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1 Introduction

The purpose of this paper is to explore what we call the Wiman–Edge pencil C, a
pencil of highly symmetric genus 6 projective curves with remarkable properties. The
smooth members of C can be characterized (see Theorem 3.3) as those smooth genus
6 curves admitting a nontrivial action of alternating group A5. This mathematical
gem was discovered in 1981 by William L. Edge [10,11], who based his work on a
discovery in 1895 by Anders Wiman of a non-hyperelliptic curve C0 of genus 6 (now
called theWiman curve) with automorphism group isomorphic to the symmetric group
S5. The results of both Wiman and Edge are in the satisfying style of 19th century
mathematics, with results in terms of explicit equations.

In this paper and its sequel [12], we consider C from a more modern, concep-
tual perspective, whereby explicit equations are reincarnated as geometric objects.
In particular we will view C through a variety of lenses: from algebraic geometry to
representation theory to hyperbolic and conformal geometry. We will address both
modular and arithmetic aspects of C, partly through Hodge theory. Given the richness
and variety of structures supported by C, we can say in hindsight that theWiman–Edge
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pencil deserved such a treatment, and indeed it seems odd that this had not happened
previously.

In the introduction of his Lectures on the Icosahedron [18], Felix Klein writes:
“A special difficulty, which presented itself in the execution of my plan, lay in the
great variety of mathematical methods entering in the theory of the Icosahedron.” We
believe that this is still verymuch true today, in ways Klein probably never anticipated.
This, by the way, is followed by the sentence: “On this account it seemed advisable
to take granted no specific knowledge in any direction, but rather to introduce, where
necessary, such explanations . . .”Whilewe arewriting only about one aspect ofKlein’s
book, in this paper we have tried to take Klein’s advice seriously.

The Wiman–Edge pencil

As mentioned above, the story starts with Wiman [24], who, while classifying alge-
braic curves of genus g = 4, 5 and 6 whose automorphisms group contains a simple
group, discovered a curve C0 of genus 6 with automorphism group isomorphic to the
symmetric group S5. On the last page of his paper, Wiman gives the equation of a
4-nodal plane sextic birationally isomorphic to W :

2
∑

x4yz + 2
∑

x3y3 − 2
∑

x4y2 +
∑

x3y2z + · · · − 6x2y2z2 = 0,

He reproduces this equation on p.208 of his later paper [25], related to the classification
of finite subgroups of the plane Cremona group. Wiman states there that the group of
birational automorphisms of C0 is generated by a group of projective transformations
isomorphic to the symmetric groupS4 together with the standard quadratic birational
involution with fundamental points at its three singular points.

Wiman erroneously claims that his curve is the unique non-hyperelliptic curve of
genus 6whose automorphismgroup contains a non-cyclic simple group, the alternating
groupA5 in his case. This mistake was corrected almost a hundred years later by Edge
[10,11], who placed W inside a pencil

λP(x, y, z) + μQ(x, y, z) = 0

of 4-nodal plane sextics each of whose members admits a group of automorphisms
isomorphic to A5. In projective coordinates different from the one chosen by Wiman,
the pencil is generated by the curves defined by the homogeneous equations:

P(x, y, z) = (x2 − y2)(y2 − z2)(z2 − x2) = 0

and

Q(x, y, z) = x6 + y6 + z6 + (x2 + y2 + z2)(x4 + y4 + z4) − 12x2y2z2 = 0,

where the Wiman curve W corresponds to the parameters (λ:μ) = (0 :1).
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Fig. 1 A schematic of the Wiman–Edge pencil C, consisting of genus 6 projective curves containing the
alternating group A5 in their automorphism group. The generic curve Ct ∈ C has Aut(Ct ) ∼= A5, while
there is a unique smooth member C0 ∈ C, the Wiman sextic, with more symmetry: Aut(C0) ∼= S5. There
are five singular members of C: two irreducible curves, 6-noded rational curves Cir and C ′

ir ; two curves Cc
and C ′

c, each consisting of five conics whose intersection graph is the complete graph on five vertices; and
a union C∞ of 10 lines whose intersection graph is the Petersen graph. The group S5 acts on C with A5
leaving each member of C invariant. This action has two S5-invariant members, C0 and C∞, while any
odd permutation switches Cir with C ′

ir and Cc with C ′
c

Edge showed that it is more natural to view the pencil as a pencil C of curves on a
quintic del Pezzo surface S obtained by blowing up the four base points of the pencil.
In this picture, the lift C0 to S ofWiman’s curve W is, as Edge discovered, “a uniquely
special canonical curve of genus 6” on S. That is, the standard action of S5 on the
quintic del Pezzo surface S permutes the 1-parameter family of smooth genus 6 curves
on S but leaves invariant a unique such curve, namely the Wiman sextic C0.

The action of S5 on S induces an action of S5 on C, whereby the subgroup A5
leaves each member of the pencil C invariant, and acts faithfully on each curve by
automorphisms. In addition to C0, the pencil C has precisely one other S5-fixed
member, a reducible curve that is a union of 10 lines intersecting in the pattern of the
Petersen graph (see Fig. 2), with the S5-action on this union inducing the standard
S5-action on the Petersen graph. The other four singular members of C come in pairs,
the curves in each pair being switched by any odd permutation. A schematic of C, and
the S5-action on it, is given (with explanation) in Fig. 1.

Since Edge’s discovery, the pencil C, which we propose to call the Wiman–Edge
pencil, has appeared in several modern research papers. For example, its nonsingular
members have been identified with the quotient of one of the two 1-parameter fam-
ilies of lines on a nonsingular member of the Dwork pencil of Calabi–Yau quintic
threefolds:

x51 + x52 + x53 + x54 + x55 + 5φx1x2x3x4x5 = 0

by the group of order 125 of obvious symmetries of the Dwork pencil (see [3,27]; we
elaborate a bit on the connection in the present paper).The Wiman–Edge occupies a
prominent place in the monograph [4] on birational geometry of algebraic varieties
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Geometry of the Wiman–Edge pencil, I: algebro-geometric aspects 883

with A5-symmetry. It also appears in a recent posting by Cheltsov–Kuznetsov–
Shramov [5].

This paper

The purpose of the present paper is two-fold. First, we reprove all previously known
facts about the Wiman–Edge pencil that can be found in Edge’s papers. Instead of
computations based on the pencil’s equation (used also in a later paper [14] whose
authors it seemswere not aware of Edges’s work), our proofs rely on the representation
theory of the symmetry group of the pencil, and also on the moduli-theoretical inter-
pretation of the quintic del Pezzo surface. Although our approach is not new, and has
been used also in [4] or [16], respectively, we would like to believe that our methods
are more conceptual and geometric.

The other goal of the paper is to answer some natural questions that arise while one
gets familiar with the pencil. Thus we give a purely geometric proof of the uniqueness
of theWiman–Edge pencil as anA5-invariant family of stable curves of genus 6, and in
particular, the uniqueness of theWiman curve W as a non-hyperelliptic curve of genus
6 with the group of automorphisms isomorphic to S5. In fact, we give two different
proofs of this result: an algebraic geometrical one given in Theorem 3.3 below, and a
second one in the sequel [12] that is essentially group-theoretical and topological.

Secondly, we give a lot of attention to the problem only barely mentioned by Edge
and later addressed in the paper [20]: describe an A5-equivariant projection of the
Wiman–Edge pencil to a Klein plane realizing an irreducible 2-dimensional projective
representation ofA5. It reveals a natural relation between theWiman–Edge pencil and
the symmetry of the icosahedron along the lines of Klein’s book [18]. In particular,
we relate the singular members of the pencil with some attributes of the geometry of
the Clebsch diagonal cubic surface as well with some rational plane curves of degree
6 and 10 invariant with respect to a projective group of automorphisms isomorphic to
A5 which were discovered by Roy Winger [26].

In the sequel [12] we will discuss some other aspects of the Wiman paper related
to hyperbolic geometry, the moduli space of curves and Shimura curves.

Section-by-section outline of this paper

Section 2 collects a number ofmostly known facts regarding quintic del Pezzo surfaces,
but with emphasis on naturality, so that it is straightforward to keep track of how the
automorphism group of such a surface acts on the vector spaces associated to it.
We also recall the incarnation of such a surface as the Deligne–Knudsen–Mumford
compactificationM0,5 and mention how some its features can be recognized in either
description. Perhaps new is Lemma 2.1 and its use to obtain Proposition 2.3.

Section 3 introduces the principal object of this paper, the Wiman–Edge pencil C.
Our main result here is that its smooth fibres define the universal family of genus 6
curves endowed with a faithful A5-action. We also determine the singular fibers of
C. Each of these turns out to be a stable curve. Indeed, the whole pencil consists of
all the stable genus 6 curves endowed with a faithful A5-action that can be smoothed
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as an A5-curve. We further prepare for the next two sections by describing S5-orbits
in M0,5, thus recovering a list due to Coble. This simplifies considerably when we
restrict to the A5-action and this what we will only need here.

