to be / ¼ 0:15, and effective

compressibility (see Eq. (18) in Appendix 1) is taken

to be aD ¼ 5� 10�10 Pa�1. The parameters used in

the solution of the pressure equation are listed in

Table 1.

Figure 3 shows the transient injection overpressure

as a function of time, and it is close to the stationary

overpressure. The stationary overpressure is derived in

Appendix 1. This is because of the large damage

permeability, kD ¼ 1� 10�8, which implies that

pressure transients decay fast. The time for the decay

of pressure transients can be estimated by the charac-

teristic time (26). Case data from Table 1 and the

length of 300 m give that t0 ¼ 0:7 s, which is a short

time compared to the time step Dt ¼ 389 s. The

Table 1 The parameters used in the Barnett case study

Parameter Value Units

Number of time steps 50 –

Number of cells x- and y-dir (n0) 99 –

number of cells z-dir (n3) 6 –

Length x- and y-directions (l) 990 m

Thickness (h) 60 m

System compressibility (aD) 5� 10�10 Pa�1

Viscosity (l) 0.001 Pa s

Damage permeability (kD) 1� 10�8 –

Damage porosity (/D) 0.15 –

Injectin rate (Q0) 150 l s�1

Simulation time (tend) 19, 440 s

Factor f 0x 0.7 –

Factor f 0y 0.85 –

Max strength (m0) 10 MPa

123

24 Geomech. Geophys. Geo-energ. Geo-resour. (2019) 5:17–35



injection overpressure is seen from Fig. 3 to be

approximately 5 MPa above r0x, which is due to the

random bond strength of 10 MPa.

The fractured cells at the end of the simulation are

plotted in Fig. 4, where the injection well is the

vertical line. The cell colours give the time of damage,

and they show that the damaging of the rock is not

symmetric in time around the injection well, which is

due to random bond strength. It begins at the left (blue

cells), then it takes place mainly at the right (green

cells) before it ends at the red clusters. Another feature

of the damage region is that it is not compact. Due to

the random rock strength, there are a number of intact

cells in between the broken ones (Fig. 4).

The isotopic rock strength mx ¼ my ¼ mz ¼
m0 ¼ 10 MPa and the vertical stress rz ¼ 51:1 MPa

give the a- and s-parameters a ¼ 0:42 and s ¼ 0. From

the distribution of bond strength shown in Fig. 2, we

have that only 6% of the bonds are in the x-direction,

and remaining bonds are split equally with 47% in the

y- and z-directions. The simulation (one realization)
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Fig. 4 The fractured and damaged elements in Barnett case example. The colour scale shows the time of fracture in seconds. The white

vertical line at the center is the injection well. (The axes have the unit meter)

123

Geomech. Geophys. Geo-energ. Geo-resour. (2019) 5:17–35 25



gave the distribution of broken bonds in the x-, y- and

z-directions of 6%, 50% 44%, respectively.

The event-locations and the event-sizes are plotted

in Fig. 5, where the colours show the time of the

events. There are events from the entire time span in

the near-well region. The event-locations show that

the hydraulic fracturing process is not expanding away

from the injection point as a well-defined front: The

events spread out from the injection point, but at the

same time there are events everywhere inside the

damaged area. The event-locations from the Barnett

shale presented by Shapiro and Dinske (2009), show

that there are also a few events that appear too far away

from the main cloud to be directly related to the fluid-

driven fracturing process. Such events, sometimes

called ‘‘dry’’ events, are not generated by the present

algorithm.

Figure 6 shows the magnitude-size distribution of

the events generated during the simulation for the cell

size Ds ¼ 10 m and for two finer cell sizes of

Ds ¼ 5 m and Ds ¼ 2:5 m, respectively. The x-axis

is the event magnitudeM, and the y-axis is log10 of the

number N of events larger than the magnitude M. The

slope of the curve is the b-value, and for large-scale

seismicity it is b � 1 (Baan et al. 2013). Figure 6

shows that there are two segments in the magnitude-

size distribution, with a cross-over between the parts.

The segment for small events has a b-value of b � 0:5,

and the other segment for larger events has a b-value of

b � 3:2. The slope of the frequency–magnitude dis-

tribution changes smoothly between these two end-

values for the b-value.

Microseismicity is frequently observed with a

b � 2 (Eaton et al. 2014; Eaton and Maghsoudi

2015; Eaton 2018), although Sil et al. (2012) reports

b-values in the range from 1 to 3 for the Barnett Shale,

where they also report a b-value above 3. The

observed b-values are often based on just one decade

along the magnitude axis, and the frequency–magni-

tude distribution may be curved (Urbancic et al. 2010;

Sil et al. 2012; Zorn et al. 2014; Verkhovtseva et al.

