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Abstract
Any minimal Del Pezzo G-surface S of degree smaller than 3 is G-birationally rigid.
We classify those which are G-birationally superrigid, and for those which fail to be
so, we describe the equations of a set of generators for the infinite group BirG(S) of
G-birational automorphisms.
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1 Introduction

The group of birational automorphisms of P
2(C) is classically known as Cremona

group, denoted Cr2(C). The classification of its finite subgroups up to conjugacy rose
the interest of many classical authors and it has been completed in [5]. In this paper,
we refine the description of the conjugacy class of some special finite subgroups.
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G-birational superrigidity of Del Pezzo surfaces of degree 2 and 3 799

The key reduction step in the classification consists in associating to any finite
subgroup G of Cr2(C) a group of automorphisms of a rational surface, isomorphic to
G, see [5, Section 3.4]. Via a G-equivariant version of Mori theory, one can suppose
that the surface is minimal with respect to the G-action. Here, we concentrate our
attention to those finite subgroups of Cr2(C) which act minimally by automorphisms
on Del Pezzo surfaces S of degree 2 and 3. In particular, when the normaliser of G
is not generated by automorphisms of the Del Pezzo surface, i.e., the surface S is not
G-birationally superrigid, we describe explicitly the generators of the normaliser.

In order to formulate ourmain results, we recall the definition ofminimalG-surface.
Let (S, ρ) be a G-surface, i.e., a nonsingular surface S defined over C, endowed with
the action of a finite group of automorphisms ρ : G → Aut(S). Given two G-surfaces
(S, ρ) and (S′, ρ′), we say that a rational map ϕ : S ��� S′ is G-rational if for any
g ∈ G the following diagram commutes:

S

ρ(g)

ϕ
S′

ρ′(g′)

S
ϕ

S′

for some g′ ∈ G. Then, a minimal G-surface S is a G-surface with the property that
any G-birational morphism S → S′ is an isomorphism. Equivalently, it is the output
of a G-equivariant minimal model program, and as in the non-equivariant case, if S is
rational, it is either a Del Pezzo surface with PicG(S) � Z, i.e., −KS is ample, or a
conic bundle with PicG(S) � Z

2 (cf. [5, Theorem 3.8]).
The main properties investigated in this paper are described in the following defi-

nitions.

Definition 1.1 Let (S, ρ) be a minimal Del Pezzo G-surface. Then (S, ρ) is G-
birationally rigid if there is no G-birational map from S to any other minimal
G-surface. Equivalently, if S′ is any minimal G-surface and ϕ : S ��� S′ is any
G-birational map, then S is G-isomorphic to S′, not necessarily via ϕ. More precisely,
there exists a G-birational automorphism σ : S ��� S such that ϕ ◦σ is a G-biregular
map.

Definition 1.2 The minimal Del Pezzo G-surface (S, ρ) is G-birationally super-
rigid if it is G-birationally rigid and in addition, in the notation of Definition 1.1,
any G-birational map ϕ : S ��� S′ is biregular. In particular, the group of G-
biregular automorphisms coincides with the group of G-birational automorphisms,
i.e., AutG(S) = BirG(S).

A classical theorem by Segre [9] andManin [8] establishes that nonsingular cubic sur-
faces of Picard number 1 defined over a non-algebraically closed field are birationally
rigid. In analogy with this arithmetic case, Dolgachev and Iskoviskikh showed in
[5, Section 7.3] that minimal Del Pezzo G-surfaces of degree smaller than 3 are G-
birationally rigid. In this paper we determine which minimal Del Pezzo G-surfaces of
degree 2 and 3 areG-birationally superrigid.When theG-surface is notG-birationally
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superrigid, we describe the generators of the group of G-birational automorphisms
BirG(S), or equivalently the normaliser of the corresponding subgroup G in Cr2(C).
Here, we collect our main results, adopting the notation of [5]:

Theorem 1.3 Let G be a non-cyclic group and S be a minimal Del Pezzo G-surface of
degree 3. Then S is G-birationally superrigid, unless G is isomorphic to the symmetric
group S3 and S is not the Fermat cubic surface.

In this case, the groupBirG(S) is generated by twoor threeGeiser involutionswhose
base points lie on the unique G-fixed line and by a subgroup ofAut(S) isomorphic to:

(i) S3 if S is of type V, VIII;
(ii) S3×2 if S is of type VI;
(iii) S3×3 if S is of type III, IV.

The group BirG(S) of the very general non-G-birationally superrigid minimal Del
Pezzo G-surface of degree 3 with G � S3 is not finite.

For the proof, see Sect. 4.1.

Theorem 1.4 Let G be a cyclic group and S be a minimal Del Pezzo G-surface of
degree 3. Then S is G-birationally superrigid if and only if G is of order 6 of type
A5 + A1. More precisely, if S is not G-birationally superrigid, then G is isomorphic
to one of the following:

(i) a cyclic group of order 3 of type 3A2. The group BirG(S) is (infinitely) generated
by theGeiser involutionswhose base points lie on the unique G-fixed nonsingular
cubic curve and by a subgroup ofAut(S) isomorphic to 33� S3, if S is the Fermat
cubic surface, or by Aut(S) itself otherwise.

(ii) a cyclic group of order 6 of type E6(a2). The group BirG(S) is (infinitely) gener-
ated by threeGeiser involutions, the Bertini involutionswhose base points lie on a
G-invariant nonsingular cubic curve C and by a subgroup ofAut(S) isomorphic
to 33×2, if S is the Fermat cubic surface, or by Aut(S) itself otherwise.

(iii) a cyclic group of order 9 of type E6(a1). The group BirG(S) is finitely generated
by three Geiser involutions whose base loci are coplanar and by a subgroup of
Aut(S) isomorphic to the dihedral group D18.

(iv) a cyclic group of order 12 of type E6. The group BirG(S) is finitely generated
by G, by a Bertini involution and by a Geiser involution whose base loci are
aligned.

For the proof, see Sect. 4.2.

Theorem 1.5 Let G be a non-cyclic group and S be a minimal Del Pezzo G-surface
of degree 2. Then S is G-birationally superrigid.

For the proof, see Sect. 5.1.

Theorem 1.6 Let G be a cyclic group and S be a minimal Del Pezzo G-surface of
degree 2. Then S is G-birationally superrigid if and only if G is one of the following:

(i) a group of order 2 of type A7
1;

(ii) a group of order 6 of types E7(a4), A5 + A1, D6(a2) + A1;
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G-birational superrigidity of Del Pezzo surfaces of degree 2 and 3 801

(iii) a group of order 14 of type E7(a1);
(iv) a group of order 18 of type E7.

Moreover, if S is not G-birationally superrigid, then G is isomorphic to one of the
following:

(v) a cyclic group of order 4 of type 2A3 + A1. The group BirG(S) is generated
by infinitely many Bertini involutions whose base loci lie in the unique G-fixed
nonsingular curve of genus one and by a subgroup of Aut(S) isomorphic to
2×42�2, if S is of type II, or by Aut(S) itself otherwise.

(vi) a cyclic group of order 12 of type E7(a2). The group BirG(S) is generated by
two Bertini involutions and by a subgroup of Aut(S) isomorphic to 2×12.

For the proof, see Sect. 5.2.

Corollary 1.7 Let G be a cyclic group and S be a minimal Del Pezzo G-surface of
degree smaller than 3. Then, S is G-birationally superrigid if and only if the group
BirG(S) of G-birational automorphisms is finite.

Proof It is an immediate corollary of Theorems 1.4 and 1.6. In particular, see Lemmas
4.9, 4.11 and 5.3. The authors are not aware of a proof that does not rely on the above
classification. ��
In the paper we also provide explicit equations for the listed Del Pezzo surfaces S and
the generators of the group BirG(S), unless it coincides with AutG(S). The types of
the G-surfaces appearing in Theorems 1.3, 1.4 and 1.6 are described in full detail in
Lemma 4.5, Propositions 4.7 and 5.2. For convenience, we summarise the contents
of Theorems 1.3, 1.4 and 1.6 in Tables 1 and 2.

The structure of the paper is as follows: in Sect. 3 we rewrite in full detail the
proof of the G-equivariant version of the above-mentioned Segre–Manin theorem,
see Theorem 3.1. Note that the statement is essentially proved in [5, Corollary 7.11].
Building on this result, we classify the minimal Del Pezzo G-surfaces of degree 3 and
2 which are not G-birationally superrigid in Sects. 4 and 5 respectively.

2 Preliminaries

Let S be a nonsingular surface. A linear systemM on S ismobile if its fixed locus does
not contain anydivisorial component. Thepair (S, D+M) is the datumof anonsingular
surface S, aQ-divisor Dwhose coefficients are atmost 1 and amobile linear systemM,
or equivalently one of its general members. Let α : ˜S → S be a birational morphism.
For each prime divisor Ei of ˜S there exists a coefficient a(Ei , S, D + M), called
discrepancy, such that the following relation holds:

K
˜S + α−1∗ (D) + α−1∗ (M) ∼Q α∗(KS + D + M) +

∑

i

a(Ei , S, D + M)Ei .