The following two sections concern the projection to a Klein plane. These are
A5-equivariant projections as mentioned above. Section 4 concentrates on the global
properties of this projection, and proves among other things that the ramification
curve of such a projection is in fact a singular member of theWiman–Edge pencil. It is
perhaps worthwhile to point out that we prove this using the Thom–Boardman formula
for cusp singularities. This is the only instance we are aware of where such a formula
for a second order Thom–Boardman symbol is used to prove an algebro-geometric
property.We also show that the image of theWiman–Edge pencil in aKlein plane under
the projection is no longer a pencil, but a curve of degree 5 with two singular points.

As its title makes clear, Sect. 5 focusses on the images in the Klein plane of special
members of the Wiman–Edge pencil. We thus find ourselves suddenly staring at a
gallery of planar representations of degree 10 of genus 6 curves with A5-action, prob-
ably all known to our predecessors in the early 20th century if not earlier. Among them
stand out (what we have called) the Klein decimic and the Winger decimic. Less excit-
ing perhaps at first is the case of a conic with multiplicity 5; but this turns out to be the
image of a member of the Wiman–Edge pencil which together with itsS5-conjugate
is characterized by possessing a pencil of even theta characteristics.

In the final section, Sect. 6, we look at the S5-orbit space of M0,5 (which is
just the Hilbert–Mumford compactification of the space of binary quintics given
up to projective equivalence) and make the connection with the associated invariant
theory.

Conventions

Throughout this paper the base field is C and S stands for a quintic del Pezzo surface
(the definition is recalled in Sect. 2). The canonical line bundle �n

M of a complex
n-manifold M will be often denoted by ωM . As this is also the dualizing sheaf for M ,
we use the same notation if M is possibly singular, but has such a sheaf (we only use
this for curves with nodes).

For a vector space V , let P(V ) denote the projective space of 1-dimensional sub-
spaces of V and P̌(V ) = P(V ∨) denotes the projective space of hyperplanes of V . We
write Symd V for dth symmetric power of the vector space V . For a space or variety
X we denote by Symd X the quotient of Xd by the permutation group Sd .

2 Del Pezzo surfaces of degree 5

2.1 A brief review

Here we recall some known facts about quintic del Pezzo surfaces, i.e., del Pezzo
surfaces of degree 5, that one can find in many sources (such as [8]). By definition a
del Pezzo surface is a smooth projective algebraic surface S with ample anticanonical
bundle ω−1

S . For such a surface S, the first Chern class map Pic(S) → H2(S; Z) is

123



Geometry of the Wiman–Edge pencil, I: algebro-geometric aspects 885

an isomorphism. Denoting by KS ∈ H2(S; Z) the canonical class of S, i.e., the first
Chern class of ωS (and hence minus the first Chern class of the tangent bundle of S),
the self-intersection number d = (−KS)2 = K 2

S is called the degree of S. With the
exception of surfaces isomorphic to P

1×P
1 (which are del Pezzo surfaces of degree

8), a del Pezzo surface of degree d admits a birational morphism π : S → P
2 whose

inverse is the blow-up of 9 − d distinct points (so we always have d � 9) satisfying
some genericity conditions. But beware that when d � 6, there is more that one way
to contract curves in S that produce a copy of P

2.
When d = 5 (which we assume from now on), these genericity conditions amount

to having no three (of the four) points lie on a line so that we can adapt our coordinates
on P

2 such that the points in question, after having them numbered (p1, p2, p3, p4),
are the vertices of the coordinate system:

p1 = (1:0 :0), p2 = (0 :1:0), p3 = (0 :0 :1), p4 = (1:1:1).
This shows that any two quintic del Pezzo surfaces are isomorphic and also proves
that the automorphism group of S contains the permutation group S4. The complete
linear system | − KS| ..= P(H0(S, ω−1

S )) defined by nonzero sections of the dual of
the canonical line bundle of S is then the strict transform of the linear system in P

2 of
plane cubic curves passing through these points in the sense that a general member is
the strict transform of such a cubic. This is a linear system of dimension 9 − 4 = 5
and gives an embedding in a 5-dimensional projective space

S ↪→ PS
..= P̌(H0(S, ω−1

S ))

with image a surface of degree 5. We call S, thus embedded in a projective space, an
anticanonical model of S.

The automorphism group of S is, however, bigger thanS4: the embeddingS4 ↪→
Aut(S) extends to an isomorphism

S5 ∼= Aut(S)

given by assigning to the transposition (45) the lift of the Cremona transformation

(t0 : t1 : t2) �→ (t−1
0 : t−1

1 : t−1
2 ),

which indeed lifts to an involution of S (see [8, Theorem 8.5.8]).
The image of a nonsingular rational curve on S with self-intersection number −1

(in other words, an exceptional curve of the first kind) is a line on the anticanonical
model, and any such line is so obtained. Any line on the quintic del Pezzo surface S is
either the strict transform of a line through pi and pj , 1 � i < j � 4, or the preimage
of pi , i = 1, . . . , 4, so that there are

(4
2

) + 4 = 10 lines on S.
The strict transformPi of the pencil of lines through pi makes a pencilPi of rational

curves on S whose members are pairwise disjoint: they are the fibers of a morphism
from S to a projective line. The strict transform of the conics through p1, . . . , p4
makes up a pencil P5 with the same property. The intersection number of a member
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Fig. 2 The Petersen graph G.
This is the graph with vertices
corresponding to 2-element
subsets of {1, 2, 3, 4, 5}, with
two vertices {i, j} and {k, �}
connected by an edge precisely
when {i, j} ∩ {k, �} = ∅. The
graph G is the intersection graph
of the 10 lines on the quintic del
Pezzo surface, with a vertex for
each line and an edge connecting
vertices corresponding to lines
with nontrivial intersection
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of Pi with −KS is equal to the intersection number of a cubic with a line in P
2 minus

1 if i 
= 5, resp. cubic with a conic minus 4 if i = 5, hence is equal to 2. This is
therefore also a conic in the anticanonical model, and that is why we refer to Pi as
a pencil of conics and call the corresponding morphism from S to a projective line a
conic bundle.

Every pencil of conics has exactly three singular fibers; these are unions of two
different lines. For example, the pencil Pi , i 
= 5, has singular members equal to the
pre-images on S of the lines pi pj joining the point pi with the point pj , j 
= i . The
singular members of pencil P5 are proper transforms of the pairs of lines pi pj + pk pl

with all indices distinct.
It follows that each of 10 lines on S is realized as an irreducible component of

exactly three different pencils of conics. This allows one to label it with a 2-element
subset of {1, . . . , 5}, being the complement of the corresponding 3-element subset.
We thus obtain a bijection between the set of 10 lines and the collection of 2-element
subsets of {1, . . . , 5}, with two lines intersecting if and only if the associated 2-element
subsets are disjoint, or equivalently, when the two lines constitute a singular member
of one of the five pencils of conics. Thus the intersection graph G of the set lines, i.e.,
the graph whose vertex set is the set of lines and in which two vertices are connected
by an edge if and only if the associated lines intersect, is the Petersen graph (Fig. 2).
We see here Aut(S) also represented as the automorphism group of G.

The edges of the Petersen graph represent reducible conics on S, and there are
indeed 3×5 = 15 of them. The three reducible conics of a conic bundle are then
represented by three disjoint edges whose indices are three 2-element subsets of a
subset of {1, 2, 3, 4, 5} of cardinality 4. If we regard the missing item as a label for
the conic pencil, we see that Aut(S) ∼= S5 is realized as the full permutation group
of the set of conic pencils.

2.2 The modular incarnation

A quintic del Pezzo surface has the—for us very useful—incarnation as the Deligne–
Mumford moduli space of stable 5-pointed rational curves, M0,5, see [17]. In the
present case, this is also the Hilbert–Mumford (or GIT) compactification of M0,5,
which means that a point of M0,5 is uniquely represented up to automorphism by
a smooth rational curve C and a 5-tuple (x1, . . . , x5) ∈ C5 for which the divisor
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∑5
i=1(xi ) has all its multiplicities � 2. One of the advantages of either model is that

the S5-action is evident. The 10 lines appear as the irreducible components of the
boundary ∂M0,5 = M0,5�M0,5 of the compactification: these are the loci defined by
xi = xj , where {i, j} is a 2-element subset of {1, . . . , 5}. We thus recover the bijection
between the set of 10 lines and the collection of 2-element subsets of {1, . . . , 5}.

