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Abstract
The paper contains an intelligible construction of the ring W (A) of Witt vectors over
an arbitrary commutative ring A.

Keywords Witt vectors - Rings of power series - Zeta functions of varieties over
finite fields
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I will describe a functor A — W(A) from the category of commutative rings to
itself. The ring W (A) of “Witt vectors’ over A has many applications (to algebraic
geometry, local rings, etc.), but I won’t discuss those. Convention: rings have 1’s that
are respected by ring homomorphisms. By A I will always denote a commutative ring.

The literature on the functor W is in a somewhat unsatisfactory state: nobody seems
to have any interest in Witt vectors beyond applying them for a purpose, and they are
often treated in appendices to papers devoted to something else; also, the construction
usually depends on a set of implicit or unintelligible formulae. Apparently, anybody
who wishes to understand Witt vectors needs to construct them personally. That is
what is now happening to myself.

One may compare the construction of W (A) to the construction of the polynomial
ring A[X]: the ring operations in the latter are also defined by formulae, but those are
both explicit and intelligible. In addition, A[X] can be thought of in a conceptual way:
itis an A-algebra that represents the forgetful functor from the category of A-algebras
to the category of sets. It is quite possible that W (A) also represents some functor,
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Construction of the ring of Witt vectors 1235

and that this helps in constructing W; but I never saw a satisfactory treatment along
these lines. For W (A), the arrows run in the opposite direction: A is a W (A)-algebra
rather than the other way around, and if W (A) represents a functor then most likely it
is a contravariant one.

If the only available way to construct W is by implicit formulae, then one is doomed
to using those formulae whenever one wishes to prove any result about Witt vectors.
The theory as found in the literature is indeed formula-ridden.

My treatment depends also on a formula (see (ii) below), but it is both explicit and
intelligible. One may be hopeful that my approach will pass the test of allowing a
smooth development of the entire theory of Witt vectors. For example, one can use
it to construct an important morphism W — W o W that turns each W(A) into a
‘lambda-ring’.

I'start by defining aring A (A) thatis isomorphic to W (A), the only difference being
notational. Let A[[T']] be the ring of power series in one indeterminate 7 over A. Let
the A-algebra homomorphism A[[T]] — A map T to 0, and hence any power series
to its constant coefficient. It induces a homomorphism A[[T]]* — A* on the unit
groups, and I define

A(A) = ker (A[[T]]" — A") = 1 + TA[[T]].
This is a multiplicative group, and A is a functor from the category of commutative

rings to the category of abelian groups. The multiplication on A(A) will serve as the
“addition” in a new ring structure to be defined on A(A).

Theorem There is a unique system of maps
* =%y : A(A) X A(A) > A(A),

one for each commutative ring A, such that:

(1) * is left and right distributive with respect to x;
(ii) forall A and all a,b € A, one has

A—aT) '« (1 =bT) ' =1 —abT)™";
and

(iii) x4 isfunctorialin A; that is, for each homomorphism f: A — B of commutative
rings, the diagram

A(A) x A(A) —2= A(A)
(A, A(f))J/ lA(f)
A(B) x A(B) —2~ A(B)

commutes.
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1236 H.W. Lenstra

For each A, the map * 4 is T -adically continuous and makes A(A) into a commutative
ring with addition x, multiplication * and unit element (1 — T)™\.
Finally, A is a functor from the category of commutative rings to itself.

The elements occurring in (ii) are sums of geometric progressions:
o
(1—aT)™'=>"d'T'
—

Thus, on elements of this form, the operation * is given by coefficientwise multipli-
cation, the “Hadamard product”.

The unit element (1 — 7)~! has all coefficients equal to 1. One finds also other
normalizations in the literature, leading to unit element 1 — 7' (invert all elements of
A(A))or 1+ T (substitute —T for 7). My convention keeps the formulae simple, and
leads for zeta functions of varieties X, Y over a finite field k to the pleasing formula
Z(X % Y/k) = Z(X /k)x7 Z(Y [k).

I now first prove existence of the operations *4. For each n > 0, put

A, (A) = ker ((A[T]/(T"“))* — A*)
(by the map T +— 0), so that one has A(A) = 1<ir_nn A, (A). Define
M, (A) C An(A)

to be the subgroup of A, (A) generated by {1 —aT : a € A}. The strategy is to first
make each M, (A) into aring, next extend the ring structure to A, (A) (this will require
varying A), and finally pass to A (A) by taking the projective limit.

Lemma 1 For each commutative ring A and non-negative integer n, the abelian group
M, (A) has a unique composition x4 satisfying property (ii) and making M, (A) into
a commutative ring; also, M, is a functor from the category of commutative rings to
itself, and the natural maps M, 1| — M, are morphisms of functors.

Example The map A — M (A) sending a to 1 + aT (mod T?) is bijective, and the
ring structure on M1 (A) makes it into an isomorphism of rings.

