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Abstract We generalize the notion of strong quasi-continuity for real functions of
real variable, given by Grande (Real Anal Exchange 21(1):236–243, 1995/1996), to
the case of multifunctions in topological spaces. We introduce a differentiation base
in a metric space and show that a strong quasi-continuous multifunction with respect
to this differentiation base is almost everywhere continuous.
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1 Introduction

The notion of quasi-continuity, introduced by Kempisty [10] for real functions, has
been studied intensively. There are various reasons for the interest in this notion.
Perhaps the main ones are its applications in mathematical analysis and topology.
There are also some connections to probability and, of course, to other generalized
continuity concepts such as cliquishness [3,22], semi-continuity [14], andα-continuity
(called also strong quasi-continuity) [18,19].

Kempisty’s definition of quasi-continuity was reformulated for general topological
spaces by Neubrunn [18] and generalized to the case of multifunctions by Popa [20].
Many new features evolved in this case.Afterwards, quasi-continuity ofmultifunctions
has been widely considered by many authors, we refer to Neubrunn [17,18], Ewert
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[2], Ewert and Neubrunn [4], Holá and Holý [9], and Matejdes [16]. The special case
of quasi-continuous functions of two real variables was investigated by Grande in
[5,7,8].

As we have alluded earlier, strong quasi-continuity has been considered in the
literature first byNoiri [19] for functions and then byNeubrunn formultifunctions [18];
under a different name—continuity with respect to the α-topology of a topological
space.

Strong quasi-continuity of real functions was also considered by Grande in [6]
but in a different sense. His definition is based on the density topology in the space
of real numbers. We generalize this notion to the case of multifunctions (in abstract
spaces) and show that a multifunction which is strongly quasi-continuous is almost
everywhere continuous.

2 Preliminaries

We will use standard notation. The sets of positive integers and real numbers will be
denoted byN andR, respectively.Rn, n ∈ N, will denote the n-dimensional Euclidean
space. Let (S,T(S)) and (Z ,T(Z)) be topological spaces. For a set A ⊂ S,Cl(A) and
Int(A) will denote the closure and the interior of A, respectively. Moreover, if s0 ∈ S,
then B(s0) ⊂ T(S) will denote the family of all neighbourhoods of s0.

Kempisty’s definition of quasi-continuity of a function f : X → Y was given for the
case X = R

n and Y = R [10]. For general topological spaces it can be reformulated
in the following way [18]: A function f : S → Z is called quasi-continuous at s0 ∈ S
if for any open setsU and V such that s0 ∈ U and f (s0) ∈ V there exists a nonempty
open set G ⊂ U such that f (G) ⊂ V ; f is called quasi-continuous if it is quasi-
continuous at any point s ∈ S.

Clearly any continuous function is quasi-continuous. The converse is of course not
true. Any left or right continuous function f : R → R is quasi-continuous.

By a multifunction (set-valued map) from S to Z we mean a map which assigns
to every point of S a nonempty subset of Z . If � is a multifunction from S to Z , we
denote it by � : S � Z .

If � : S � Z and G ⊂ Z are given, then we define

�−(G) = {s ∈ S : �(s) ∩ G �= ∅} and �+(G) = {s ∈ S : �(s) ⊂ G }.
Note that

�−(G) = S\�+(Z \G) and �+(G) = S\�−(Z \G).

A function f : S → Z may be considered as a multifunction assigning to s ∈ S the
singleton { f (s)}. It is clear that in this case for G ⊂ Z we have

f +(G) = f −(G) = f −1(G).

A multifunction � : S � Z is called upper (resp. lower) semicontinuous at a point
s0 ∈ S if for any open set G ⊂ Z such that �(s0) ⊂ G (resp. �(s0) ∩ G �= ∅), there
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exists U (s0) ∈ B(s0) such that U (s0) ⊂ �+(G) (resp. U (s0) ⊂ �−(G)); � is called
continuous at s0 ∈ S if it is both upper and lower semicontinuous at s0. � is called
continuous or upper (resp. lower) semicontinuous if it is continuous or upper (resp.
lower) semicontinuous at each s ∈ S.