The conic bundles also have a modular interpretation, namely as forgetful maps: if
a point of M0,5 is represented by a Deligne–Mumford stable curve (C; x1, . . . , x5),
then forgetting xi , i = 1, . . . , 5, followed by contraction unstable components (and
renumbering the points by {1, 2, 3, 4} in an order preservingmanner) yields an element
ofM0,4. There is a similar definition in case a point ofM0,5 is represented in a Hilbert–
Mumford stable manner, but beware that a Hilbert–Mumford stable representative of
M0,4 is given uniquely up to isomorphism by a 4-tuple (x1, . . . , x4) ∈ C4 for which
the divisor

∑4
i=1(xi ) is either reduced or twice a reduced divisor; if for example

x1 = x2, then we also require that x3 = x4 (but x2 
= x3). The moduli spaceM0,4 is a
smooth rational curve and ∂M0,4 = M0,4�M0,4 consists of three points indexed by
the three ways we can partition {1, 2, 3, 4} into two 2-element subsets. The resulting
morphism fi : M0,5 → M0,4 represents Pi and over the three points of ∂M0,4 lie the
three singular fibres.

Let us focus for a moment on P5, in other words, on f5 : M0,5 → M0,4. Each xi ,
i = 1, . . . , 4, then defines a section M0,4 → M0,5 of f5, and f5 endowed with these
four sections can be understood as the “universal stable 4-pointed rational curve”.
Note that the images of these sections are irreducible components of ∂M0,5 and hence
lines in the anticanonical model. They are indexed by the unordered pairs {i, 5},
i = 1, . . . , 4. The singular fibers of f5 are those over the 3-element set ∂M0,4; each
such fiber is a union of two intersection lines, so that in this way all 10 lines are
accounted for.

The S5-stabilizer of the conic bundle defined by f5 is clearly S4. Let us take a
closer look at howS4 acts on f5. First observe that every smooth fiber of f5 (i.e., a strict
transform of a smooth conic) meets every fiber of every fi , i 
= 5, with multiplicity
one. We also note that S4 acts on the 3-element set ∂M0,4 as its full permutation
group, the kernel being the Klein Vierergruppe. So the Vierergruppe acts trivially on
M0,4, but its action on the universal pointed rational curve M0,5 is of course faithful.
The homomorphism S4 → S3 can also be understood as follows. If we are given
a smooth rational curve C endowed and a 4-element subset X ⊂ C , then the double
cover C̃ of C ramified at X is a smooth genus 1 curve. If we enumerate the points of
X by X = {x1, x2, x3, x4}, then we can choose x1 as origin, so that (C̃, x1) becomes
an elliptic curve. This then makes {x1, x2, x3} the set of elements of (C̃, x1) of order
2. Thus M0,4 can be regarded as the moduli space of elliptic curves endowed with a
principal level 2 structure. This also suggests that we should think of X as an affine
plane over F2; for this interpretation the three boundary points ofM0,4 are cusps, and
correspond to the three directions in this plane. We now can think of S4 as the affine
group of X , the Vierergruppe as its translation subgroup, and the quotient S3 as the
projective linear group PGL2(F2).

Choose an affine coordinate z for the base of M0,4 such that ∂M0,4 is the root
set of z3 = 1. Then the full permutation group of ∂M0,4 is the group of Möbius
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transformations consisting of the rotations z �→ ζ z and the involutions z �→ ζ/z, with
ζ 3 = 1. From this we see that this action has three irregular orbits: two 3-element
orbits: besides the root set of z3 = 1 which is ∂M0,4, the root set of z3 = −1, and
one 2-element orbit: {0,∞}. The root set of z3 = −1 is represented by P

1 with an
enumeration of the 4th roots of unity in C ⊂ P

1, and the third orbit is given by {0,∞}.
We will be more concerned with the last orbit that gives rise to two special conics

in the pencil. So every conic bundle has two special conics as fibers andS5 permutes
these 10 special conics transitively. Two distinct special conics intersect unless they
are in the same pencil. The two points 0,∞ have the sameS3-stabilizer in P

1 of order
3. In the action ofS4 on the total space of the pencil, the two special conics are fixed
by the subgroupA4. It follows from the preceding that these two fibers define the locus
represented by (x1, . . . , x5) ∈ C5 (with C a smooth rational curve) for which there
exists an affine coordinate z on C such that {z(x1), . . . , z(x4)} is the union of {∞} and
the root set of z3 = 1. Our discussion also shows that the subgroup A5 has two orbits
in that set, with each orbit having exactly one special conic in each conic bundle.

2.3 Representation spaces of S5

In what follows we make repeated use of the representation theory ofS5 and A5, and
so let us agree on its notation. In Tables 1 and 2, the columns are the conjugacy classes
of the group, indicated by the choice of a representative.We partially followed Fulton–
Harris [13] for the notation of the types of the irreducible representations ofS5. Here
1 denotes the trivial representation, sgn denotes the sign representation, V denotes the

Table 1 The character table of S5

type 1 (12) (12)(34) (123) (123)(45) (1234) (12345)

1 1 1 1 1 1 1 1

sgn 1 − 1 1 1 − 1 − 1 1

V 4 2 0 1 − 1 0 − 1

V ⊗ sgn 4 − 2 0 1 1 0 − 1

W 5 1 1 − 1 1 − 1 0

W ⊗ sgn 5 − 1 1 − 1 − 1 1 0

E ..= ∧2V 6 0 − 2 0 0 0 1

Table 2 The character table of
A5

type (1) (12)(34) (123) (12345) (12354)

1 1 1 1 1 1

V 4 0 1 −1 −1

W 5 1 − 1 0 0

I 3 − 1 0 (1 + √
5)/2 (1 − √

5)/2

I ′ 3 − 1 0 (1 − √
5)/2 (1 + √

5)/2
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Coxeter representation, that is, the standard 4-dimensional irreducible representation
ofS5 and E stands for

∧2V . Note that each of these representations is real and hence
admits a nondegenerate S5-invariant quadratic form, making it self-dual.

Our labeling of the irreducible representations of A5 overlaps with that ofS5, and
this is deliberately so: theS5-representations V and V ⊗ sgn become isomorphicwhen
restricted to A5, but remain irreducible and that is why we still denote them by V .
The same applies to W and W ⊗ sgn (and of course to 1 and sgn). On the other hand,
the restriction to A5 of S5-representation E ..= ∧2V is no longer irreducible, but is
isomorphic as an A5-representation I ⊕ I ′ (cf. Table 2). The representations I and I ′
differ by the outer automorphism of A5 induced by conjugation with an element of
S5�A5. Both I and I ′ are realized as the group of isometries of Euclidean 3-space
that preserve an icosahedron. In particular, they are real (and hence orthogonal).

We will often use the fact that the natural mapS5 → Aut(A5) (given by conjuga-
tion) is an isomorphism of groups. So the outer automorphism group of A5 is of order
2 and representable by conjugation with an odd permutation.

The isomorphism Aut(S) ∼= S5 depends of course on the model of S as a blow-up
P
2, but since Aut(S) permutes thesemodels transitively, this isomorphism is unique up

to an inner automorphism. This implies that the characters of Aut(S), or equivalently,
the isomorphism types of the finite dimensional irreducible representations of this
group, are naturally identified with those of S5.

Via this action ofS5 on S, all linear spaces naturally associated to S can bemade into
linear representations ofS5. For example, H2(S; C) contains the trivial representation,
spanned by the anticanonical class c1(S) = −KS . The intersection pairing gives an
integral, symmetric bilinear form on H2(S; Z). The orthogonal complement of KS in
H2(S; Z), denoted here by H2

0 (S; Z), contains (and is spanned by) a root system of
type A4, the roots being the elements of self-intersection −2. A root basis is

(
e1 − e2, e2 − e3, e3 − e4, e0 − e1 − e2 − e3

)

where e0 is the class of a preimage of a line in P
2 and ei is the class of the line over pi .

This identifies H2
0 (S; C) as an S5-representation with the Coxeter representation V .

The (classes of) lines themselves in H2(S; Z) make up an S5-orbit. In the language
of root systems, it is the orbit of a fundamental weight; for the given root basis this
weight is represented by the orthogonal projection of e4 in H2

0 (S; Q). Thus H2
0 (S; C)

is isomorphic to V as an S5-representation.
Another example is H0(S, ω−1

S ), a 6-dimensional representation ofS5. Using the
explicit action of S5 on S and hence on the space of cubic polynomials representing
elements of H0(S, ω−1

S ), we find that it has the same character as E = ∧2V . This is

why we shall write ES for H0(S, ω−1
S ), so that | − KS| = P(ES) and PS = P̌(ES).

2.4 The Plücker embedding

We here show how S can be obtained in an intrinsic manner as a linear section of the
Grassmannian of lines in projective 4-space. The naturality will make this automati-
cally Aut(S)-equivariant. Let C∞ denote the union of the 10 lines on S. It is clear that
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C∞ is a normal crossing divisor in S (under the modular interpretation of S ∼= M0,5
it is the Deligne–Mumford boundary).

Lemma 2.1 The sheaf of logarithmic differentials �1
S(logC∞) is globally generated.