In particular, observe that the multiplicity mult p(M) of M at a point p ∈ S equals
1 − a(E, S,M), where E is the exceptional divisor of the blow-up of S at p.
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Table 2 Minimal Del Pezzo G-surfaces of degree 2 which are not G-birationally superrigid

Type of G G Type of S Equation of S AutG (S) Bertini invol.

2A3 + A1 4 II t23 + t42 + t40 + t41 2×42�2 ∞
2A3 + A1 4 III t23 + t42 + t40 + 2

√
3i t20 t

2
1 + t41 2×4A4 ∞

2A3 + A1 4 V t23 + t42 + t40 + at20 t
2
1 + t41 2× AS16 ∞

a2 �= 0, −12, 4, 36

E7(a2) 12 III t23 + t40 + t41 + t0t
3
2 2×12 2

A pair (S, D+M) is canonical if a(E, S, D+M) � 0 for any exceptional divisor
E and for any f : ˜S → S birational morphism. A pair (S, D + M) is called log
Calabi–Yau if KS + D + M ∼Q 0.

Let G be a finite group of automorphisms acting effectively on a surface S. In the
introduction we have already recalled the definition of a G-rational map. This concept
must not be confused with that of a G-equivariant map, i.e., a birational map which
makes the following diagram commute:

S
ϕ

g

S′

g

S
ϕ

S′

for every g ∈ G.
The degree d of a Del Pezzo surface S is defined to be the self-intersection number

of the canonical class KS , in symbols d ..= K 2
S . We briefly recall some properties of

Del Pezzo surfaces of degree � 3, see for instance [6, Chapter III, Theorem 3.5].

• A Del Pezzo surface S of degree 1 is a nonsingular hypersurface of degree 6 in
the weighted projective space P(1, 1, 2, 3), embedded via the third pluricanonical
linear system |−3KS|. Via the linear system |−2KS|, S can be realised as a double
cover of the singular quadric P(1, 1, 2) branched along a nonsingular sextic curve.
In particular, since the double cover is canonical, its deck transformation τ is a
central element in the group of automorphisms Aut(S), see also [5, Section 6.7].

S
ϕ|−3KS |

2:1ϕ|−2KS |

P(1, 1, 2, 3)

P(1, 1, 2).

• ADel Pezzo surface S of degree 2 is a nonsingular hypersurface of degree 4 in the
weighted projective space P(1, 1, 1, 2), embedded via the second pluricanonical
linear system |−2KS|. Via the canonical map, S can be realised as a double cover
of P

2 branched along a nonsingular quartic curve. In particular, since the double
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804 L. das Dores, M. Mauri

cover is canonical, its deck transformation τ is a central element in the group of
automorphisms Aut(S), see also [5, Section 6.6].

S
ϕ|−2KS |

2:1ϕ|−KS |

P(1, 1, 1, 2)

P
2.

• ADel Pezzo surface S of degree 3 is a nonsingular hypersurface of degree 3 in the
projective space P

3, embedded via the anticanonical linear system |−KS|.

S
ϕ|−KS |

P
3.

3 G-equivariant Segre–Manin theorem

In this section we present the proof, essentially due to Dolgachev and Iskoviskikh, of
the following G-equivariant version of a classical arithmetic theorem by Segre [9] and
Manin [8] (cf. also [2, Section 1.5]).

Theorem 3.1 (G-equivariant Segre–Manin theorem [5, Section 7.3]) Every minimal
Del Pezzo G-surface S of degree d � 3 is G-birationally rigid.

The main ingredients of the proof are Noether–Fano inequalities, which in modern
language recast the failure of birational superrigidity in terms of the existence of a
non-canonical log Calabi–Yau pair.

Theorem 3.2 (Noether–Fano inequalities [3, Theorem 3.2.1 (ii), Theorem 3.2.6 (ii)])
Let G be a finite group, S and S′ be two minimal G-surfaces and ϕ : S ��� S′ be a G-
birational map. Suppose S is a minimal Del Pezzo surface and letM be a G-invariant
mobile linear system on S defined in the following way:

• if S′ is a Del Pezzo G-surface, thenM ..= ϕ−1∗ (|H |) is the strict transform via ϕ−1

of the linear system |H |, where H is a very ample multiple of −KS′ ;
• if ψ : S′ → C is a G-conic bundle and H is a very ample G-invariant divisor of
C, then M ..= ϕ−1∗ (|ψ∗(H)|) is the strict transform via ϕ−1 of the linear system
|ψ∗(H)|.

Then, there exists a positive rational number λ such that

KS + λM ∼Q 0

and the following statements hold:

(i) If S′ is a Del Pezzo surface and (S, λM) is canonical, then ϕ is biregular.
(ii) If S′ is a conic bundle, then (S, λM) is not canonical.
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G-birational superrigidity of Del Pezzo surfaces of degree 2 and 3 805

Proof of Theorem 3.1 Let ϕ : S ��� S′ be a G-birational non-biregular map to a mini-
mal G-surface S′. In order to prove that S is G-birationally rigid we need to exhibit a
G-birational map σ : S ��� S such that ϕ◦σ is a G-biregular map.

Step 1 (non-canonical log Calabi–Yau pair). By Theorem 3.2, the existence of ϕ is
equivalent to the existence of a mobile G-invariant linear system M on S such that

• (log Calabi–Yau) KS + λM ∼Q 0;
• (not canonical singularities) the pair (S, λM) is not canonical.

Since KS generates PicG(S) in degree � 3, we can suppose λ = 1
n for some n ∈ N.

Step 2 (orbit of length� 3). The proof of Lemma 3.4 implies that there exists aG-orbit
O contained in the non-canonical locus of the log Calabi–Yau pair

(

S, 1
nM

)

such that

m ..= mult p(M) > n for all points p ∈ O.

Lemma 3.5 grants that the length of O is strictly less than the degree d of S.

Step 3 (Geiser and Bertini involution). By hypothesis, the degree of S is at most 3 and
we are left with few possibilities:

Case 1. O consists of a single G-fixed point p and the degree of S is either 2 or 3.
Let π : ˜S → S be the blow-up of S at p with exceptional divisor E . Then, the surface
˜S is a Del Pezzo surface of degree 1 or 2 if S has degree 2 or 3 respectively (cf.
Lemma 3.7), and it is endowed with a G-action via pullback of the G-action on S.
These surfaces are endowed with a central G-invariant biregular involution τ , which
descends to a G-birational non-biregular involution σ1 on S, named Bertini or Geiser
involution respectively. The defined G-birational maps are collected in the following
diagram:

˜S

π

τ
˜S

π

S
σ1

S
ϕ

S′.

Let a, b, c, d be integers such that τ ∗(H) ∼ aH +bE and τ ∗(E) ∼ cH +dE , where
H ..= −π∗KS is the pullback of the ample generator of PicG(S). Then, we obtain

σ−1
1 (M) = π∗τ ∗π−1∗ M ∼Q π∗τ ∗(nH − mE) ∼Q −(an − cm)KS .

Note in particular that c > 0, because E is not τ -invariant and so τ ∗E is not contracted
by π : by the ampleness of −KS , we obtain

0 < (−KS .π∗τ ∗E) = (H .τ ∗E) = cH2.

Since τ preserves the canonical class K
˜S ∼ −H + E , we obtain also that a − c = 1,

so that

σ−1
1 (M) ∼Q −(an − cm)KS = −(n − c(m − n))KS < −nKS .
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806 L. das Dores, M. Mauri

Case 2. O consists of two points p1 and p2 and the degree of S is 3. Analogously,
the blow-up of S at p1 and p2 is a Del Pezzo surface of degree 1 endowed with a
G-equivariant involution which descends to a non-biregular Bertini involution on S,
denoted σ1.

In all the cases, the Noether–Fano inequalities (cf. Lemma 3.4) force σ−1
1 (M) ∼Q

−k1KS with k1 < n.

Step 4 (inductive step). By Theorem 3.2, either ϕ ◦σ1 is G-biregular or the pair
(

S, 1
k1

σ−1
1 (M)

)

is not canonical. In the latter case, we can repeat the above argu-
ments and construct a sequence of Bertini or Geiser G-involutions σ1, . . . , σs on S
such that ϕs

..= ϕ◦σ1◦ · · · ◦σs is non-biregular and again, by Theorem 3.2, themobile
pair

(

S, 1
ks

ϕ−1
s (M)

)

, with ks < ks−1, is not canonical. However, if s > n, then the

mobile linear system ϕ−1
s (M) would not be Q-linearly equivalent to an effective divi-

sor,which is a contradiction.Hence, there exists an integer s such thatϕs isG-biregular.
We conclude that S is G-birationally rigid. ��
Corollary 3.3 Let S be a minimal Del Pezzo G-surface of degree 3 (resp. 2). Then,
every G-birational map is a composition of a G-biregular map, Geiser and/or Bertini
involutions (resp. a G-biregular map and Bertini involutions).