Following Neubrunn [18], a multifunction � : S � Z is lower (resp. upper) quasi-
continuous at a point s0 ∈ S if for any set G ∈ T(Z) such that s0 ∈ �−(G) (resp.
s0 ∈ �+(G)) and for any set U (s0) ∈ B(s0) there exists a nonempty open set V ⊂
U (s0) such that V ⊂ �−(G) (resp. V ⊂ �+(G)); � is said to be lower (resp. upper)
quasi-continuous if it is lower (resp. upper) quasi-continuous at every point s ∈ S.

Note that in the case of single-valued function the notions of lower quasi-continuity
and upper quasi-continuity coincide with quasi-continuity.

A multifunction � : S � Z is said to be quasi-continuous at a point s0 ∈ S if
for arbitrary sets G ∈ T(Z) and H ∈ T(Z) such that s0 ∈ �−(G) ∩ �+(H) and
for every set U (s0) ∈ B(s0) there exists a nonempty open set V ⊂ U (s0) such that
V ⊂ �−(G) ∩ �+(H).

Clearly a quasi-continuous multifunction is both lower quasi-continuous and upper
quasi-continuous. The converse is not true (see [18, Example 1.2.7]). Also, any lower
(resp. upper) semicontinuous multifunction is lower (resp. upper) quasi-continuous
while the converse is not true.

A set A ⊂ S is said to be quasi-open [18] (semi-open [14]) if there is an open set
O such that O ⊂ A ⊂ Cl(O).

Theorem 2.1 ([18]) A multifunction � : S � Z is lower (resp. upper) quasi-conti-
nuous if and only if for any set G ∈ T(Z) the set�−(G) (resp.�+(G)) is quasi-open.

3 Main results

Let us assume that (S, d,M(S), μ) is a measure metric space with metric d, with
a σ -finite complete and Gδ-regular measure μ defined on a σ -field M(S) containing
Borel sets;μ∗ will denote the outer measure generated byμ, i.e.,μ∗(A) = inf {μ(B) :
A ⊂ B ∧ B ∈ M(S)} for a set A ⊂ S. Moreover Td(S) will denote the topology in S
generated by the metric d.

A multifunction � : S � Z is called upper (resp. lower) M(S)-measurable if
�+(G) ∈ M(S) (resp. �−(G) ∈ M(S)) for any set G ∈ T(Z).

In general the families of all upper M(S)-measurable multifunctions and of all
lower M(S)-measurable multifunctions are independent (see [12, Proposition 1]).
While in the case of single-valued functions the notions of upperM(S)-measurability
and lowerM(S)-measurability coincide with the usual notion ofM(S)-measurability
of a function.

Let F ⊂ M(S) be a family of sets with nonempty interiors of positive and finite
measure μ, the boundaries of which are μ-negligible. Let {In}n∈N ⊂ F and s ∈ S. We
write In → s to mean that for each n ∈ N, s ∈ Int(In) and the diameter of In tends
to zero as n runs to infinity. We assume that for every s ∈ S, there exists a sequence
(In)n∈N of sets from F such that In → s.

The pair (F,→) is called a differentiation basis for the space (S, d,M(S), μ) in
accordance with Bruckner’s terminology [1, p. 30].
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Let A ⊂ S and s ∈ S. The upper outer density of the set A at the point s with
respect to F is equal to the supremum of the set of numbers

lim
In→s

μ∗(A ∩ In)

μ(In)

(whenever exist) taken for all the sequences (In)n∈N selected from F and converging
to s. Replacing supremum by infimum we obtain the lower outer density of A at
s ∈ S with respect to F. These densities we will denote by D∗

u(A, s) and D∗
l (A, s),

respectively. If these densities coincide, then their common value is called the outer
density of the set A at s with respect to F and is denoted by D∗(A, s). If A ∈ M(S),
then the outer density of the set A at s ∈ S with respect to F is called the density of A
at s with respect to F and is denoted by D(A, s).

A point s ∈ S is called the density point of a set A ⊂ S with respect to F if there
exists a set B ∈ M(S) such that B ⊂ A and the density of B at s with respect to F is
equal to 1. We will write D(A, s) = 1.

We will assume that

(DP) F has the density property, i.e., every set A ⊂ S satisfies the following condition:
μ({s ∈ A : D∗

l (A, s) < 1}) = 0.

By the density property of F, it is clear that

Lemma 3.1 A set A ⊂ S, whose μ-almost every point is its density point with respect
to F, isM(S)-measurable.