The action of S5 on S makes the space of global sections

WS
..= H0(S;�1

S(logC∞))

an irreducible 5-dimensional S5-representation isomorphic to W .

Proof Denote by L the 10-element set of lines on S and consider the residue exact
sequence

0 → �1
S → �1

S(logC∞)
res−−→

⊕

L∈L
iL∗OL → 0,

where iL : L ↪→ S is the inclusion. All homomorphisms here are natural and the exact
sequence of cohomology gives an exact sequence of S5-representations:

0 → H0(S;�1
S(logC∞)) → C

L φ−→ H1(S;�1
S).

The S5-representation C
L is the permutation representation on the vertices of the

Petersen graph. Its character is that of 1⊕V ⊕W , as one can see by looking at pairs of
complementarypentagons insideof thePetersengraph.Wealsonote that H1(S;�1

S) ∼=
H2(S; C) is as a representation isomorphic to 1⊕V . The blow-up model makes it
obvious that H2(S; C) is generated by the classes of lines, so that the homomorphism
φ is surjective, and we obtain an isomorphism of representations

WS = H0(S;�1
S(logC∞)) ∼= W.

It remains to show that WS generates �1
S(logC∞). For this, we use the description

of S as the blow-up of P
2 in the vertices of its coordinate simplex. In terms of the

coordinates (t0 : t1 : t2), the logarithmic forms dt1/t1 − dt0/t0 and dt2/t2 − dt0/t0
generate the sheaf of differentials on P

2 outside the coordinate simplex and so they
define elements ζ1 and ζ2 of WS which generate �S�C∞ . Since Aut(S) is transitive
on the vertices of the Petersen graph, it remains to prove generation along just one
line, say the strict transform of t1 = 0. A straightforward computation shows that ζ1
and ζ2 take care of this, except at the point at infinity (where t0 = 0), but the origin
is included. Since Aut(S) is also transitive on the edges of the Petersen graph, this
finishes the proof. ��

Remark 2.2 A local computation shows right away that det�1
S(logC∞) = ωS(C∞).

SinceC∞ is a divisor ofω−2
S , the latter is isomorphic toω−1

S , so that c1(�1
S(logC∞)) =

−KS . The residue exact sequence allows one to compute c2(�1
S(logC∞)) alsowehave
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c(�1
S(logC∞)) = 1 + c1 + c2 = c(�1

S)
∏

L∈L(1 − [L])
= (1 + KS + c2(S))

∏

L∈L
(1 + [L] + [L]2).

As is well-known, c2(S) is the cohomology class in top degree whose value on the fun-
damental class is the Euler characteristic of S, which is 7 (since S is the blow-up of four
points inP

2). Using the identities L2 = −1 and
∑

L∈L[L] = −2KS , together with the
fact that the Petersen graph has 15 edges,we then find that 〈c2(�1

S(logC∞)), [S]〉 = 2.

Since �1
S(logC∞) is globally generated, for every x ∈ S the evaluation map

ex : WS → �1
S(logC∞)(x)) is onto. So ker(es) is of dimension 3 and the annihi-

lator of this kernel in W ∨
S is of dimension 2. We thus obtain a morphism

f : S → G(2, W ∨
S ) = G1(P(W ∨

S )) = G1(P̌(WS)).

Under this map, the pull-back of the dual of the tautological subbundle on the Grass-
mannian becomes isomorphic to �1

S(logC∞).

Proposition 2.3 The morphism f is a closed, S5-equivariant embedding. Its compo-
sition with the Plücker embedding

G1(P(W ∨
S )) ↪→ P̌(

∧2WS) ∼= P
9

is the anticanonical embedding into the subspace P̌(ES), where ES is identified with
a direct summand of the representation

∧2WS ∼= ES⊕(V ⊗sgn). (1)

In particular, the anticanonical model of S is S5-equivariantly isomorphic to the
intersection of G1(P(W ∨

S )) with the subspace P(E) in its Plücker embedding.

Proof A locally free sheaf E of rank r on a compact variety X that is globally
generated determines a morphism X → G(r, H0(E)∨) whose composite with the
Plücker embedding G(r, H0(E)∨) ↪→ P(H0(E)∨) is given by the invertible sheaf
det E. Applying this to our situation, we find that the composite of f with the Plücker
embedding is given by the complete linear system | − KS|. We know that it defines a
closed embedding, from this the first claim follows.

To see the second claim, we compute the character of the representation of S5 in∧2 WS by means of the formula χ∧2W (g) = (χW (g)2 − χW (g2))/2. The standard
character theory gives us the decomposition (1). ��
Remark 2.4 The linearmap F : V ⊗ sgn → ∧2W ∨ ofS5-representations found above
defines an equivariant linear embedding

P
4 ∼= P(V ) = P(V ⊗sgn) ↪→ P̌(

∧2 W ) ∼= P
9
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whose geometry is discussed in [8, Example 10.2.20]. We note that this gives rise to
a rational map

F̃ : P(V ) ��� P(W )

obtained as the composite of the Veronese map P(V ) → P(Sym2V ) and the projec-
tivization of the linear map

Sym2V
∧2F−−→ Sym2(

∧2W ∨) → ∧4W ∨ ∼= det(W ∨)⊗W.

It is clear that F̃ is givenby a4-dimensional linear systemof quadrics. Its indeterminacy
locus is where F(v) has rank � 2 instead of 4 (as one might expect) and consists of
five points in general position (so these are the vertices of a coordinate simplex of the
4-dimensional P(V )) and F̃ is then given by the linear system of quadrics through
these. TheS5-equivariant map F̃ appears inmodular settingwhichwe shall now recall
(and which is discussed for example in [8, Section 9.4.4]).

The moduli space M0,6 of stable 6-pointed genus zero curves is isomorphic to the
blow-up of P

3 at the five vertices of its coordinate simplex followed by the blow-up
of the proper transforms of the lines of this simplex (see [17]). There is a natural map
fromM0,6 to the Hilbert–Mumford compactification ofM0,6. The latter appears as the
image an M0,6 in a 4-dimensional projective space via the linear system of quadrics
in P

3 through the five coordinate vertices so that this reproduces a copy of our map �

above. The image of this map is a cubic hypersurface, called the Segre cubic S3.
The Segre cubic has 10 nodal points, each of which is the image of an exceptional

divisor over a line of the coordinate simplex. Observe that the modular interpre-
tation of the morphism M0,6 → S3 makes evident an action of S6, although in
the above model, only its restriction to the subgroup S5 is manifest. The ambient
4-dimensional projective space of the Segre cubic S3 is the projectivization of an irre-
ducible 5-dimensional representation ofS6 corresponding to the partition (3, 3) (see
[8, p. 470]). ��

2.5 The anticanonical model

Some of what follows can be found in Shepherd-Barron [23]; see also Mukai [19].
We have just seen that an anticanonical model of S is obtained as linear section of a

Grassmannian G1(W ∨
S ) for its Plücker embedding. It is well-known that the Plücker

equations define the image of G1(W ∨
S ) ↪→ P(

∧2W ∨
S ) = P̌(

∧2WS) as the intersection
of five quadrics: these are given by the map

∧2
W ∨

S → ∧4
W ∨

S = det(W ∨
S )⊗WS

α �→ α∧α

or rather by its dual det(WS)⊗W ∨
S → Sym2(

∧2WS). The latter is a nonzero map of
S5-representations. As we mentioned, the irreducible representation W is self-dual,
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and the character table of S5 shows that the (−1)-eigenspace of the transposition
(12) ∈ S5 in W has dimension 2. Hence det(WS) is the trivial representation and
det(WS)⊗W ∨

S can as an S5-representation be identified with the irreducible repre-
sentation WS . Thus we have obtained an S5-equivariant embedding

WS ↪→ Sym2(
∧2WS)

(unique up to scalars) and this realizesP(WS) as the linear systemof (Plücker) quadrics
in P̌(

∧2WS) that define G1(W ∨
S ). By restriction to E∨

S , we can also understand WS as

defining the linear system of quadrics in P̌(ES) that has S = G1(W ∨
S ) ∩ P̌(ES) as its

base locus. When thus interpreted, we will write IS(2) for WS .
The character of Sym2ES can be computed by means of the formula χSym2E (g) =

(χE (g2) + χE (g)2)/2. We then find that

Sym2ES ∼= W ⊕2⊕(W ⊗ sgn)⊕V ⊕1⊕sgn. (2)

We have already singled out the subrepresentation IS(2) as a copy of W and so the
remaining summands in (2) will add up to a representation that embeds in H0(S, ω−2

S ).
An application of Riemann–Roch or the explicit discussion below shows that this is
in fact an isomorphism, so that we have an exact sequence of S5-representations

0 → IS(2) → S2H0(S, ω−1
S ) → H0(S, ω−2

S ) → 0

and an S5-equivariant isomorphism

|ω−2
S | ∼= P̌(W ⊕ (W ⊗sgn)⊕V ⊕1⊕sgn) ∼= P

15.