We now prove the lemmas used in the proof of Theorem 3.1.

Lemma 3.4 Let S be a G-surface and (S,M) be a G-pair, i.e., M is a G-invariant
mobile linear system. If (S,M) is not canonical, then there exists a G-orbit O in S
such that

multO(M) > 1,

i.e., the multiplicity of each point of O on M is greater than 1.

Proof Let α : ˜S → S be a G-equivariant log resolution of the pair (S,M). This means
that α is a G-equivariant birational morphism such that the fixed locus of the pullback
linear system α∗(M) has simple normal crossing.We prove the statement by induction
on the number s ofG-equivariant blow-ups throughwhichα factors. Ifα is the blow-up
of S at a single G-orbit O with exceptional divisor E , then

K
˜S + α−1∗ M ∼Q α∗(KS + M) + (1 − multO(M))E .

Since the pair (S,M) is not canonical, by definitiona(E, S,M) ..= 1−multO(M) < 0.
Suppose now that α = αs−1◦α1, where αi are a composition of i G-equivariant blow-
ups:

α : ˜S
αs−1−−−→ S1

α1−→ S.

Let O ′ be the centre of the blow-up α1 with exceptional divisor E1. Then, either
multO ′(M) > 1, or a(E1, S,M) � 0. In the latter case, since the pair (S1, (α1)

−1∗ M−
a(E1, S,M)E1) is not canonical, a fortiori the pair (S1,M1

..= (α1)
−1∗ M) is not
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canonical, but by induction hypothesis there exists O1 ⊆ S1 such that multO1(M1) >

1. This implies that multO(M) > 1 for O ..= α1(O1). ��

Lemma 3.5 Let S be a minimal Del Pezzo G-surface of degree d. If ϕ : S ��� S′ is a
non-biregular G-birational map, then the G-orbit O defined in Lemma 3.4 has length
|O| strictly smaller than d.

Proof LetM be the linear systemdefined inTheorem3.2. ConsiderC1 andC2 two gen-
eralG-invariantQ-divisors ofM ∼Q −nKS . For anyG-orbitO defined inLemma3.4,
the following sequence of inequalities holds:

dn2 = C1 ·C2 �
∑

p∈O
mult p(C1)mult p(C2) > |O|n2,

which implies d > |O|. ��

Remark 3.6 Lemma 3.5 implies immediately that any Del Pezzo G-surface of degree
1 is G-birationally superrigid, see also [5, Corollary 7.11].

Lemma 3.7 Let S be a minimal Del Pezzo G-surface of degree d and M be a mobile
linear system on S such that KS + M ∼Q 0. Let π : S′ → S be a G-equivariant
blow-up of S at a G-orbit O defined in Lemma 3.4. Then, S′ is a Del Pezzo surface,
i.e. −KS′ is ample.

Proof By the Nakai–Moishezon criterion for amplitude [7, Theorem 1.2.23], it is
enough to check that

• (−KS′ .C) > 0 for any curve C ⊂ S′;
• K 2

S′ > 0.

Note that

KS′ + π−1∗ M = π∗(KS + M) + (1 − multO(M))E ∼Q (1 − multO(M))E .

In particular, we obtain that for any curve C ⊂ S different from E

(−KS′ .C) = (

(π−1∗ M + (multO(M) − 1)E).C
)

> 0,

sinceM is an ample linear system and because of Lemma 3.4. If C = E , then

(−KS′ .E) = ((−π∗KS − E).E) = −E2 > 0.

Finally, K 2
S′ = K 2

S − |O| > 0, by Lemma 3.5. ��
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808 L. das Dores, M. Mauri

4 G-birational superrigidity of cubic surfaces

Let G be a finite group of automorphisms acting effectively on a minimal Del Pezzo
surface of degree 3. It is well known that any Del Pezzo surface of degree 3 is a
nonsingular cubic surface embedded in P

3 = P(V ) via the canonical embedding and
every automorphism of S lifts to an automorphism of P

3. The 4-dimensional vector
space V is a G-representation, unique up to scaling by a character of G.

The content of this section is the proof of Theorem 1.4. Proposition 4.1 is one of
the main ingredients of the proof.

Proposition 4.1 A minimal Del Pezzo G-surface S of degree 3 is not G-birationally
superrigid if and only if it admits either G-equivariant Geiser or Bertini involutions.
This is equivalent to the existence on S of a G-fixed point, not lying on a line, or a
G-orbit of length 2, not lying on a line or a conic in S and such that no tangent space
of one point contains the other.

Proof This is a corollary of Theorem 3.1 and Corollary 3.3. The second statement
follows from Lemma 4.2. ��
Lemma 4.2 Let S be a nonsingular cubic surface.

(i) A point p in S is the base locus of a Geiser involution if and only if no line
contained in S passes through p.

(ii) The points {p1, p2} in S are the base locus of a Bertini involution if and only if

(a) there is no line in S passing through p1 or p2;
(b) there is no conic contained in S passing through p1 and p2;
(c) pi is not contained in the tangent space of S at pj , i �= j .

Proof Let f : ˜S → S be the blow-up of S at p or at the pair {p1, p2} respectively. By
construction of Geiser and Bertini involution, we just need to check that ˜S is a Del
Pezzo surface. Recall that a Del Pezzo surface is the blow-up of P

2 at most at eight
points in general position, namely if

• no three of them lie on a line;
• no six of them lie on a conic;
• no eight of them lie on a nodal or cuspidal cubic with one of them at the singular
point.

See for instance [1, Exercise V.21.(1)]. Let g : S → P
2 be a blow-up of P

2 at six
points q1, . . . , q6 in general position. The point p in S is the base locus of a Geiser
involution if and only if:

• p does not lie in the exceptional locus of g;
• the strict transform˜l of the line l passing through qi and qj does not contain p;
• the strict transform c̃ of a conic c passing through five of the points qi does not
contain p.

Equivalently, we require that no (−1)-curve contains p. Indeed, the g-exceptional
lines and the curves˜l and c̃ are all the 27 (−1)-curves in S.
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In order to construct a Bertini involution, we need to check in addition that the strict
transform s̃ of a singular cubic curve s containing all the points qi does not contain
both p1 and p2. Suppose on the contrary that such a curve s̃ exists. We distinguish
two cases: either qi is a singular point of s or one of the pi , say p1, is a singular point
of s̃. In the former case, s̃ is a conic. Indeed, it is a nonsingular rational curve with

(OP3(1). s̃) =
(

−KS .

(

g∗OP2(3) − 2Ei −
5

∑

j=1

Ej

))

= 2.

Vice versa, if the points {p1, p2} lie on a nonsingular conic c in S, then

(K
˜S .c̃) = (

( f ∗KS + F1 + F2).c̃
) = (KS .c) + ((F1 + F2).c) = 0,

where c̃ is the strict transform of c via f , and F1 and F2 are the f -exceptional divisors.
Thus,˜S is not a Del Pezzo surface. In the latter case, s̃ is an anticanonical divisor, hence
a hyperplane section singular at pi . In particular, the tangent plane at p1 contains both
the points p1 and p2. ��
In the following Lemma 4.3, we show that orbits of length 2 lie on invariant lines
passing through a fixed point for the action of G on S.

Lemma 4.3 Let S be a minimal cubic G-surface admitting an orbit of length 2, then
G fixes a point in S.

Proof Denote by q1 and q2 the points in the orbit of length 2 and by lq1q2 the line
passing through those points in P

3. Note that the line lq1q2 is G-invariant and it is not
contained in S. Differently, it could be contracted, violating the minimality of G.

Moreover, the line lq1q2 intersects S with multiplicity 1 at q1 and q2. Otherwise, if
the multiplicity at one of the two points is � 2, then so it is at the other point due to
the group action. However, this is a contradiction, since lq1q2 would intersect S with
multiplicity at least 4, while S has degree 3. This implies that the invariant line lq1q2
intersects S in a third point, thus fixed by the action of G. ��
Our strategy to show that a nonsingular cubic surface is G-birationally superrigid is
the following:

• find G-fixed points and orbits of length 2 aligned with them, see Lemma 4.3;
• if the conditions of Lemma 4.2 do not hold for these G-orbits, then S is G-
birationally superrigid.

In view of the latter, recall that a point of intersection of three lines on a cubic surface
is called Eckardt point. It is just the case to mention that a point p is an Eckardt point
if and only if the intersection of its tangent space to S and S itself is the union of three
lines passing through p.