2015; Dohmen et al. 2017; Calvez et al. 2016). The

Fig. 5 The event-locations and the event-sizes. (The axes have the unit meter)
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Fig. 6 The event-size distribution

123

26 Geomech. Geophys. Geo-energ. Geo-resour. (2019) 5:17–35



variability could correspond to slopes in the cross-over

part of the frequency–magnitude distribution. Norris

et al. (2014) obtained a b-value b � 0:46 with their 2D

loop-less percolation model. They commented that an

extension of the model from 2D to 3D might give a

different b-value. Urban et al. (2016) observed a b-

value as low as 0.75 during the filling of the Song

Thranh dam in Vietnam.

The frequency–magnitude distribution in Fig. 5 can

be adjusted with an offsetM0 in order to match the real

scale of magnitudes,

Mreal ¼ M �M0: ð16Þ

Figure 6 shows that such an offset is resolution

dependent. The number of events is also resolution

dependent. A finer resolution gives more events than a

coarse resolution, and the cross-over interval gets

wider in the frequency–magnitude distribution.

It should be noted that the randomness in the model

makes it impossible to reproduce exactly the same

events as observed. The aim of the above example is to

demonstrate that the proposed modelling approach can

reproduce the main features of the Barnett case.

10 Event-magnitude distribution and permeability

of the damaged rock

The 2D model of hydraulic fracturing and

damage (Wangen 2017) has the property that the b-

value increases by decreasing permeability of the

damaged rock, when the total injected volume and

injection time are kept constant. The same behaviour

is observed with this 3D model in an anisotropic stress

field. This behaviour is demonstrated using nearly the

same case as in the previous paragraph, except that the

resolution is increased from a cell size of

10 m � 10 m � 10 m to 5 m � 5 m � 5 m. Three

versions of the case are studied with damage perme-

ability decreasing in steps from 1� 10�8 to

1� 10�10 m2 and 1� 10�12 m2. Figure 7 shows the

resulting injection pressures and the corresponding

frequency–magnitude distributions. The highest dam-

age permeability, 10� 10�8 m2, gives an injection

pressure that is nearly the same as the stationary

injection pressure. Any larger damage permeability

gives almost the same result, using the same injection

rate and injection time. An injection pressure close to

the stationary pressure implies that there are negligible

pressure gradients inside the damage zone (see Fig. 8).

Decreasing the damage permeability by two orders

of magnitude to 1� 10�10 m2 makes a difference. The

injection pressure is slightly higher, and the slope of

the frequency–magnitude distribution is steeper. A

further decrease in the damage permeability to

1� 10�12 m2 results in a considerably higher injec-

tion pressure, and the slope of the frequency–magni-

tude distribution is even steeper. This case provides a

lower limit for a constant damage permeability

because of the high injection pressure. The pressure

distribution inside the damage rock volume is charac-

terized by a pressure gradient from the injection cell

towards the rim of the damage zone.

Figure 9 shows the damaged rock volume for the

three different cases of permeability. The case of high

damage permeability, kD ¼ 1� 10�8 m2, gives a

time [h]
0.0 1.0 2.0 3.0 4.0 5.0 6.0

flu
id

 o
ve

rp
re

ss
ur

e 
[M

Pa
]

20.0

25.0

30.0

35.0

40.0

45.0

50.0

k=1e-8m2 k=1e-10m2 k=1e-12m2 average

M
0.0 0.5 1.0 1.5 2.0 2.5

lo
g1

0 
N

(>
M

)

0.0

1.0

2.0

3.0

4.0
k=1e-8m2 k=1e-10m2 k=1e-12m2

(b)(a)Fig. 7 a The injection

overpressure and the

b frequency–magnitude

distribution for three

different damage

permeabilities

123

Geomech. Geophys. Geo-energ. Geo-resour. (2019) 5:17–35 27



percolation type of damaged volume. The damaged

volume is fragmented and, therefore, not compact. The

colours in Fig. 9a give the time when the cell

fractured. The colours show that the damaging process

was not symmetric in time around the injection point.

The low permeability case (kD ¼ 1� 10�12 m2),

shown in Fig. 9c, gives a damaged volume that is

nearly compact. The colours show that the structure is

formed by a uniform expansion outward from the

injection well. The case of the intermediate perme-

ability kD ¼ 1� 10�10 m2, shown in Fig. 9b, is an

intermediate structure between the non-compact

structure (Fig. 9a) and the compact structure (Fig. 9c).

How the damage volume grows outwards from the

injection well is also seen in Fig. 10, which shows the

event-locations and the event-sizes for the three cases.