The summands 1 and sgn in Sym2ES are explained by restricting the representation
ES to A5: then ES decomposes into two irreducible A5-representations: ES = I ⊕ I ′,
each of which is orthogonal. This means that (Sym2 I )A5 and (Sym2 I ′)A5 are of
dimension 1. If Q is a generator of (Sym2 I )A5, then its image Q′ under an element
of S5�A5 is a generator of (Sym2 I ′)A5. So Q + Q′ ∈ Sym2ES is S5-invariant
(it spans the 1-summand) and Q − Q′ ∈ Sym2ES transforms according to the sign
character (it spans the sgn-summand). The above discussion shows that their images
in H0(S, ω−2

S ) remain independent.

Corollary 2.5 The image of Q − Q′ in H0(S, ω−2
S ), which spans a copy of the sign

representation, has divisor C∞.

Proof As is well-known, ‘taking the residue at infinity’ identifies the space of rational
3-forms on C

3 that are invariant under scalar multiplication (i.e., are homogeneous of
degree zero) with the space of rational 2-forms on P

2. Thus

α ..= (dt0∧dt1∧dt2)2

t0t1t2(t0 − t1)(t1 − t2)(t2 − t0)
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can be understood as a rational section of ω2
P
2 whose divisor is minus the sum of

the six coordinate lines. It follows that π∗α can be regarded as a generating section
of ω2

S(C∞). Hence its inverse π∗α−1 becomes a generating section of ω−2
S (−C∞),

making H0(S, ω−2
S (−C∞)) anS5-invariant subspace of H0(S, ω−2

S ). Exchanging t1
and t2 clearly takes α to −α and so the span H0(S, ω−2

S (−C∞)) of π∗α−1 is a copy
of the sign representation in H0(S, ω−2

S ). It follows that π∗α−1 must be proportional
to the image of Q − Q′ in H0(S, ω−2

S ), so that the divisor of Q − Q′ is C∞. ��
Remark 2.6 We can make the canonical embedding and I2(S) explicit in terms of the
blow-up model of S. Let us first observe that the Petersen graph has twelve 5-cycles
(pentagons). The stabilizer subgroup of a 5-cycle is the dihedral subgroup D10 ofS5
of order 10. For example, the cycle formed by the vertices (12), (23), (34), (45), (15)
is stabilized by the subgroup generated by permutations (12345) and (25)(34). A
geometric interpretation of a 5-cycle is a hyperplane section of S which consists of a
pentagon of lines. Note that they come in pairs with respect to taking the complemen-
tary subgraph. A pentagon of lines, viewed as reduced divisor on S, is a member of
the anticanonical system of S. For our description of S as a blown-up P

2 these must
be transforms of triangles in P

2. The list of these triangles is as follows:

f0 = t1t2(t0 − t2), f ′
0 = t0(t0 − t1)(t1 − t2);

f1 = t1(t0 − t1)(t0 − t2), f ′
1 = t0t2(t1 − t2);

f2 = (t0 − t1)(t0 − t2) t2, f ′
2 = t0t1(t1 − t2);

f3 = t1t2(t0 − t1), f ′
3 = t0(t0 − t2)(t1 − t2);

f4 = t1(t0 − t2)(t1 − t2), f ′
4 = t0t2(t0 − t1);

f5 = t2(t1 − t2)(t0 − t1), f ′
5 = t0t1(t0 − t2).

A direct check gives that the left-hand column can be linearly expressed in terms of
the right-hand column (and vice versa), as follows:

f ′
0 = f1 − f2 + f5, f ′

1 = f0 − f3 + f5, f ′
2 = f0 − f3 + f4,

f ′
3 = f1 − f2 + f4, f ′

4 = f2 + f3 − f5, f ′
5 = f0 + f1 + f4.

But beware that in order to get actual of sections of ω−1
S , we need to multiply these

elements with (dt0∧dt1∧dt2)−1: the resulting 3-vector fields are then invariant under
scalar multiplication and have a residue at infinity that can be understood as an element
of H0(S, ω−1

S ). Note that ( f0, . . . , f5) is a basis of the linear space H0(S, ω−1
S ), and

so these basic elements can serve as the coordinates of an anticanonical embedding
S ↪→ P

5. Since fi f ′
i = f j f ′

j , we see that S is contained in the intersection of quadrics
defined by equations xi x ′

i − xj x ′
j = 0, where x ′

i is the linear form in x0, . . . , x5 that
expresses f ′

i in terms of the f0, . . . , f5. The five linear independent quadratic forms
xi x ′

i − x0x ′
0, i = 1, . . . , 5, then give us the defining equations for S in P

5. We easily

check that the quadratic form
∑6

i=1 xi x ′
i corresponding to the sum of pentagons of

lines spans the sgn summand. It cuts out on S the union C∞ of lines on S. The linear
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space spanned by quadratic forms {xi x ′
i }6i=1 decomposes as the direct sum sgn⊕W .

As we have already observed, the space of quadrics V (xi x ′
i − x6x ′

6) span the kernel
IS(2) of Sym2H0(S, ω−1

S ) → H0(S, ω−2
S ).

It is a priori clear thatS5 permutes the pentagons of lines listed above, but we see
that it in fact preserves the 12-element set and the preceding discussion makes explicit
how.

3 The Wiman–Edge pencil and its modular interpretation

3.1 The Wiman–Edge pencil and its base locus

We found in Sect. 2.5 that there are exactly twoS5-invariant quadrics on P̌(ES), one
defined by Q + Q′ and spanning the 1-summand, the other by Q − Q′ and spanning
the sgn-summand and (by Corollary 2.5) cutting out on S the 10-line union C∞. The
trivial summand spanned by Q + Q′ cuts out a curve that we shall call the Wiman
curve and denote by C0. We shall find it to be smooth of genus 6. We observe that the
plane spanned by Q and Q′ is the fixed point set ofA5 in Sym2ES and hence defines a
pencil C of curves on S whose members come with a (faithful) A5-action. This pencil
is of course spanned by C0 and C∞ and these are the only members that are in fact
S5-invariant. We refer to C as the Wiman–Edge pencil; we sometimes also use this
term for its image in P

2 under the natural map π : S → P
2.

Lemma 3.1 (Base locus) The base locus � ..= C0∩C∞ of C is the unique 20-element
S5-orbit in C∞. The curves C0 and C∞ intersect transversally so that each member
of the Wiman–Edge pencil is smooth at �.

Proof Since this C0∩C∞ is S5-invariant, it suffices to determine how a line L on S
meetsC0.We first note that the intersection numberC0 · L (taken on S) is−2KS · [L] =
2.Whenwe regard L as an irreducible component ofC∞, or rather, as defining a vertex
of the Petersen graph, then we see that the other lines meet L in three distinct points
and that the S5-stabilizer of L acts on L as the full permutation group of these three
points. So if we choose an affine coordinate z on L such that the three points in question
are the third roots of 1, then we find that the S5-stabilizer of L acts on L with three
irregular orbits: two of size 3 (the roots of z3 − 1 and the roots of z3 + 1) and one
of size 2 ({z = 0, z = ∞}). It follows that the C0 meets L in the size 2 orbit. In
particular, the intersection of C0 with C∞ is transversal and contained in the smooth
part of C∞. ��

3.2 Genus 6 curves with A5-symmetry

Any reduced C ∈ C, being a member of |−2KS|, has its normal sheaf in S isomorphic
toOC ⊗ω−2

S . By the adjunction formula, its dualizing sheafωC is therefore isomorphic
to

OC ⊗ω−2
S ⊗OS ωS = OC ⊗ω−1

S = OC (1).

123



896 I. Dolgachev et al.

In particular

deg(ωC ) = deg(OC ⊗ω−1
S ) = (−2KS) ·(−KS) = 10.

It follows that C has arithmetic genus 6, that the natural map ES → H0(C, ωC ) is an
A5-equivariant isomorphism and that C is canonically embedded in PS . Our goal is
to give the Wiman–Edge pencil a modular interpretation.

Proposition 3.2 (A5 and S5 orbit spaces) Let C be a smooth projective curve genus
6 endowed with a faithful action of A5. Then A5\C is of genus zero and A5 has four
irregular orbits with isotropy orders 3, 2, 2 and 2.

If the A5-action extends to a faithful S5-action, then S5\C is of genus zero and S5
has three irregular orbits with isotropy orders 6, 4 and 2. The union of these irregular
S5-orbits is also the union of the irregular A5-orbits: the S5-orbit with isotropy order
6, resp. 4, is an A5-orbit with isotropy order 3, resp. 2, and the S5-orbit with isotropy
order 2 decomposes into twoA5-orbits with the same isotropy groups. (In other words,
the double coverA5\C → S5\C only ramifies over the points of ramification of order
6 and 4.) Such a curve exists.

See also [4, Theorem 5.1.5].