Remark 4.4 Notice that if {p1, p2} is aG-orbit then condition (c) in Lemma 4.2 always
holds, since otherwise the line between p1 and p2 is bitangent to S.
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4.1 G-birational superrigidity for non-cyclic groups

Suppose now that G is non-cyclic. Minimal non-cyclic finite groups acting effectively
by automorphisms on cubic surfaces and fixing a point have been classified by Dol-
gachev and Duncan [4]. Any cubic surface endowed with an action of such a group is
projectively equivalent to a surface Sab defined by

Fab = t30 + t31 + t32 + t33 + t0t1(at2 + bt3), (1)

where a and b are parameters, and the fixed point is p0 = (0 :0 :1 :−1), see [4,
Theorem 8.1]. In particular, G is a subgroup of the stabiliser of the point p0. Since
Fab specialises to the Fermat cubic equation F00, G is a subgroup of the stabiliser of
the point p0 in Aut(S00), see the proof of [4, Theorem 8.1]. The automorphism group
of the Fermat cubic surface is 33� S4, where S4 is the group of permutations of the
variables and 33 is the 3-torsion group of PGL(4, C) generated for instance by the
following automorphisms:

σ(t0 : t1 : t2 : t3) = (ε3t0 : t1 : t2 : t3),
ρ(t0 : t1 : t2 : t3) = (t0 :ε3t1 : t2 : t3),
θ(t0 : t1 : t2 : t3) = (t0 : t1 :ε3t2 : t3),

where ε3 is a primitive third root of unity. The stabiliser of the point p0 is 32�K4 �
6× S3, where K4 is the non-normal Klein subgroup of S4 generated by (12) and (34)
and 32 is generated by σ and ρ.

In particular, the skew lines l1 = {t0 = t1 = 0} and l2 = {t2 = t3 = 0} are
G-invariant, since they are invariant under the action of 32�K4. The intersection
l1 ∩ Sab consists of three points p0, p1 ..= (0 :0 :1 :−ε3) and p2 ..= (0 :0 :1 :−ε23). In
particular,

Tpi Sab ∩ Sab = {

εi3t2 + t3 = t30 + t31 + (a − εi3b) t0t1t2 = 0
}

.

As the values of the parameters (a, b) vary, we have the following cases.

Type a = b = 0. The surface S00 is the Fermat cubic surface. The points pi are
Eckardt points. No orbit can be the base locus of a Geiser or a Bertini involution. By
Theorem 3.1, we conclude that S00 is G-birationally superrigid.

Type a3 = b3 �= 0. Up to a linear change of coordinates, we can suppose that
a = b �= 0. The group G is isomorphic to 2× S3 or S3, where S3 is generated by σρ2

and (12), and 2 is generated by (34), see [4, Theorem 8.1, Case 3.2.]. Hence, the only
fixed point is the Eckardt point p0 and the only invariant line through p0 is l1. Note
that the surface Sab is of type VI in the sense of [5, Table 4] and the automorphism
group of Aut(Sab) is isomorphic to 2× S3. We consider the cases G � 2× S3 and
G � S3 separately.

• G � 2× S3. The conic C = {t0 + t1 = t22 − t2t3 + t23 + at0t1 = 0} passes through
the length-two orbit {p1, p2}. By Lemma 4.2 and Theorem 3.1, we conclude that
Sab is G-birationally superrigid.
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• G � S3. The fixed points p1 and p2 are not Eckardt points. Therefore, Sab is not
G-birationally superrigid and the group BirG(Sab) is generated by Aut(Sab) and
the two Geiser involutions with base locus p1 and p2 respectively. The equations
of these Geiser involutions and the infinitude of the group BirG(Sab) for the very
general surface Sab are discussed in the following paragraphs.

Type a3 �= b3. The group G is isomorphic to S3, see [4, Theorem 8.1, Case 3.1].
The only fixed points are p0, p1, p2. None of them is an Eckardt point and the only
invariant line through pi is l1. Therefore, Sab is not G-birationally superrigid and the
group BirG(Sab) is generated by G-biregular automorphisms of Sab and three Geiser
involutions with base loci contained in l1 ∩ Sab.

The Geiser involutions are given by the equations

ϕp0(t0 : t1 : t2 : t3) =
(

t0 : t1 : t3 − (a − b) t0t1
3(t2 + t3)

: t2 + (a − b) t0t1
3(t2 + t3)

)

,

ϕp1(t0 : t1 : t2 : t3) =
(

t0 : t1 :ε23 t3 − (a − ε3b) t0t1
3(t2 + ε23 t3)

:ε3t2 + (ε3a − ε23b) t0t1
3(t2 + ε23 t3)

)

,

ϕp2(t0 : t1 : t2 : t3) =
(

t0 : t1 :ε3t3 − (a − ε23b) t0t1
3(t2 + ε3t3)

:ε23 t2 + (ε23a − ε3b) t0t1
3(t2 + ε3t3)

)

.

We complete the list of generators, computing the normaliser NAut(Sab)(G) of G in
Aut(Sab). We adopt the surface type convention of [5].

Lemma 4.5 The normaliser of G inAut(Sab), denoted NAut(Sab)(G), is isomorphic to
S3×3, if Sab is of type III or IV, or to S3, if Sab is of type V or VIII.

Proof Due to [5, Theorem 6.14], the group Aut(Sab) is one of the following.

Type III. Aut(Sab) � H3(3)�4, where H3(3) is the Heisenberg group of unipotent
3×3-matrices over the finite field F3, see Sect. 4.2, Type E6, for explicit
generators. The generator of 4 conjugates the non-conjugate subgroups of
type S3 in H3(3)�2, see [5, Theorem 6.14, Type III]. We conclude that
NH3(3)�4(S3) = NH3(3)�2(S3).

Type IV. Aut(Sab) � H3(3)�2. It contains two non-conjugate subgroups isomor-
phic to S3, normalized by the subgroups isomorphic to S3×3 obtained
from the previous ones by adding the central element, see [5, Theorem
6.14, Type III].

Type V. Aut(Sab) � S4. Any subgroup isomorphic to S3 is a non-normal maximal
subgroup of S4.

Type VIII. Aut(Sab) � S3. ��
Let G be again the group of biregular automorphisms acting minimally on Sab with a
fixed point p0 and isomorphic to S3. The following lemma establishes the infinitude
of the group of G-birational automorphisms BirG(Sab) for the very general surface
Sab.

Let S ⊂ P
3
(t0:t1:t2:t3)×C

2
(a,b) be the hypersurface given by the equation {Fab = 0},

see equation (1), andS′ be the divisor {a = b} inS (equivalently {a = εi3b}). Denote by
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f : S → C
2
(a,b) the family of cubic surfaces Sab and by f ′ : S′ → C(a) that of surfaces

Sab with the property that a = b (equivalently a = εi3b). The Geiser involutions ϕpi on
Sab glue together to birational involutions of S and S′ respectively, as their equations
are polynomial in (a, b).

Lemma 4.6 The group BirG(Sab) is not a finite group for the very general surface Sab
in S and in S′.

Proof Let� be the diagonal in S× f S and (ϕp2◦ϕp1 )n be the graph of the composition
(ϕp2 ◦ϕp1)

n in S× f S. There is an induced projection morphism

pr : (ϕp2◦ϕp1 )n ∩ � ⊆ � → C
2
(a,b).

Define the (closed) algebraic subset

Cn = {

(a, b) ∈ C
2
(a,b) | (ϕp2 ◦ϕp1)

n = id|S(a,b)

}

= {

(a, b) ∈ C
2
(a,b) | dim pr−1(a, b) = 2

}

.

Note that the locus of surfaces Sab with infinite BirG(Sab) contains C
2
(a,b)\

⋃

n Cn .

Therefore, if there exists (a0, b0) ∈ C
2
(a,b) such that Bir

G(Sa0b0) is not finite, then Cn

is a proper closed subset of C
2
(a,b) and the lemma holds.

We claim that BirG(S11) is not finite, i.e., we can choose (a0, b0) equal to (1, 1).
To this aim, recall the following facts:

• for any p ∈ Sab the point ϕpi (p) is aligned with pi and p;
• the involutions ϕp1 and ϕp2 fix the pencil of cubic curves

C(λ:μ) = {

λt0 − μt1 = t30 + t31 + t32 + t33 + t0t1(t2 + t3) = 0
}

.

Fix (λ :μ) ∈ P
1
(λ:μ) such that C(λ:μ) is nonsingular. Observe that the point p0 is an

inflection point of C(λ:μ). Due to the previous facts, the following relations for the
elliptic curve (C(λ:μ), p0) hold:

p1 + p2 = 0;
p1 + p + ϕp1(p) = 0;

p2 + ϕp1(p) + ϕp2 ◦ϕp1(p) = 0.

In particular,

ϕp2 ◦ϕp1(p) = p + 2p1.