An M(S)-measurable set is called homogeneous with respect to F if its density with
respect to F is 1 at each of its points. The space S can be topologized by taking the
homogeneous sets with respect to F as open sets (see [11, p. 232]). This topology we
will denote by TD(S). Note that TD(S) is finer than Td(S). The interior of A with
respect to TD(S) is denoted by TD-Int(A).

From now on let (S, d,M(S), μ) be a measure metric space with the differentiation
basis (F,→)with the density property (DP), and let (Z ,T(Z)) be a topological space.

Definition 3.2 A multifunction � : S � Z is called strongly lower (resp. upper)
quasi-continuous at a point s0 ∈ S with respect to F if for any set G ∈ T(Z) such
that s0 ∈ �−(G) (resp. s0 ∈ �+(G)) and for any set U ∈ TD(S) containing s0 there
exists a nonempty open set V ⊂ S such that V ∩U �= ∅ and V ∩U ⊂ �−(G) (resp.
V ∩U ⊂ �+(G)); � is said to be strongly lower (resp. upper) quasi-continuous with
respect to F if it is strongly lower (resp. upper) quasi-continuous with respect to F at
every point s ∈ S.

Observe that replacing in the above definition the density topology with the topology
generated by the metric d, we obtain the notion of lower (resp. upper) quasi-continuity
of �. Since Td(S)-open sets are TD(S)-open, we have

Lemma 3.3 If a multifunction � : S � Z is strongly lower (resp. upper) quasi-con-
tinuous with respect to F, then � is lower (resp. upper) quasi-continuous.

The converse is not true.
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By analogywith the definition of quasi-continuitywe define strong quasi-continuity
of a multifunction.

Definition 3.4 A multifunction � : S � Z is called strongly quasi-continuous with
respect to F at a point s0 ∈ S if for arbitrary sets G ∈ T(Z) and H ∈ T(Z) such
that s0 ∈ �−(G) ∩ �+(H) and for each set U ∈ TD(S) containing s0 there exists a
nonempty open set V ⊂ S such that V ∩U �= ∅ and V ∩U ⊂ �−(G) ∩ �+(H).

Clearly a multifunction� : S � Z which is strongly quasi-continuous with respect to
F is quasi-continuous. Furthermore, if � is strongly quasi-continuous with respect to
F, then it is both strongly lower quasi-continuous and strongly upper quasi-continuous
with respect to F.

Some connections between the quasi-continuity and the Denjoy property of real
functions were considered by Šalát [21]. We establish now more general properties
for multifunctions.

Definition 3.5 Amultifunction� : S � Z is said to have the D− (resp. D+) property
if for any setG ∈ T(Z) and for any nonempty open setU ⊂ S the setU∩�−(G) (resp.
U ∩ �+(G)) is either empty or μ∗(U ∩ �−(G)) > 0 (resp. μ∗(U ∩ �+(G)) > 0).

Proposition 3.6 If a multifunction � : S � Z is lower (resp. upper) quasi-continu-
ous, then � has the D− (resp. D+) property.

Proof LetG ∈ T(Z) and letU ⊂ S be a nonempty open set. By the lower (resp. upper)
quasi-continuity of�, the set�−(G) (resp.�+(G)) is quasi-open (see Theorem 2.1).
Then the setU ∩�−(G) (resp.U ∩�+(G)) is either empty or its interior is nonempty,
i.e., μ∗(U ∩ �−(G)) > 0 (resp. μ∗(U ∩ �+(G)) > 0). 	

For a multifunction � we denote by D(�), Dl(�) and Du(�) the sets of all its dis-
continuity, lower semidiscontinuity and upper semidiscontinuity points, respectively.
The following lemma will be useful.

Lemma 3.7 ([13, p. 182]) Let (S,T(S)) be a topological space and let (Z ,T(Z))

be a second countable topological space with a base B = {Bn}n∈N. Then for a
multifunction � : S � Z we have:

(i) Dl(�) = ⋃
n∈N(�−(Bn)\Int(�−(Bn))).

(ii) If (Z ,T(Z)) is T1 regular and � is compact valued, then

Du(�) =
⋃

n∈N
(�+(Vn)\Int(�+(Vn))),

where (Vn)n∈N is a sequence of all finite unions of sets from B.