Proof The stabilizer of a point of a smooth curve under a faithful finite group action
is cyclic. So when G = S5, the stabilizer of a point of C is a cyclic group of order
i � 6, but when G = A5, it cannot be of order 4 or 6. Let for i > 1, ki be the number
of G-orbits of size |G|/ i . By the Hurwitz formula we have

10

|G| = 2(g′ − 1) +
6∑

i=2

i − 1

i
ki ,

where g′ is the genus of the quotient.
For G = S5 we have |G| = 120 and so this shows right away that g′ = 0. It follows

that

25 = 6k2 + 8k3 + 9k4 + 48

5
k5 + 10k6.

It is then immediate that k5 = 0 and k6 � 1. We find that the only solutions for
(k2, k3, k4, k6) are (1, 0, 1, 1) and (0, 2, 1, 0). The latter possibility clearly does not
occur because it would imply that an element of order 6 acts without fixed points,
contradicting the Hurwitz equality 10 = 6(2g′ − 2).

For G = A5, we have |G| = 60 and hence we then also have g′ = 0. The formula
now becomes 13 = 3k2 + 4k3 + 24k5/5, which has as only solution (k2, k3, k5) =
(3, 1, 0).

The assertion concerning themapA5\C → S5\C formally follows from the above
computations.

The last assertion will follow from the Riemann existence theorem, once we find
a regularS5-covering of P

1
�{0, 1,∞} with the simple loops yielding monodromies
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α, β, γ ∈ S5 of order 6, 4, 2 respectively, which generateS5 and for which αβγ = 1.
This can be arranged: take α = (123)(45) and β = (1245) and γ = (14)(23). ��
We next show that any smooth projective curve genus 6 endowed with a faithful action
ofA5 appears in theWiman–Edge pencil. For this we shall invoke a theorem ofMukai
[19], which states that a canonical smooth projective curve C of genus 6 lies on a
quintic del Pezzo surface if and only if it is neither bielliptic (i.e., it does not double
cover a genus 1 curve), nor trigonal (it does not triple cover a genus zero curve), nor
isomorphic to a plane quintic.

Theorem 3.3 Every smooth projective curve of genus 6 endowed with a faithful A5-
action is A5-equivariantly isomorphic to a member of the Wiman–Edge pencil. This
member is unique up to the natural action of the involution S5/A5.

Proof Let C be such a curve. We first show that C is not hyperelliptic, so that we have
a canonical model. If it were, then it is so in a unique manner so that the set of its 14
Weierstraß points is in invariant with respect to A5. But we found in Proposition 3.2
thatA5 has in C one irregular orbit of size 20, three of size 30, and no others, and thus
such an invariant subset cannot exist.

From now onwe assume thatC is canonical.We first show that it is neither trigonal,
nor bielliptic, nor isomorphic to a plane quintic.

C is trigonal: Thismeans thatC admits a base point free pencil of degree 3. This pencil
is then unique [2, p. 209] so that the A5-action on C permutes the fibers. Consider the
associated morphism C → P

1. The Riemann–Hurwitz formula then tells us that the
ramification divisor of this morphism on C has degree 16. It must beA5-invariant. But
our list of orbit sizes precludes this possibility and so such a divisor cannot exist.

C is isomorphic to a plane quintic: It is then so in a unique manner [2, p. 209] and
hence the A5-action on C will extend as a projective representation to the ambient P

2.
The resulting projective representation cannot be reducible, for then A5 has a fixed

point, p ∈ P
2 say, and the action of A5 on the tangent space TpP

2 will be faithful. But
as Table 2 shows, A5 has no faithful representation. So the projective representation
is irreducible and hence the projectivization of copy of I or I ′. Either representation
is orthogonal and so the ambient projective plane contains an A5-invariant conic. The
quintic defines on this conic an effective divisor of degree 10. Since A5 acts on the
conic (a Riemann sphere) as the group ofmotions of a regular icosahedron, noA5-orbit
on this conic has fewer than 12 points and so such a divisor cannot exist.

C is bielliptic: This means that C comes with an involution ι whose orbit space is of
genus 1. Let G ⊂ Aut(C) be the subgroup generated by A5 and ι. By a theorem of
Hurwitz, |Aut(C)| � 84(6 − 1) = 420 and so [G :A5] can be 1, 2, 4 or 6.

Let us first deal with the index 6 case. For this we note that the G-action (by left
translations) on G/A5 has a kernel contained in A5. This kernel is a normal subgroup
and contained in A5. Since A5 is simple, this kernel is either trivial or all of A5. It
cannot be all of A5, because G/A5 is then cyclic of order 6 and hence cannot be
generated by the image of ι. It follows that G acts faithfully on G/A5 so that we get
an embedding of G in S6. Its image is then a subgroup of index 2 and so this image
must be A6: G ∼= A6. We now invoke the Hurwitz formula to this group action: the
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stabilizer of a point is cyclic of order � 6 and so if for a divisor i of |G|, ki is the
number of G-orbits in C of size |G|/ i , then

10

360
= 2(g′ − 1) +

6∑

i=2

i − 1

i
ki ,

where g′ is the genus of the quotient. This implies that g′ = 0 and then this comes
down to

73 = 18k2 + 24k3 + 27k4 + 144

5
k5 + 30k6.

It is clear that k5 must be zero. Since the left-hand side is odd, we must have k4 = 1,
and we then find that no solution exists.

If the index � 4, then the argument above gives a map G → S4. Its kernel is
contained in A5, but cannot be trivial for reasons of cardinality. It follows that the
kernel equals A5, so that A5 is normal in G. Since the image of ι generates G/A5, it
then follows that the index is 1 or 2.

In the last case, G is either isomorphic to A5×C2 or toS5, depending on whether
or not conjugation by ι induces in A5 an inner automorphism. In the first case, the
action ofA5 descends to a faithful action on the elliptic curve. This would makeA5 an
extension of finite cyclic group by an abelian group, which is evidently not the case.
It follows that G ⊂ S5 and that ι is conjugate to (12) or to (12)(34).

Denote by χ the character of theS5-representation H0(C,�C ). Since the quotient
of C by ι has genus 1, we have χ(ι) = −5+1 = −4. If ι is conjugate to (12), then we
then read off from Table 1 that χ is the character of 1⊕sgn⊕5 or sgn⊕2⊕(V ⊗ sgn).
Its restriction to A5 is then the trivial character resp. 1⊕2⊕V . But this contradicts the
fact that the A5-orbit space of C has genus zero. If ι is conjugate to (12)(34), then we
then read off from Table 2 that the A5-representation H0(C,�C ) takes on ι a value
� −2, which contradicts the fact that this value equals −4.

According to Mukai [19], it now follows that C lies on a weak quintic del Pezzo
surface SC in P̌(H0(C, ωC )). It may have singular points, and in fact quadric sections
of a weak del Pezzo quintic form a divisor D in the moduli space M6. However, we
claim that C must lie on a smooth del Pezzo surface.

To prove this claim, first note that if C lies on a singular surface then it has fewer
than five g1

4’s, where by a g1
4 we mean a linear series of degree 4 and dimension 1. In

the plane model this is because three points are collinear or two points coincide. The
five g1

4’s are defined by four pencils through nodes of the sextic and the pencil of conics
through four nodes. In the singular case, when, we choose three collinear points, there
is no pencil of conics. The divisor D in M6 mentioned above is characterized by the
fact that it has at most four g1

4’s. Now, A5 acts on these g1
4’s, and hence leaves them

all invariant. Thus it preserves a map C → P
1 of degree 4. This is impossible since

there are no invariant subset of ramification points. This proves the claim.
It is also known [23] that SC is unique. This uniqueness property implies that the

faithful A5-action on C , which extends naturally to P̌(H0(C, ωC )), will leave SC
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invariant. A choice of an A5-equivariant isomorphism h : SC
∼=−→ S will then identify

C in an A5-equivariant manner with a member of the Wiman–Edge pencil. Any two

A5-equivariant isomorphisms h, h′ : SC
∼=−→ S differ by an automorphism of S, so by

an element g ∈ S5. But the A5-equivariance then amounts to g centralizing A5. This
can happen only when g is the identity. So h is unique. ��
Let B denote the base of the Wiman–Edge pencil (a copy of P

1) so that we have
projective flat morphism C → B. Recall that S5 acts on the family in such a manner
that the action on C → B is through an involution ι which has two fixed points. We
denote by B◦ ⊂ B the locus over which this morphism is smooth. So the restriction
over B◦ is a family of smooth projective genus 6 curves endowed with a faithful
A5-action. It has the following modular interpretation.

Theorem 3.4 (Universal property) The smooth part of the Wiman–Edge pencil,
CB◦ → B◦, is universal in the sense that every family C′ → B′ of smooth pro-
jective genus 6 curves endowed with a fiberwise faithful A5-action fits in a unique
A5-equivariant fiber square

C′ CB◦

B′ B◦.