One can check (use MAGMA) that for a suitable choice of (λ :μ) (e.g. (1 :1)), the
point p1 is not a torsion point. This implies that ϕp2 ◦ϕp1 has infinite order in S11.

The same proof holds for S′ since S11 ⊂ S′. ��
Open Question Is the group BirG(Sab) not finite for any (a, b) �= (0, 0)?
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4.2 G-birational superrigidity for cyclic groups

In this section, we discuss the birational superrigidity of minimal cubic surfaces
endowed with the action of a finite cyclic group G. Dolgachev and Iskovskikh classi-
fied these groups in [5]. For the convenience of the reader, we recall their result.

Here and in the following we denote by εn a primitive n-th root of unity.

Proposition 4.7 ([5, Corollary 6.11]) Let S = V (F) be a nonsingular cubic surface,
endowed with a minimal action of a cyclic group G of automorphisms, generated by
g. Then, one can choose coordinates in such a way that g and F are given in the
following list:

(i) 3A2, order 3, g(t0 : t1 : t2 : t3) = (t0 : t1 : t2 :ε3t3),

F = t30 + t31 + t32 + t33 + αt0t1t2;

(ii) E6(a2), order 6, g(t0 : t1 : t2 : t3) = (t0 : t1 :− t2 :ε3t3),

F = t30 + t31 + t33 + t22 (αt0 + t1);

(iii) A5 + A1, order 6, g(t0 : t1 : t2 : t3) = (t0 :ε23 t1 :ε3t2 :ε6t3),

F = t23 t1 + t30 + t31 + t32 + λt0t1t2;

(iv) E6(a1), order 9, g(t0 : t1 : t2 : t3) = (t0 :ε49 t1 :ε9t2 :ε79 t3),

F = t23 t1 + t21 t2 + t22 t3 + t30 ;

(v) E6, order 12, g(t0 : t1 : t2 : t3) = (t0 :ε3t1 :ε12t2 :ε56 t3),

F = t23 t1 + t22 t3 + t30 + t31 .

We proceed with an analysis case by case.

Type 3A2. G fixes the nonsingular cubic curve

C = {

t3 = t30 + t31 + t32 + αt0t1t2 = 0
}

.

S is not G-birationally superrigid and the group BirG(S) is generated by biregular G-
automorphisms of S and infinitely many Geiser involutions whose base locus points
lie on the nonsingular cubic curve given by t3 = 0.

The normaliser NAut(S)(G) of G in Aut(S) is the group AutG(S) of biregular G-
automorphisms. If C is equianharmonic, i.e., it has an automorphism of order 6, then
S is the Fermat cubic surface and Aut(S) � 33� S4 (cf. Sect. 4.1): the normaliser
NAut(S)(G) is isomorphic to 33� S3. Otherwise, g is a central element of Aut(S),
which is isomorphic to H3(3)�4 or H3(3)�2, where H3(3) is the Heisenberg group
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of unipotent 3×3-matrices over the finite field F3 (cubic surfaces of type III or IV;
see [5, Table 4]). Then, the group AutG(S) coincides with Aut(S).

Type E6(a2). The line l2 = {t2 = 0, t3 = 0} ⊆ P
3 is fixed. The intersection

l2 ∩ S = {

(1 :−1 :0 :0), (1 :−ε3 :0 :0), (1 :−ε23 :0 :0)}

consists of three fixed points. The intersections of their tangent spaces with the cubic
surface are respectively

{

t0 + t1 = t33 + (α − 1) t22 t0 = 0
}

,
{

ε3t0 + t1 = t33 + (α − ε23) t
2
2 t0 = 0

}

,
{

ε23 t0 + t1 = t33 + (α − ε3) t
2
2 t0 = 0

}

,

which are three cuspidal cubic curves (we can suppose without loss of generality that
α3 �= 1, otherwise S would be singular). There is only one further isolated fixed point
on S, namely (0 :0 :1:0), which is an Eckardt point and whose tangent space is given
by the equation αt0 + t1 = 0.

An invariant line, which is not l1 = {t0 = t1 = 0}, belongs either to the pencil
P(0 :0 :0 :1) of lines through (0 :0 :0 :1) intersecting the line l2 or to the pencil P(0:0:1:0)
of lines through (0 :0 :1 :0) intersecting the line l2. These pencils span respectively the
planes t2 = 0 and t3 = 0. Orbits of length 2 lie on invariant lines, neither on l1 (since
it is tangent to the Eckardt point (0 :0 :1 :0), thus l1 ∩ S = {p}), nor on a line through
P(0:0:0:1) (since the group G modulo the stabiliser of the plane t2 = 0 acts on it as a
cyclic group of order 3). On the other hand, the nonsingular cubic curve

C = {

t3 = t30 + t31 + t22 (αt0 + t1) = 0
}

is covered by orbits of length 2, since the group G modulo the stabiliser of the plane
t3 = 0 acts on it as a cyclic group of order 2.

We conclude that S is not G-birationally superrigid and that the group BirG(S) is
generated by G-biregular automorphisms of S, three Geiser involutions with base loci
contained in l2 ∩ S, and infinitely many Bertini involutions, whose base locus points
lie on the nonsingular cubic curve given by t3 = 0. We complete the list of generators,
computing the normaliser NAut(S)(G) of G in Aut(S).

Lemma 4.8

NAut(S)(G) =
{

32×2 if S is the Fermat cubic surface;

Aut(S) otherwise.

Proof Note that S is a cyclic cover of degree 3 of P
2 branched along a nonsingular

cubic curve C , and G is generated by g1g2, where g1 is the deck transformation of the
cover and g2 is the lift of the involution on C .

If S is the Fermat cubic surface, then G is generated by the element (σρθ, (12)) ∈
33� S4 in the notation of Sect. 4.1 (surface of type I with K = G ∩ 33 of dimension
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1 and type II 3A2; see [5, Section 6.5.]). Given (σ a0ρa1θa2, τ ) ∈ NAut(S)(G) ⊆
Aut(S) = 33� S4, we observe that τ ∈ NS4((12)) � K4. Denoting the conjugation
of g via h ∈ 33� S4 by ch(g), we write

c(σ a0ρa1θa2,(12))(g)(t0 : t1 : t2 : t3) = (

ε
a0−a1
3 t1 :εa1−a0

3 t0 : t2 :ε23 t3
)

,

c(σ a0ρa1θa2 ,(34))(g)(t0 : t1 : t2 : t3) = (

ε
a1−a0
3 t1 :εa0−a1

3 t0 :ε23 t2 : t3
)

.

Hence, NAut(S)(G) is generated by the permutation (12) and the subspace of 33(a0,a1,a2)
satisfying the equation a0 ≡ a1 (mod 3). In particular, NAut(S)(G) � 32×2.

If S is not the Fermat cubic surface, then S is a surface of type III or IV [5, Table 4]
and Aut(S) is a central extension of Aut(C) via g1. Therefore, NAut(S)(G) is a central
extension of NAut(C)(g2) via g1, but since g2 is central in Aut(C), we conclude that
NAut(S)(G) = Aut(S), or equivalently that G�Aut(S). ��
Types A5 + A1, E6(a1) and E6. In the last few cases, i.e., A5 + A1, E6(a1) and E6,
the group G acts on P

3 by means of four distinct characters. In particular, the points
p0 ..= (1 :0 :0 :0), p1 ..= (0 :1 :0 :0), p2 ..= (0 :0 :1 :0) and p3 ..= (0 :0 :0 :1) are the
only fixed points in P

3. The only invariant lines are those interpolating pairs of points
(pi , pj ), where i �= j , shortly written l pi pj . Note that eventual orbits of length 2 lie
on l pi pj ∩ S.

Type A5 + A1. The only fixed point in S is the Eckardt point p3. In the following
table, we list all the invariant lines and the orbits that they cut on S.

Invariant lines l pi pj l pi pj ∩ S Orbits in l pi pj ∩ S

lp0 p1 = {t2 = t3 = 0} t30 + t31 = 0 orbit of length 3

l p0 p2 = {t1 = t3 = 0} t30 + t32 = 0 orbit of length 3

l p0 p3 = {t1 = t2 = 0} t30 = 0 fixed Eckardt point p3

l p1 p2 = {t0 = t3 = 0} t31 + t32 = 0 orbit of length 3

l p1 p3 = {t0 = t2 = 0} t23 t1 + t31 = 0 fixed Eckardt point p3 and
orbit of length 2 given by:
q1 ..= (0 : i :0 :1),
q2 ..= (0 :− i :0 :1).

l p2 p3 = {t1 = t0 = 0} t32 = 0 fixed Eckardt point p3

Note that the conic

C = {

t0 + t2 = t23 + t21 − λt22 = 0
} ⊆ S

contains the only orbit of length 2 and the only fixed point in S is contained in a line.
We conclude that S is G-birationally superrigid.
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Type E6(a1). All the fixed points in S are the points p1, p2 and p3. They are not
Eckardt points: by cyclic permutation of the variable (t1, t2, t3) it is enough to check
that Tp1 S ∩ S is an irreducible cubic curve. Indeed,

Tp1 S ∩ S = {

t2 = t23 t1 + t30 = 0
}

.