Proof Fora € A, the A-algebra endomorphism

A[T1/(T"T) — A[T1/(T™T)
Tvw— aT

induces an element ¢, of the endomorphismring End A, (A) of A, (A). Clearly one has
©ap = @ap for a, b € A. Hence, if E C End A, (A) denotes the additive subgroup
generated by {¢, : a € A}, then E is a commutative subring of End A, (A). The
natural action of £ on A,(A) makes A, (A) into an E-module, and I write the action
exponentially.
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The map

E — A,(A)
e (1-T)"°
is an E-module homomorphism that sends ¢, to (1 — aT)~". The image of this E-

module homomorphism is M, (A), since it is generated by the images of generators.
The kernel is a left ideal 7 of E, and one obtains a group isomorphism

E/I ~ M,(A).

Since E is commutative, [ is a two-sided ideal of E, so E /I has a ring structure. One
can now transport the ring structure from E /I to M, (A). All assertions in the lemma
are then straightforward to verify. O

Next I pass from M, (A) to A, (A). It would be convenient if every monic polyno-
mial over A were a product of linear factors, since then one had identities like

l+ai T+ +a,T"=(01 - T)A —apT)--- (1 —a, T),

showing that A, (A) = M,(A). This is true, for example, if A is an algebraically
closed field. Also for A = R one can show that A, (A) = M, (A). In general one must
vary the ring.

Lemma 2 For each A, there is an A-algebra ‘A such that

() for all n, one has A, (A) = M, (A);
(ii) as an A-module, A has a basis containing the unit element.

From (ii) one sees that ‘A is free as an A-module, and that the map from A to Alis
injective.

The lemma is much stronger than what I need. It would be enough to show that for
each n and for each finite subset I C A, (A) there exists a faithfully flat A-algebra
Ap, with F C M, (AF ).

Proof Let
M(A) = {f € A[X] : f monic, deg f > 0}

and put

A= Q) AIXY/(f) = AlXf: [ € MA/(f(Xp): f € M(A)).
SeM(A)

Every f € M(A) has the linear factor X — ay in A’[X], where oy denotes the image
of Xrin A’. Also, the collection of elements erM(A) oz}(f) with 0 < i(f) < deg f
for all f and i(f) = O for almost all f, is a basis for A" as an A-module, so A C A’.
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1238 H.W. Lenstra

Repeating the construction, write A” = (A’)’, and inductively A" = (A”~DY’ (where
A©® = A). It is now routine to verify that the A-algebra

A=1limA®™
e

has the properties stated in the lemma. O

There are many ways of making other rings that do the job just as well, but the
following lemma shows that there is no reason to care about this at all.

Lemma3 Let A C B be commutative rings, n > 0, and letu, v € A,(A) be such that
u,v € My(B). Then uxpv and u*3v lie in A,(A) and are equal.

Proof If B C C, then uxpgv = u#c v since * is functorial. Choose C = B®y4 A.
Since one can write A = ;.; Ae; with ey = 1, one has C = @, ; Be;. From this
one sees that there are inclusions B, A C C, and that inside C onehas BN A = A
(elements of B can only at ep have a non-zero coefficient).

Therefore one has u*pv = u*cv = u*zv, and this element lies in A, (B) N
A (A) = A, (A). O

Since aring B as in the lemma exists for every n, u, v (take for example B = Z), one
concludes that A, (A) is a subring of A, (A) for every n. This gives a ring structure on
A, (A). Itis functorial in A; thatis, if f: A — B is ahomomorphism of commutative
rings, then the map A, (A) — A, (B) induced by f is aring homomorphism. To prove
this, let u, v € A,(A). Then u, v are in M, (A), so the images i and ¥ of u and v in
A, (B) are in M,,(B®4 A). Applying Lemma 3 to the inclusion B C B®y4 A in the
roleof A C B, one sees that the product i p v can be computed in M, (B ® 4 ‘A); since
M), is a functor one concludes that this product equals the image of uxzv = u*av
in A, (B), as required.

Each A, is a functor from the category of commutative rings to itself, and the
natural maps A,+1 — A, are morphisms of functors. Thus A(A) = 1<£n n Ny (A) now
gets a ring structure. This proves the existence part of the theorem, and also shows the
additional properties of 4. The only thing left to prove is uniqueness.

Lemma4 Let I and J be sets, and let
Oa: Al A7

be a map, one for each commutative ring A, functorial in A. Then each ¥4 is con-
tinuous (where A has the discrete topology and A" and A’ the product topologies);
more precisely, for each j € J there is a finite subset I; C I such that for all A there
exists a commutative diagram

Alﬂ_AJ

o b

Al — — > A,
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the vertical maps being the obvious projections.