Moreover, the natural morphism B◦ → M6 factors through an injection 〈ι〉\B◦ ↪→
M6.

Proof Theorem 3.3 (and its proof) has an obvious extension to families of genus 6-
curves with A5-action. This yields the first assertion. If t, t ′ ∈ B◦ are such that Ct

and Ct ′ are isomorphic as projective curves, then as we have seen, an isomorphism
Ct ∼= Ct ′ is induced by an element of S5 and so t ′ ∈ {t, ι(t)}. ��
We will find in Sect. 3.3 that the singular members of the Wiman–Edge pencil are all
stable. We found already one such curve, namely the union of the 10 lines, and so this
element will map inM6 to the boundary.

From now on we identify the base of Wiman–Edge pencil with B.

Corollary 3.5 The Wiman curve C0 is smooth and is S5-isomorphic to the curve
found in Proposition 3.2. It defines the unique ι-fixed point of B◦.

Proof By Theorem 3.4, there is a unique member of the Wiman–Edge pencil whose
base point maps the unique point of B◦ which supports a smooth genus 6 curve with
S5-action. TheWiman–Edge pencil has twomemberswithS5-action, one is the union
of the 10 lines and the other is the Wiman curve. So it must be the Wiman curve. ��
Corollary 3.6 Let C be a smooth projective curve genus 6 endowed with a faith-
ful action of A5. If the resulting map φ : A5 ↪→ Aut(C) is not surjective, then it
extends to an isomorphism S5 ∼= Aut(C), and C = C0 is the Wiman curve. The
A5-representation, resp. S5-representation, H0(C, ωC ) is equivalent to I ⊕ I ′, resp.
E, and H1(C; C) is equivalent to I ⊕2⊕ I ′⊕2, resp. E⊕2.
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Proof Since the A5-curve C is represented by a member of the Wiman–Edge pencil,
we can assume it is a member of that pencil. Since C is canonically embedded, an
automorphism of C extends naturally of the ambient projective space and hence also
to S (as it is the unique quintic del Pezzo surface containing C). This implies that
Aut(C) ⊂ S5. This inclusion is an equality precisely when C is the Wiman curve.

As for the last assertion, we know that the representation space H0(C, ωC ) is as
asserted, since it is a member of theWiman curve. The representations I ⊕ I ′, resp. E ,
are self-dual, and since H1(C, C) contains H0(C, ωC ) as an invariant subspace with
quotient the (Serre-)dual of H0(C, ωC ), the last assertion follows also. ��
Remark 3.7 If an A5-curve C represents a point z ∈ B◦, then A5 acts nontrivially
(and hence faithfully) on H0(C, ω2

C ) and hence also on its Serre dual H1(C, ω−1
C ).

Since A5 is not a complex reflection group, a theorem of Chevalley implies that the
orbit space A5\H1(C, ω−1

C ) must be singular at the image of the origin. The local
deformation theory of curves tells us that when A5 is the full automorphism group
of C , the germ of this orbit space at the origin is isomorphic to the germ of M6 at
the image of z. Hence B◦ maps to the singular locus of M6. (This is a special case
of a theorem of Rauch–Popp–Oort which states that any curve of genus g � 4 with
nontrivial group of automorphisms defines a singular point ofMg .)

3.3 Singular members of the Wiman–Edge pencil

The singular members of theWiman–Edge pencil were found by Edge [11]. Amodern
proof of his result can be found in [4, Theorem 6.2.9]. Here we obtain them in a
different manner as part of a slightly stronger result that we obtain with a minimum
of computation.

Let us begin with an a priori characterization of the reducible genus 5 curves with
A5-action that occur in the Wiman–Edge pencil.

Lemma 3.8 There are precisely two reducible members Cc and C ′
c of C distinct from

C∞; each is is a stable union of five special conics whose intersection graph is A5-
equivariantly isomorphic to the full graph on a 5-element set. Any element of S5�A5
exchanges Cc and C ′

c.

Proof Let C be such a member of C and let Y be an irreducible component of C . Then
Y cannot be a line and so its degree d ..= −Y · KS in the anticanonial model must be
� 2. Since A5 has no subgroup of index < 5, the number r of irreducible components
in the A5-orbit of Y , must be � 5. But we also must have rd � deg(C) = 10, and so
the only possibility is that (d, r) = (2, 5).

An irreducible, degree 2 curve in a projective space is necessarily a smooth conic.
Its A5-stabilizer has index 5 in A5, and so must be S5-conjugate to A4. This implies
that Y is a special conic. The five irreducible components of its A5-orbit lie in distinct
conic bundles Pi , and we number them accordingly Y1, . . . , Y5. For 1 � i < j � 5,
any smooth member of Pi meets any smooth member of Pj with multiplicity one,
and so this is in particular true for Yi and Yj . Hence the set of singular points of C
is covered in an A5-equivariant manner by the set of 2-element subsets of {1, . . . , 5}.
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The action of A5 on this last set is transitive, and so either the singular set of C is a
singleton {p} (a point common to all the irreducible components) or the intersections
Yi ∩ Yj , 1 � i < j � 5, are pairwise distinct. The first case is easily excluded, for
p must then be a fixed point of the A5-action and there is no such point. So C is as
described by the lemma.

The sum of the classes of the five conic bundles isS5-invariant and hence propor-
tional to −KS . The intersection product with −KS is 5.2 = 10 and hence this class is
equal to−2KS , in other words, the class of theWiman–Edge pencil. Since anA5-orbit
of a special conic takes precisely one member from every conic bundle, its follows
that the sum of such an orbit indeed gives a member of C. There two such orbits and
so we get two such members. ��
There are precisely two faithful projective representations of A5 on P

1 up to equiva-
lence, and they only differ by precomposition with an automorphism of A5 that is not
inner. We will refer to theses two representations as the Schwarzian representations
of A5. Both appear as the symmetry groups of a regular icosahedron drawn on the
Riemann sphere. This action has three irregular orbits, corresponding to the vertices,
the barycenters of the faces and the midpoints of the edges, and so are resp. 12, 20 and
30 in size. Their points come in (antipodal) pairs and the A5-action preserves these
pairs. We give a fuller discussion in Sect. 4.1.

Lemma 3.9 There exists an irreducible stable curve C of genus 6 with six nodes
endowed with a faithful A5-action. Such a C is unique up to an automorphism of A5.

Proof Let C be such a curve with six nodes and denote by D ⊂ C its singular set.
Then the normalization of C̃ → C is of genus zero: C̃ ∼= P

1. If D̃ ⊂ C̃ denotes the
preimage of D, then D̃ consists of 12 points that come in six pairs. The A5-action on
C̃ lifts to C̃ and will preserve D̃ and its decomposition into six pairs. From the above
remarks it follows that A5 acts on C̃ as the symmetry group of an icosahedron drawn
on C̃ which has D̃ as vertex set and such that antipodal pairs are the fibers of C̃ → C .
This shows both existence and uniqueness up to an automorphism of A5. ��
Proposition 3.10 An irreducible singular member of the Wiman–Edge pencil is nec-
essarily as in Lemma 3.9: a stable curve with six nodes and of geometric genus zero.
It appears in the Wiman–Edge pencil together with its outer transform.

Proof We have already encountered the singular members C∞ and Cc, C ′
c. A well-

known formula (see, for example, [15, p. 509–510]) applied to theWiman pencil gives

e(S) − e(C)e(P1) + C ·C =
∑

t∈B
(e(Ct ) − e(C))

where e( ·) stands for the Euler–Poincaré characteristic, C denotes a general fiber and
Ct denotes a fiber over a point t ∈ B. The left-hand side equals 27 − (−20) = 47.
The reducible fibers C∞, Cc, C ′

c contribute to the right hand side 15+ 2 ·10 = 35, so
that there is 12 left as the contribution coming the irreducible fibers.

It is known that e(Ct )− e(C) is equal to the sum of the Milnor numbers of singular
points of Ct . We know that A5 leaves invariant each fiber, but that no fiber other than
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C∞ (which is reducible) or the Wiman curve C0 (which is smooth) is S5-invariant.
In other words, the irreducible fibers come in pairs. Since A5 cannot fix a point on
S (because it has no a nontrivial linear representations of dimension 2 and hence
cannot act nontrivially on the tangent space at this point), and a proper subgroup of
A5 has index � 5, the irreducible fibers come as a single pair, with each member
having exactly six singular points, all of Milnor number 1, that is, having six ordi-
nary double points. Hence the normalization of such a fiber is a rational curve as in
Lemma 3.9 ��
We sum up with the following.

Corollary 3.11 (Classification of singular members of C) Each singular member of
the Wiman–Edge pencil C is a stable curve of genus 6 with A5-action. The set of these
curves is a union of three sets:

(lines) C∞, a union of 10 lines with intersection graph the Petersen graph.
(conics) a pair Cc, C ′

c, each of which is a union of five conics whose intersection
graph is the complete graph on five vertices.