The invariant lines l p1 p2 , l p2 p3 and l p1 p3 intersect S in two fixed points, one of them
necessarily with multiplicity 2. The invariant lines l p0 pi , with i = 1, 2, 3, are principal
tangent lines at the singular point of the cuspidal cubic curves Tpi S ∩ S. We conclude
that S is not G-birationally superrigid and the group BirG(S) is finitely generated by
G-biregular automorphisms of S and three Geiser involutions with base loci p1, p2
and p3 respectively. More explicitly, the Geiser involutions are given by

ϕp1(t0 : t1 : t2 : t3) =
(

t0 :− t1 − t23
t2

: t2 : t3
)

,

ϕp2(t0 : t1 : t2 : t3) =
(

t0 : t1 :− t2 − t21
t3

: t3
)

,

ϕp3(t0 : t1 : t2 : t3) =
(

t0 : t1 : t2 :− t3 − t22
t1

)

.

Although finitely generated, BirG(S) is not a finite group, as we show in the following
lemma.

Lemma 4.9 The group BirG(S) is not a finite group.

Proof It is enough to prove that the composition ϕp2 ◦ϕp1 has infinite order. To this
aim, recall the following facts:

• for any p ∈ S the point ϕpi (p) is aligned with pi and p;
• the involutions ϕp1 and ϕp2 fix the pencil of cubic curves

C(λ:μ) = {

λt0 − μt3 = t23 t1 + t21 t2 + t22 t3 + t33 = 0
}

.

Fix (λ :μ) ∈ P
1
(λ:μ) such that C(λ:μ) is nonsingular and choose O an inflection point

on C(λ:μ). Due to the previous facts, the following relations for the elliptic curve
(C(λ:μ), O) hold:

2p2 + p1 = 0;
p1 + p + ϕp1(p) = 0;

p2 + ϕp1(p) + ϕp2 ◦ϕp1(p) = 0.

In particular,

ϕp2 ◦ϕp1(p) = p − 3p2.
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One can check (use MAGMA) that for a suitable choice of (λ :μ) (e.g. (1 :1)), the
point p2 is not a torsion point. This implies that ϕp2 ◦ϕp1 has infinite order. ��
We complete the list of generators of the group BirG(S), describing the group of G-
biregular automorphisms of S. Note first that via the following change of coordinates

(s0 :s1 :s2 :s3)
= ( 3

√
9 t0 : t1 + t2 + t3 : ε9(t1 + ε69 t2 + ε39 t3) : ε29(t1 + ε39 t2 + ε69 t3)

)

,

we can suppose that S is given by the equation

s30 + s31 + s32 + s33 = 0

and a generator g of G acts via

g(s0 :s1 :s2 :s3) = (s0 :ε3s2 :s3 :s1).
Lemma 4.10 The normaliser of G in Aut(S), denoted NAut(S)(G), is isomorphic to
the dihedral group D18.

Proof Recall that the automorphism group of a Fermat cubic is the group 33� S4.
Let G ′ be the image of G in S4, generated by the permutation (234), and K ..=
G ∩33, generated by h(s0 :s1 :s2 :s3) = (s0 :ε3s1 :ε3s2 :ε3s3). The image of NAut(S)(G)

is contained in NS4((234)), which is generated by (234) and (23) and isomorphic to
S3. Therefore, NAut(S)(G) is a subgroup of 33� S3 and admits a subgroup isomorphic
to S3.

The kernel of the projection NAut(S)(G) → S3 is 33 ∩ NAut(S)(G) = K . Indeed,
the conjugation of g via an element σ a0ρa1θa2 ∈ 33 is

cσ a0ρa1θa2 (g)(s0 : s1 :s2 : s3) = (

s0 : εa2−a1+1
3 s2 : ε−a2

3 s3 : εa13 s1
)

,

i.e., 33 ∩ NAut(S)(G) = {σ a0ρa1θa2 ∈ 33 | a1 = a2 = 0} = K . Since G is a subgroup
of index 2 of 3� S3, we conclude that NAut(S)(G) = 3� S3 � D18. ��
Type E6. In the following tables, we list fixed points and invariant lines and the orbits
that they cut on S.

Fixed points Tpi S Tpi S ∩ S Eckardt point

p2 t3 = 0 t30 + t31 = 0 yes

p3 t1 = 0 t22 t3 + t30 = 0 no
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Invariant lines lpi pj l pi pj ∩ S orbits in l pi pj ∩ S

lp0 p1 = {t2 = t3 = 0} t30 + t31 = 0 orbit of length 3

lp0 p2 = {t1 = t3 = 0} t30 = 0 fixed Eckardt point p2

lp0 p3 = {t1 = t2 = 0} t30 = 0 fixed point p3

lp1 p2 = {t0 = t3 = 0} t31 = 0 fixed Eckardt point p2

lp1 p3 = {t0 = t2 = 0} t23 t1 + t31 = 0 fixed point p3 and orbit of
length 2 given by:
q1 ..= (0 : i :0 :1),
q2 ..= (0 :− i :0 :1).

l p2 p3 = {t1 = t0 = 0} t22 t3 = 0 fixed Eckardt point p2 and fixed point p3

Observe that the hypothesis of Lemma 4.2 (ii) holds for the orbit {q1, q2}. Indeed, the
set {q1, q2} is the only orbit of length 2 and qi are not Eckardt points, since

Tqi S ∩ S = {

t1 ± i t3 = t22 t3 + t30 = 0
}

are cuspidal cubic curves. Moreover, the pencil of planes containing {q1, q2} does
not cut any conic on S and qi is not contained in the tangent space of qj , for i �= j ,
by Remark 4.4. We conclude that S is not G-birationally superrigid and the group
BirG(S) is generated by G-biregular automorphisms of S, a Bertini involution and a
Geiser involution whose base loci are aligned: {q1, q2} and p3 respectively.

The Bertini involution with base points q1 and q2 is the deck transformation of the
double cover

ψ : S → P
3,

(t0 : t1 : t2 : t3) �→ (

t21 + t23 : t20 : t0t2 : t22
)

,

and it is given explicitly by

ϕq1q2(t0 : t1 : t2 : t3) = (t0 : t ′1 : t2 : t ′3),

where

t ′1 ..= − t1 − 2(t21 + t23 ) t30
t42 + (t21 + t23 )2

and t ′3 ..= − t3 − 2t22 t
3
0

t42 + (t21 + t23 )2
.

The Geiser involution with base point p3 can be written as

ϕp3(t0 : t1 : t2 : t3) =
(

t0 : t1 : t2 :− t3 − t22
t1

)

.
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Lemma 4.11 The group BirG(S) is not a finite group.

Proof The proof is analogous to the one of Lemma 4.9. It is enough to prove that the
composition ϕp3 ◦ϕq1q2 has infinite order. Note that:

• for any p ∈ S the point ϕp3(p) is aligned with p3 and p;
• for any p �= p3, the points ϕq1q2(p) and p belong to a conic contained in the plane

�q1q2 p, spanned by q1, q2 and p, and tangent to S ∩ �q1q2 p at q1 and q2;
• the involutions ϕp3 and ϕq1q2 fix the pencil of cubic curves

C(λ:μ) = {

λt0 − μt2 = t23 t1 + t22 t3 + t31 + t32 = 0
}

.

Fix (λ :μ) ∈ P
1
(λ:μ) such that C(λ:μ) is nonsingular and choose O an inflection point

on C(λ:μ). Due to the previous facts, the following relations for the elliptic curve
(C(λ:μ), O) hold:

q1 + q2 + p3 = 0;
2q1 + 2q2 + p + ϕq1q2(p) = 0;

p3 + ϕq1q2(p) + ϕp3 ◦ϕq1q2(p) = 0.

In particular,

ϕp3 ◦ϕq1q2(p) = p − 3p3.

One can check (use MAGMA) that for a suitable choice of (λ :μ) (e.g. (1 :1)), the
point p3 is not a torsion point. This implies that ϕp3 ◦ϕq1q2 has infinite order. ��
We complete the list of generators of the group BirG(S), observing that the only G-
biregular automorphisms of S are the elements of G itself. Note that up to a change of
coordinates [5, 6.5, Case 3, Type III], we can suppose that S is given by the equation

s30 + s31 + s32 + s33 + 3(
√
3 − 1)s1s2s3 = 0

and a generator g of G acts via

g(s0 :s1 :s2 :s3)
= (

√
3 ε3s0 : s1 + s2 + s3 : s1 + ε3s2 + ε23s3 : s1 + ε23s2 + ε3s3

)

.