The case of high damage permeability,

kD ¼ 1� 10�8 m2, has fewer events than two cases

with a lower permeability. In addition, the event-sizes

are spanning a larger range of magnitudes. The low

damage permeability case, kD ¼ 1� 10�12 m2, has

the largest number of events of the three cases, and the

magnitude of the events are generally smaller. This

case of low damage permeability gives a substantial

pressure increase in the damaged rock volume, which

leads to the fracturing of all cells in the near-well

region. The result is the compact structure as can be

seen in Figs. 8 and 10. The large number of the

smaller events relative to the two other cases, created

by the increase in fluid pressure, explains the steeper

frequency–magnitude distribution in Fig. 7.

11 Comparison of loop-less fracture networks

The fracture network is made loop-less by the damage-

algorithm. A loop-less network is also the result of the

invasion percolation approach taken by Norris et al.

(2015a, b, 2016). If a new fractured cell becomes the

nearest neighbour of a previously fractured cell, it will

not be connected to the previously fractured cell,

which assures that the network remains loop-less. The

reason for not connecting these nearest neighbours is

the assumption that nearly all the fluid flow follows the

branches and that there will be little fluid flow across

the bridge that connects two branches. This assump-

tion has been tested by allowing fracture branches to

connect, and the end result is that very little is

changed. The number of connections increases, but

these extra connections barely change the well-pres-

sure, the number of damaged cells or the distribution

of damaged cells.

Fig. 8 The overpressure in the damaged rock in case of damaged rock permeability kD ¼ 1� 10�12 m2:(The axes have the unit meter)
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Fig. 9 The fractured elements for the three different cases of damaged rock permeability. (The axes have the unit meter)
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When the fracture network has no loops it becomes

a tree with the injection cell as the root. Figure 11

shows the network tree in the case where damage

permeability is k ¼ 1� 10�8 m2. One way to com-

pare the fracture networks of the 3 cases of damage

permeability is to compare the Strahler numbers and

Shreve numbers, of the respective trees. These two

numbers were introduced to measure the branching

complexity and stream size of river networks,

(Strahler 1952; Shreve 1966). Both the Strahler

number and Shreve number are resolution dependent

but we are comparing cases with the same resolution.

River networks normally have only two streams that

join, but the fracture network in Fig. 11 may have

2–5 streams that join.

The Strahler number is assigned to each segment in

the network, beginning at the perimeter, where all

segments have number 1. When two streams of the

same order meet, the resulting stream gets a number

that is one higher. If meeting streams have different

orders then the resulting stream gets the highest order

of the merging streams. See Fig. 12a for how the

Strahler numbers are assigned the fracture branches.

The Strahler number at the root of the tree measures

(a)

(b)

(c)

Fig. 10 The event-locations and the magnitude sizes for the three cases of the damaged rock permeability. (The axes have the unit

meter)
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the degree to which the network is dominated by one

main or a few main streams. If one stream dominates,

the Strahler number is low. The Strahler numbers of

the three cases of damage permeability are 8, 8 and 7,

respectively. These Strahler numbers indicate that the

three cases have similar branching characteristics in

terms of main channels in the network.

The Shreve stream number is a measure of the total

flow in the network, (Shreve 1966). The Shreve

number is also obtained by assigning 1 to the

segments at the perimeter. Whenever two streams

meet, the order of the resulting stream is the sum of the

orders of the merging streams; see Fig. 12b. There-

fore, the root of the tree gets the number of branches

starting from the perimeter. The Shreve numbers for

the three cases of damage permeability are 3897, 3869

and 3529, respectively, which are seen to decrease

slightly with decreasing permeability. The consider-

ably higher injection pressure in third and low

permeability case leads to more compressed fluid in

the damaged volume. The number of damaged cells

are therefore less, with a slightly lower Shreve

number.

12 Conclusion

A 3D numerical model is suggested for hydraulic

fracturing and damage of low permeable rocks in an

anisotropic stress field. The model builds on concepts

Fig. 11 The fracture network for the case k ¼ 1� 10�8 m2. The bond colour indicates the time when the bond was created

1

1

1

1

1
1

2
2

2
3

3

(b)(a)

1

1

1

1

1
1

2

2

3

5

6

Fig. 12 a The Strahler number and b the Shreve number

123

Geomech. Geophys. Geo-energ. Geo-resour. (2019) 5:17–35 31



from invasion percolation theory, which is a frame-

work for modelling cluster formation with burst

dynamics. The simulation grid is regular, and all

nearest neighbour cells are connected by transmissi-

bilities, also called bonds. The grid is aligned with the

anisotropic stress field, where the bonds are orthog-

onal to two principal stress directions. An intact bond

breaks when the fluid pressure exceeds the least

compressive stress and a random bond strength. The

anisotropy of the local stress field implies that the

fractions of the weakest bonds in the spatial directions

are uneven. Expressions for these fractions are

obtained as a function of the stress anisotropy and

the rock strength anisotropy when the bond strength is

uniformly distributed.