Proof The functor —/ (taking A — A') from the category of commutative rings to
the category of sets is isomorphic to the functor Rhom (Z[ X;:i € I], —) (taking A to
the set of ring homomorphisms Z[X;:i € I] — A). By Yoneda’s lemma, the system
of maps 14 corresponds to a ring homomorphism Z[X;:i € I] < Z[X;:j € J].
Lemma 4 now comes down to the statement that for every j € J there is a finite subset
I; C I such that the image of X; is in the subring Z[X;:i € I;] of Z[X;:i € I], and
this is clear. O

To prove the uniqueness statement in the theorem, suppose that # = #4: A(A)
x A(A) — A(A) satisfies conditions (i), (i), and (iii). Applying the lemma to 94 =
#4, with J = Z-¢ and I equal to the disjoint union of two copies of Z- ¢, one sees
that #,4 is T-adically continuous. Let M(A) C A(A) be the subgroup generated by
{1 —aT : a € A}. Then # and * agree on M (A) x M(A) by (ii) and (i), and since
A (A) is Hausdorff, they also agree on M (A) x M (A); here M (A) denotes the closure
of M(A) in A(A), which equals 1(1Ln n M, (A). Applying this result to ‘A one sees that

# = % on A(A) and hence on the subring A(A). This completes the proof of the
theorem.

By way of exercises I list some identities in A(A).
(1) Foralla € Aandu € A(A) one has (1 —aT) 'su = u(aT);ie.

o0 o0 o
<Z aiT"> * <Z b,-Ti> => abT’
i=0 i=0 i=0

(the Hadamard product!). From this one can deduce that the ideal / occurring in
the proof of Lemma 1 is 0.
(2) Foray, a>, b1, by € A one has

(I+a1T +aT?) % (1 + b T + byT?)
=1+aibT + (a2by + (a2 — aj) (by — b)) T?

in A(A). Also, one has A>(A) = M>(A).
(3) Let m, n be positive integers, and put [ = lem(m, n), g = gcd(m, n). Then for

a,b € A, one has

(1 —aT™) ' (1 =T '= (1=a"/"p'"T)"%
Equivalently: if two collections of «’s and $’s satisfy

m_ ., _ _ n_p _ _

X"—a ]—[a(x a), X"—b ]—[ﬁ(x B),

then one has

Ha ﬁ(X —af) = (Xl _ al/’”bl/”)g.
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1240 H.W. Lenstra

This is particularly easy to see if A is a field of characteristic 0.
(4) For relatively prime positive integers m, n one has

(1— Tm)n (1-— Tn)m
1 — Tmn * 1 — Tmn =

This is best understood through an interpretation of A(Z) as a Burnside ring.
Taking m = 14, n = 15 one concludes that A(A) is not a domain for any A.

To conclude, I exhibit the relationship between the given construction of Witt vec-
tors and the standard one.
Define the maps y,: A(A) — A by

Tu >
= E Vn (1) "
u

n=1

where u’ is the formal derivative of u with respect to T'.

Proposition Each y, is a ring homomorphism, functorial in A. The ring structure
on the set A(A) is characterized by being functorial in A and all y, being ring
homomorphisms.

Proof 1t is well-known that the logarithmic derivative u > u'/u transforms multipli-
cation into addition. For u = (1 — aT)~! one has

Tu’_ aT
u  1—aT

SO
yu((1 —aT)™hy =a"

This is multiplicative in a, so on elements of the form (1 — aT)~! each y, transforms
* into multiplication. Using functoriality and continuity one concludes that it gives a
ring homomorphism. As for the last statement, with Yoneda’s lemma one reduces the
proof to the case of polynomial rings over Z, and one uses that for those rings the map
u +— Tu'/u is injective; the details are left to the reader. O

Lemma5 For each commutative ring A, the maps

ﬁ A — A,(A)

m=1

n
(am)py > [J (0= anT™™!

m=1
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forn=0,1,2,... as well as the map

o: []a— A

m=1

(@mmz1 - [ —anT™™!
m=1

are bijective.

The proof is routine.
I can now relate the standard definition of W (A) to the construction given.

Definition The Witt ring W(A) is the set ]_[m>1 A with ring structure v + w =
(p_l (e()p(w)), vw = (p_l (p(v) x@(w)), where ¢ is as in Lemma 5.

Here is a diagram in the category of commutative rings that is important in the
theory of Witt vectors:

W(A) — = A(A)

L

[152, A —— TA[[T]].

The top horizontal map is ¢. The right vertical map sends u to Tu'/u; by the propo-
sition, it is a ring homomorphism if TA[[T]] has the usual addition and Hadamard
multiplication. The bottom horizontal map sends (ay),>1 to Zio:1 a,T"; it is a ring
isomorphism if []72 | A has componentwise ring operations. The left vertical map is
defined by the commutativity of the diagram. By a straightforward computation, it
sends (an)flO | to (a m)y%° where the “ghost components” a™ are given by

= n=1’
a® =" dall.
d|n

By the proposition, the ring structure on W (A) is characterized by functoriality and
by the ghost components being ring homomorphisms W (A) — A. This is often taken
as the definition of W(A).

March 4, 2002
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