The automorphism group of S is H3(3)�4, where H3(3) is the Heisenberg group of
unipotent 3×3-matrices over the finite field F3, generated by

g̃1(s0 :s1 :s2 :s3) = (s0 :s1 :ε3s2 :ε23s3),
g̃2(s0 :s1 :s2 :s3) = (s0 :s2 :s3 :s1)
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and 4 is the cyclic group generated by

g̃4(s0 :s1 :s2 :s3)
= (

√
3 s0 : s1 + s2 + s3 : s1 + ε3s2 + ε23s3 : s1 + ε23s2 + ε3s3

)

,

see [5, Theorem 6.14, Type III]. The group G is isomorphic to 3�4 � 12, where 3 is
generated by [g̃1, g̃2](s0 :s1 :s2 :s3) = (ε3s0 :s1 :s2 :s3), i.e., the centre of H3(3).

Lemma 4.12 The group G is self-normalising in Aut(S), i.e., the normaliser of G in
Aut(S) is G itself.

Proof If G � NAut(S)(G), then [H3(3), H3(3)] = G ∩ H3(3) � NAut(S)(G) ∩ H3(3)
as 〈g̃4〉 ⊆ G. In particular, the image of NAut(S)(G) ∩ H3(3) via the quotient map
H3(3) → H3(3)/[H3(3), H3(3)] � 32, generated by the image of g̃1 and g̃2, is non-
trivial. Note that the element g̃4 acts on H3(3) by conjugation via (g̃1, g̃2) → (g̃22, g̃1),
see [5, Theorem 6.14, Type III]. As a result, we have

g̃−1
1 g̃4g̃1 = g̃−1

1 g̃−1
2 g̃4 /∈ G,

g̃−1
2 g̃4g̃2 = g̃−1

2 g̃1g̃4 /∈ G,

(g̃1g̃2)
−1g̃4(g̃1g̃2) = g̃−1

2 g̃−1
1 g̃−1

2 g̃1g̃4 /∈ G,

(g̃1g̃
2
2)

−1g̃4(g̃1g̃
2
2) = g̃2g̃

−1
1 g̃−1

2 g̃−1
1 g̃4 /∈ G.

This implies that NAut(S)(G) ∩ H3(3)/[H3(3), H3(3)] = 1, which yields a contradic-
tion. We conclude that G is self-normalising in Aut(S). ��
The results of this section are summarised in Theorem 1.4.

5 G-birational superrigidity of Del Pezzo surfaces of degree 2

In this section we prove Theorem 1.6 and we classify the Del Pezzo G-surfaces of
degree 2 which are not G-birationally superrigid. Recall that a Del Pezzo surface S
of degree 2 is a double cover of P

2 branched over a nonsingular quartic curve. The
surface S is a hypersurface of degree 4 in the weighted projective space P(1, 1, 1, 2)
given by the equation

F = t23 + F4(t0, t1, t2),

where F4 is a polynomial of degree 4. The covering map ν : S → P
2 is then given

by the projection on the first three coordinates and the ramification curve R is the
intersection of S with {t3 = 0}.

As in the previous section, the proof of the Segre–Manin theorem (Theorem 3.1)
implies that aminimalDel PezzoG-surface of degree 2 is notG-birationally superrigid
if and only if it admits a G-equivariant Bertini involution.
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Lemma 5.1 Let S be a Del Pezzo surface of degree 2. Then, a point p is the base
locus of a Bertini involution if and only if p lies neither on a (−1)-curve nor on the
ramification locus of the double cover ν : S → P

2.

Proof The proof is analogous to that of Lemma 4.2. Recall that a Del Pezzo surface of
degree 2 is a blow-up of P

2 at points q1, . . . , q7 in general position, see [1, Exercise
IV.8.(10).(a)]. We need to check that the blow-up ˜S of S at p is a Del Pezzo surface,
or equivalently that the seven points qi and the image of p via the blow-down are in
general position. We prove that if this is not the case, then p lies on a (−1)-curve or on
the ramification locus. Indeed, note that the strict transform of a line passing through
two of the points qi or that of a conic through five of them or that of a singular cubic
curve through seven of them, with one of the qi at the singular point, is a (−1)-curve.
Similarly, the strict transform of a singular cubic curve through all of the qi , singular
at p, is an anticanonical divisor, hence the pullback of a line via ν. Since this curve is
singular at p, then p lies on the ramification locus.

Conversely, if p lies on a (−1)-curve, the canonical class of the blow-up S′ of S at
p has trivial intersection with the strict transform of the line, hence−KS′ is not ample.
On the other hand, if p lies on the ramification locus, then the preimage of the tangent
line to the branch locus via ν is either an irreducible anticanonical divisor, singular
only at p, i.e., the strict transform of a singular cubic passing through qi , or the union
of two (−1)-curves, if the line is bitangent to the branch locus. ��

Our strategy to identify birational superrigidG-surfaces will then consist in finding the
fixed points of the given G-action and checking if these points lie on the ramification
locus or on (−1)-curves. Recall that (−1)-curves on Del Pezzo surfaces of degree 2
are contained in the preimage of a bitangent line of the branched quartic in P

2.

5.1 G-birational superrigidity for non-cyclic groups

The minimal non-cyclic groups G acting on S and fixing a point have been classified
byDolgachev andDuncan, the possible fixed points lie either on the ramification curve
or they are the intersection of four (−1)-curves, see cases 2A and 2B of [4, Theorem
1.1]. Therefore, S is G-birationally superrigid by Theorem 3.1 and Lemma 5.1. This
concludes the proof of Theorem 1.5. It remains to analyse cyclic groups.

5.2 G-birational superrigidity for cyclic groups

We describe the fixed locus of minimal cyclic groups G according to Dolgachev and
Iskoviskikh classification. As before, we stick to their notation. Recall in particular
that εn is a primitive n-th root of the unit and Fi is a polynomial of degree i .

Proposition 5.2 ([5, Section 6.6]) Let S = V (F) be a Del Pezzo surface of degree
2, endowed with a minimal action of a cyclic group G of automorphisms, generated
by g. Then, one can choose coordinates in such a way that g and F are given in the
following list:
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(i) A7
1, order 2, g(t0 : t1 : t2 : t3) = (t0 : t1 : t2 :− t3),

F = t23 + F4(t0, t1, t2);

(ii) 2A3 + A1, order 4, g(t0 : t1 : t2 : t3) = (t0 : t1 : i t2 : t3),

F = t23 + t42 + F4(t0, t1);

(iii) E7(a4), order 6, g(t0 : t1 : t2 : t3) = (t0 : t1 :ε3t2 :− t3),

F = t23 + t32 F1(t0, t1) + F4(t0, t1);

(iv) A5 + A1, order 6, g(t0 : t1 : t2 : t3) = (t0 :− t1 :ε3t2 :− t3),

F = t23 + t32 t0 + t40 + t41 + at20 t
2
1 ;

(v) D6(a2) + A1, order 6, g(t0 : t1 : t2 : t3) = (t0 :ε3t1 :ε23 t2 :− t3),

F = t23 + t0(t
3
0 + t31 + t32 ) + t1t2(αt

2
0 + βt1t2);

(vi) E7(a2), order 12, g(t0 : t1 : t2 : t3) = (t0 : i t1 :ε3t2 : t3),

F = t23 + t40 + t41 + t0t
3
2 ;

(vii) E7(a1), order 14, g(t0 : t1 : t2 : t3) = (ε7t0 :ε47 t1 :ε27 t2 :− t3),

F = t23 + t30 t1 + t31 t2 + t32 t0;

(viii) E7, order 18, g(t0 : t1 : t2 : t3) = (t0 :ε3t1 :ε29 t2 :− t3),

F = t23 + t40 + t0t
3
1 + t32 t1.

We proceed with an analysis case by case.

Type A7
1. The generator g is the standard Geiser involution of the surface S leaving the

ramification curve {t3 = F4(t0, t1, t2) = 0} fixed. Hence, the surface isG-birationally
superrigid.

Type 2A3 + A1. The curve S ∩ {t2 = 0} is fixed by the action of G. It is the preimage
of the line l = {t2 = 0} under the double cover ν. The intersection of l with the
branched quartic

C = {

t42 + F4(t0, t1) = 0
}

is simply given by F4(t0, t1) = 0. Notice that the polynomial F4 has four distinct
roots as C is nonsingular, hence there are four distinct intersection points and l is not
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a bitangent line of C . This implies that every point in the preimage of l is the base
locus of a Bertini involution with the exception of the preimages of the four points of
intersection with C and of the points of intersection with the bitangent lines of C . In
other words, BirG(S) is generated by G-automorphisms and infinitely many Bertini
involutions, in particular S is not G-birationally superrigid.