Breaking a bond implies that the fluid flow invades

the associated broken cell, and the fluid pressure

decreases. The damaging process continues during a

time step until the fluid pressure is sufficiently low for

no more bonds to be critical. The number of connected

broken cells during a time step is the event-size, and

the log10 of the event-size is the event-magnitude. The

new fluid pressure, after a bond breaks, is obtained by

solving a transient pressure equation. A strategy for a

fast solution of the pressure equation is demonstrated

when the numerical domain is restricted to the

damaged cells.

The model computes the intermittent damage

propagation, microseismic event-locations, microseis-

mic event-distributions, damaged rock volume and

injection pressure. The model is demonstrated on a

published case from the Barnett Shale, and it repro-

duces the observed main features, such as the spatial

and temporal distribution of the events, the magni-

tude–frequency distribution and the injection pressure.

The microseismic event-distribution and the b-value

depend on the permeability in the damaged rock

volume. The b-value increases with decreasing per-

meability from little less than 0.6 to a value above 3

when the injection rate and injection volume are kept

constant. An expression for the volume of damaged

rock is obtained in the case where the volume has high

permeability. The model produces a loop-less fracture

network. The branching properties of the network for

different permeabilities of the same case are compared

in terms of the Strahler number and the Shreve

number, and the networks have similar characteristics.
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Appendix 1: The pressure equation

Conservation of fluid mass is expressed as

oð/.f Þ
ot

þr � ð.f vÞ ¼ qðxÞ; ð17Þ

where / is the porosity, .f is the fluid density, v is the

Darcy flux and qðxÞ is the source term for fluid

injection. The source term is zero, except inside the

cell where injection takes place. The expression of

mass conservation (17) can be turned into a pressure

equation by introducing the effective compressibility

aD ¼ 1

/.f

dð/.f Þ
dpf

; ð18Þ

where pf is the fluid pressure and Darcy’s law is

v ¼ k

l

�
rpf � .f gnz

�
: ð19Þ

An alternative to the fluid pressure as an unknown is

the overpressure, which is the part of the fluid pressure

that exceeds the hydrostatic pressure,

p ¼ pf � ph and ph ¼
Z z

0

.f g dz; ð20Þ

where ph is the hydrostatic pressure. Assuming a

constant fluid density in the divergence-term gives the

pressure equation

/aD
op

ot
�r �

�
kðxÞlrp

�
¼ qðxÞ; ð21Þ
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where gravity disappears from the Darcy-term. The

permeability is dependent on whether the rock is intact

or damaged and therefore dependent on position x.

A finite volume formulation of the pressure equa-

tion is obtained by volume integration over the cell i

and by using the Gauss theorem to replace the volume

integral over the divergence-term in cell i by a surface

integral. The pressure equation for cell i is then

/iai
ðpnþ1

i � pni Þ
Dt

Vi�

X
j2\EmphasisType¼}Italic}[

Aij

kij

l

ðpnþ1
j � pnþ1

i Þ
lij

¼ Q0di0

ð22Þ

where the subscript i denotes a property of cell i, such

as the porosity /i, the compressibility ai and the cell

volume Vi. The subscript ij denotes the property of the

connection between nearest neighbour cells i and j,

such as the interface area Aij, the distance between cell

centers lij and the permeability between cells kij. The

injection cell is given cell number 0 in the source term

on the right-hand side of Eq. (22).

The average pressure inside the total damaged rock

volume VD can be obtained the by volume integration

of pressure Eq. (21) over VD, which gives

/DaD

Z

VD

op

ot
dV þ

Z

VD

v dV ¼ Q0VD: ð23Þ

The Gauss theorem gives that the volume integral over

the flow term is zero

Z

VD

v dV ¼
Z

oVD

n � v dS ¼ 0 ð24Þ

because there is now flow into the intact rock through

the boundary oVD of the damaged rock volume VD.

The average pressure inside the damaged rock volume

becomes

pav ¼
1

VD

Z
VD

p dV ¼ Q0t

/DaDVD
ð25Þ

when it is assumed that the damaged rock volume VD

is constant. The stationary pressure inside the dam-

aged rock volume becomes exactly the same as

average pressure pst ¼ pav because there are no

pressure gradients inside the damaged volume in the

stationary state. The stationary pressure pst is therefore

constant inside VD, which is also the average.

The condition for being close to a stationary state

can be given in terms of the time constant for the decay

of the pressure transients, which is

t0 ¼
1

kD
l/DaDl

2
max ð26Þ

where kD is the permeability, l is the fluid viscosity,

/D is the porosity, aD is the effective compressibility

and lmax is the maximum distance from the injection

point to a point on the perimeter. The subscript D

indicates that the property is of damaged rock. The

fluid pressure becomes nearly stationary for time steps

that are much smaller the time constant t0.
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