Theorem 3.8 If the space (Z ,T(Z)) is regular and second countable, a multifunction
� : S � Z is strongly lower quasi-continuous with respect to F and it has the D+
property, then μ(Dl(�)) = 0.

Proof We first prove that

If G ∈ T(Z) and s ∈ �−(G), then Du(Int(�
−(G)), s)) > 0. (1)
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Suppose, on the contrary, that there is a set G ∈ T(Z) such that s ∈ �−(G) and
Du(Int(�−(G), s)) = 0. Let

A = S\�−(G) = �+(Z \G).

Then Dl(Cl(A), s) = 1 = D(Cl(A), s). We can assume that A �= ∅. Since s ∈
�−(G), there is a point z ∈ �(s) ∩ G. By the regularity of Z , there is an open set V
containing z such that Cl(V ) ⊂ G. Then s ∈ �−(V ). Let

W = S\�−(Cl(V )) = �+(Z \Cl(V )).

Observe that W �= ∅, since A �= ∅ and A ⊂ W . Therefore, by the D+ property
of �,μ∗(W ) > 0. Since Cl(A) ⊂ Cl(W ) and D(Cl(A), s) = 1, it follows that
D(Cl(W ), s) = 1.

Let B = TD-Int(Cl(W )) ∪ {s}. Then s ∈ B ∈ TD(S). Since � is strongly lower
quasi-continuous at s with respect to F, for the sets V and B there is a nonempty open
set U ⊂ S such that

U ∩ B �= ∅ and U ∩ B ⊂ �−(V ). (2)

On the other hand, however, U ∩ B ∩ W �= ∅, i.e.,

(U ∩ B) ∩ (S\�−(Cl(V )) �= ∅,

which contradicts (2), and (1) is proved.
Now we prove that μ(Dl(�)) = 0. Suppose, on the contrary, that μ∗(Dl(�)) > 0.

LetB = {Bn}n∈N be a base of T(Z). Then, by Lemma 3.7 (i), there is n ∈ N such that

μ∗(�−(Bn)\Int(�−(Bn))) > 0.

Let

C = �−(Bn)\Int(�−(Bn)).

Since μ∗(C) > 0, by the assumption (DP), it follows that there is a point s ∈ C such
that D∗

l (C, s) = 1. Note that C ⊂ �−(Bn). So, s ∈ �−(Bn) and, by (1), we have
Du(Int(�−(Bn)), s) > 0. Thus C ∩ Int(�−(Bn)) �= ∅. 	

Similar proof works for a dual theorem.

Theorem 3.9 Let the space (Z ,T(Z)) be regular. If a multifunction � : S � Z is
compact-valued strongly upper quasi-continuous with respect to F and it has the D−
property, then μ(Du(�)) = 0.

By Lemma 3.3, Proposition 3.6, Theorems 3.8 and 3.9, we have the following result.
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Proposition 3.10 If the space (Z ,T(Z)) is regular and if a multifunction � : S � Z
is compact-valued strongly lower quasi-continuous and strongly upper quasi-conti-
nuous with respect to F, then � is μ-almost everywhere continuous.

Proposition 3.11 If the space (Z ,T(Z)) is regular and if � : S � Z is a
compact-valued multifunction strongly lower quasi-continuous and strongly upper
quasi-continuous with respect to F, then � is lower M(S)-measurable and upper
M(S)-measurable.

Proof By Proposition 3.10, the multifunction � is μ-almost everywhere continuous.
Let G ∈ T(Z) and s0 ∈ S. If s0 is a continuity point of�, then d(�+(G), s0) = 1 and
d(�−(G), s0) = 1. Hence the sets �−(G) and �+(G) have density 1 with respect
to F at μ-almost every point. By Lemma 3.1, the sets �−(G) and �+(G) are M(S)-
measurable, i.e., � is lower M(S)-measurable and upper M(S)-measurable. 	

Remark 3.12 It is known that there is a quasi-continuous function f : [0, 1] → R

which is not Lebesgue measurable [15, Example (x), p. 49]. So, if we suppose that
the multifunction �, considered in Proposition 3.11, is both lower quasi-continuous
and upper quasi-continuous, then � need not be neither upper M(S)-measurable nor
lower M(S)-measurable.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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