To complete the list of generators of BirG(S) it suffices to compute the normaliser
NAut(S)(G). Notice that up to a linear change of coordinates in the variables t0, t1, the
equation F can be written as

F = t23 + t42 + t40 + at20 t
2
1 + t41 .

The automorphism group Aut(S) depends on the parameter a and in each case we
compute the normaliser NAut(S)(G) of G in Aut(S):

• if a = 0, then Aut(S) � 2×(42� S3) (cf. [5, Theorem 6.17, Type II]), where
2 is generated by γ (t0 : t1 : t2 : t3) = (t0 : t1 : t2 :− t3), the symmetric group S3 is
generated by the transpositions

τ(t0 : t1 : t2 : t3) = (t1 : t0 : t2 : t3),
σ (t0 : t1 : t2 : t3) = (t0 : t2 : t1 : t3)

and 42 is generated by

g1(t0 : t1 : t2 : t3) = (t0 : i t1 : t2 :− t3),

g2(t0 : t1 : t2 : t3) = σ g1σ(t0 : t1 : t2 : t3) = (t0 : t1 : i t2 :− t3),

subject to the following relations:

τg2τ = g2, τg1τ = g−1
1 g−1

2 = g31g
3
2 .

In particular, the group G is generated by g = γ g2. Notice that 〈g2〉 is central in
42�2 = 〈τ, g1, g2〉 and therefore it is central in 2×42�2. Since

(στ)g(στ)−1 = γ g1 /∈ G,

(τστ)g(τστ)−1 = (τσ )g(τσ )−1 = γ g31g
3
2 /∈ G,

we conclude that NAut(S)(G) = 〈γ, τ, g1, g2〉 � 2×42�2.
• if a = ±2

√
3 i , then Aut(S) � 2×4A4 (cf. [5, Theorem 6.17, Type III]), where 2

is generated by γ (t0 : t1 : t2 : t3) = (t0 : t1 : t2 :− t3) and 4A4 is a central extension of
the alternating group A4 generated by

g1(t0 : t1 : t2 : t3) = (t1 : t0 : t2 :− t3),

g2(t0 : t1 : t2 : t3) = (i t1 :− i t0 : t2 :− t3),

g3(t0 : t1 : t2 : t3) = (

ε78 t0 + ε78 t1 :ε58 t0 + ε8t1 :
√
2 ε12 :2ε6t3

)

,

c(t0 : t1 : t2 : t3) = (t0 : t1 : i t2 :− t3).
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Since c is central in Aut(S) and g = γ c, we conclude that NAut(S)(G) = Aut(S).
• if a �= 0,±2

√
3 i , then Aut(S) � 2×AS16, where AS16 is a non-abelian group of

order 16 isomorphic to 2×4�2 (cf. [5, Tables 1&6]). The generators of Aut(S)

coincide with that of the previous case with the exception of the generator g3.
Hence, as in the previous case, g is a central element and NAut(S)(G) = Aut(S).

Type E7(a4). The fixed locus is given by S ∩ {t2 = t3 = 0} and (0 :0 :1 :0). In
particular all fixed points lie on the ramification curve and therefore they do not give
rise to Bertini involutions, thus S is G-birationally superrigid.

Types A5 + A1, D6(a2)+ A1, E7 and E7(a1). The fixed locus of each of these groups
is contained in the set

{

(1 :0 :0 :0), (0 :1 :0 :0), (0 :0 :1 :0)}

of points on the ramification curve, hence S does not admit any Bertini involution and
it is G-birationally superrigid.

Type E7(a2). The fixed locus consists of the point (0 :0 :1 :0) lying on the ramification
curve and two points

p1 = (1 :0 :0 :i), p2 = (1 :0 :0 :− i).

These points are mapped of the point p = (1 :0 :0) via of the covering map ν. The
branch locus is given by

C = {

t40 + t41 + t0t
3
2 = 0

}

.

Suppose q = (q0 :q1 :q2) is a point in C whose tangent line

TqC = {

(4q30 + q32 ) t0 + 4q31 t1 + 3q0q
2
2 t2 = 0

}

passes through p, then q ∈ C ∩ {t32 = −4t30 }. This intersection consists of 12 distinct
points

(

1 :31/4i j :41/3εk6
)

, j = 1, 2, 3, 4, k = 1, 3, 5.

In other words, the lines tangent to C and passing through the possible q are given by

{−2 ·33/4i j t1 + 3 ·21/3εk3 t2 = 0
}

, j = 1, 2, 3, 4, k = 1, 2, 3,

which are pairwise distinct and intersect C in three distinct points each, and hence,
are not bitangent lines. Therefore p1 and p2 are not in any (−1)-curve and it follows
that S is not G-birationally superrigid.

The Bertini involution with base point p1 is the deck transformation of the map

ψ1 : S → P
3,

(t0 : t1 : t2 : t3) �→ (

t21 : t1t2 : t22 : t3 − i t20
)

,
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and it is given explicitly by

ϕp1(t0 : t1 : t2 : t3) = (t ′0 : t1 : t2 : t ′3),

where

t ′0 = − t0 + i t32
2(t3 − i t20 )

and t ′3 = − i t20 − t41
t3 − i t20

− i t62
4(t3 − i t20 )2

.

Similarly, the involution with base point p2 is the deck transformation of the map

ψ2 : S → P
3,

(t0 : t1 : t2 : t3) �→ (

t21 : t1t2 : t22 : t3 + i t20
)

,

therefore

ϕp2(t0 : t1 : t2 : t3) = (t ′0 : t1 : t2 : t ′3),

where

t ′0 = − t0 − i t32
2(t3 + i t20 )

and t ′3 = i t20 − t41
t3 + i t20

+ i t62
4(t3 + i t20 )2

.

Lemma 5.3 The group BirG(S) is not a finite group.

Proof The proof is analogous to the one of Lemmas 4.9 and 4.11. It is enough to prove
that the composition ϕp1◦ϕp2 has infinite order. To this aim, note that the involutions
ϕp1 and ϕp2 fix the pencil of curves of genus one

C(λ:μ) = {

λt1 − μt2 = t23 + t40 + t41 + t0t
3
2 = 0

}

.

In particular, for a general choice of (λ :μ), we have

C(λ:μ) = {

λt1 − μt2 = μ3(t23 + t40 + t41 ) + λ3t0t
3
1 = 0

} ⊆ P(1, 1, 2)(t0: t1: t3).

In the chart {s1 ..= t1 − r0t0 �= 0}, where r0 is a root of the polynomial F(λ:μ)(t1) =
μ3(1 + t41 ) + λ3t31 , the affine curve C

◦
(λ:μ)

..= C(λ:μ) ∩ {s1 �= 0} is the zero locus of

a cubic equation in C
2, and C(λ:μ) is birational (thus isomorphic) to the (nonsingular)

projective closure of C ◦
(λ:μ) in P

2 with coordinates (t0 :s1 : t3). Hence, we can identify
the two curves. Let p ∈ C ◦

(λ:μ). By restricting the linear system defining the double

cover ψi to C(λ:μ) ⊆ P
2
(t0:s1: t3), one can check that the points pi and ϕpi (p) are
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contained in a conic, tangent to C(λ:μ) at pi and O ..= (0 :0 :1). As in Lemmas 4.9 and
4.11, we deduce the following relations for the elliptic curve (C(λ:μ), O) ⊆ P

2:

p1 + p2 = 0;
2p2 + p + ϕp2(p) = 0;

2p1 + ϕp2(p) + ϕp1◦ϕp2(p) = 0.

In particular,

ϕp1◦ϕp2(p) = p + 4p2.

One can check (useMAGMA) that for a suitable choice of (λ :μ) (e.g. 2λ3+17μ3 = 0
and r0 = 1/2), the point p2 is not a torsion point. This implies thatϕp1◦ϕp2 has infinite
order. ��
The automorphism group of S is Aut(S) = 2×4A4, see [5, Table 6, Theorem 6.17,
Type III]. Here 4A4 is a non-split central extension of A4 by a cyclic group of order
4, more explicitly there exists an exact sequence

0 → 4 → 4A4 → A4 → 0.

Let G ′ be the image of G in A4 under the composition of quotient homomorphisms
2×4A4 → 4A4 → A4. Notice G ′ � 3, since G ′ is necessarily a cyclic group of
A4 whose order is a multiple of 3. It follows the image of N2×4A4(G) is contained in
NA4(3). Moreover, notice that NA4(3) = 3, as there are no proper normal subgroups in
A4 containing 3 and 3 is not normal in A4. Finally, since 2×4A4 is a central extension
of a central extension of A4, one obtains N2×4A4(12) = 2×12. The group BirG(S)

is generated by G, the standard Geiser involution γ and two Bertini involutions with
base locus p1 and p2 respectively.

The cases above yield the proof of Theorem 1.6.
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