(irred) a pair Cir, C ′
ir of irreducible rational curves, each with six nodes.

The action of S5 on C leaves C∞ invariant; the induced action on the set of 10 lines
of C∞ induces an action on the corresponding intersection graph that is isomorphic
to the S5-action on the Petersen graph. The action of any odd permutation of S5 on
C interchanges Cc and C ′

c, and also interchanges Cir and C ′
ir .

Remark 3.12 Our discussion in Sect. 2.1 shows that Cc ∪ C ′
c, when regarded as a

curve on M0,5, meets M0,5 in the locus parameterizing 5-pointed rational curves
(C; x1, . . . , x5)with the property that there exists an affine coordinate z forC such that
{x, . . . , x5} contains the union of {0} and the roots of z3 = 1. So we can characterize
the Wiman–Edge pencil on M0,5 as the pencil which contains in |∂M0,5| and these
two loci. It is desirable to have a modular interpretation of this pencil.

3.4 Connection with the Dwork pencil

Since the singular members of the Wiman–Edge pencil also play a special role in the
work of Candelas et al. [3], this is perhaps a good place to make the connection with
that paper. Let p = (p1, . . . , p5) be distinct points of P

1. As Zagier [27] points out,
there exist linear forms �i on C

2 defining pi , such that

�1
5 + · · · + �5

5 = 5ψ�1�2�3�4�5

for some ψ ∈ C with the 5-tuple (�1
5, �2

5, �3
5, �4

5, �5
5) being unique up to a common

scalar (so that ψ5 only depends on p1, . . . , p5). In other words,

� ..= [�1 : · · · :�5] : P
1 → P

4

maps to a line on a member of the Dwork pencil, that is, the pencil of quintic 3-folds
Xψ ⊂ P

4 defined by z15 + · · · + z55 = 5ψz1z2 z3z4z5, such that the coordinate
hyperplane zi = 0 defines pi .
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This construction is essentially PGL2(C)-equivariant and has some symmetries,
perhaps the most obvious ones being its S5-symmetry. But we also have acting the
group T [5] ∼= μ5

4 of order 5 elements in the diagonal torus T of PGL5(C). Together
withS5 this gives a faithful action of the subgroupS5�T [5] ⊂ PGL5(C) on the total
space of the pencil. It acts on the parameter ψ through a character S5�T [5] → μ5,
the latter being given as a nontrivialS5-invariant character χ : T [5] → μ5. So ker(χ)

is as a group isomorphic to μ5
3 and every Xψ is stabilized by S5� ker(χ). A good

way to express this is that we have thus obtained the following:

(i) an unramified T [5]-covering T0,5 → M0,5 endowed with an action S5�T [5]
which extends the T [5]-action and is compatible with the S5-action on M0,5,

(ii) a regular functionψ : T0,5 → C, equivariant with respect to the above character
(so that ψ5 is defined as an S5-invariant function on M0,5),

(iii) anS5�T [5]-equivariant lift of ψ from T0,5 to the Fano variety Fano(X/P
1) of

lines on the Dwork pencil.

The main results of [3] can then be summed up as follows:

Afiber ofM0,5
ψ5−→ C is the sumof amember of theWiman pencil plus its transform

under an odd permutation and for a suitable parametrization of the pencil base B by
a parameter φ such that C0, resp. C∞, is defined by φ = 0, resp. φ = ∞, and we
have 32ψ−5 = φ2+3/4. Moreover, the morphisms above with their symmetry extend
(uniquely) over the blow-up C → M0,5 of M0,5 in � (recall that this is simply the
total space of the Wiman–Edge pencil φ : C → P

1): we have a T [5]-cover π : C̃ → C

with a compatible S5�T [5]-action and an equivariant extension of the Fano map to
C̃ which makes the Dwork pencil and the symmetrized Wiman–Edge pencil fit in the
following commutative diagram:

Fano(X/P
1) C̃ πF

ψ

C

φ2

P
1

P
1.

Here the slant map is the structural map and the bottom map is given by ψ �→
32ψ−5−3/4. Forψ 
= 0,∞, C̃ψ parametrizes all the nonisolated points of Fano(Xψ);
for ψ5 
= 27/3 it consists of two irreducible curves, each of which is an unramified
ker(χ)-cover of C±φ (of arithmetic genus 626), but for ψ5 = 27/3, there is only one
irreducible curve (which covers the Wiman curve).

The singular members of the Wiman–Edge pencil are accounted for as follows: the
Fermat quintic (ψ = 0) yields the sum of 10 lines with multiplicity 2 (2C∞), the sum
of the five coordinate hyperplanes (ψ = ∞) yields Cc + C ′

c, and if ψ is a 5th root of
unity, we get Cir + C ′

ir .

3.5 Plane model of the Wiman–Edge pencil

Letπ : S → P
2 be the blowing-downmorphism.TheWiman–Edgepencil is the proper

inverse transform of a pencil of curves of degree 6with points ofmultiplicity� 2 at the
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fundamental points invariant with respect to the Cremona group G of transformations
isomorphic to A4. Following Edge, we choose the fundamental points of π−1 to be
the points

(−1:1:1), (1:−1:1), (1:1:−1), (1:1:1).

The group generated by projective transformations that permute the coordinates and
their sign changes is isomorphic toS4, where the sign changes are even permutations
of order 2. Together with the additional symmetry defined by the Cremona involution
T with the first reference points, we obtain a subgroup of Cremona transformations
isomorphic toS5. The subgroupA5 is generated by cyclic permutations, sign changes
and the transformation T .

Let F = 0 be the equation of a curve from the Wiman–Edge pencil. The condition
that F is invariant with respect the sign changes shows that F must be a combination
of monomials xa ybzc with a, b, c even. This allows us to write

F = a(x6 + y6 + z6) + b(x4y2 + y4z2 + z4x2)

+ c(x4z2 + y4x2 + z4y2) + dx2y2z2.

The additional conditions that 3a+3b+3c+d = 0will guarantee that the fundamental
points are singular points. The Cremona involution T is given by

σ :(x : y :z) �→ (− x2 + y2 + z2 + xy + xz + yz :x2 − y2 + z2 + xy + xz + yz

:x2 + y2 − z2 + xy + xz + yz
)

The invariance of F with respect to T gives (a, b, c) is a linear combination of (2, 1, 1)
and (0, 1,−1, 0). This gives the equation of the Wiman–Edge pencil

F = λ
(
x6 + y6 + z6 + (x2 + y2 + z2)(x4 + y4 + z4) − 12x2y2z2

)

+ μ(x2 − y2)(y2 − z2)(x2 − z2) = 0

We check that the Wiman curve B is the member of the pencil with (λ:μ) = (1:0).
Computing the partial derivatives, we find that the curve is indeed smooth confirming
Corollary 5.10 (Fig. 3).

The base locus of the pencil should be a subscheme of length 62 = 36. The four
reference points contribute 16 to this number, the rest is the image of 20 base points
of the Wiman–Edge pencil on S in the plane. It easy to find them. Each line through
two fundamental points intersects C0 at two nonsingular points, this gives us 12
points:

(
√−3 :±1:±1) and (±1:√−3 :±1) and (±1:±1:√−3).

The remaining eight points are on the exceptional curves where they represent the
directions of the tangent lines to the branches of singular points of B. The equations
of the four pairs of these tangent lines are
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Fig. 3 Two views of a piece of the Wiman sextic (the image of the Wiman curve in P
2)

(x + εy + ε2z)(x + ε2y + εz) = 0,

(x + εy − ε2z)(x + ε2y − εz) = 0,

(x − εy + ε2z)(x − ε2y + εz) = 0,

(x − εy − ε2z)(x − ε2y − εz) = 0,

where ε = (−1 + √−3)/2 is a primitive root of 1. One checks that each tangent line
passing through pi together with three of the lines 〈pi , pj 〉, j 
= i, form a harmonic
4-tuple of lines in the pencil of lines through pi (1).

Choose one of the branch tangents, say x + εy + ε2z = 0. It intersects the Wiman
sextic B at two nonsingular points (1:√−3:1) and (1:−1:√−3). We see that each
double point of W is a biflecnode, i.e., the branch tangents at singular point intersect
the curve at this point with multiplicity 4 instead of expected 3.

The singular irreducible members Cir , resp. C ′
ir , are proper transforms of the mem-

bers of the pencil corresponding to the parameters (λ:μ) = (1:5√5), resp. (1:−5
√
5).

The singular points of Cir besides the fundamental points are

(0 :0 :λ), (0 :1:−λ), (1:0 :λ′), (1:0 :−λ′), (1:λ:0), (1:−λ:0),

where λ = (1 + √
5)/2, λ′ = (1 − √

5)/2. The six singular points of C ′
ir are obtained

from these points by replacing λ with λ′.

1 Edge calls them Hesse duads for the following reason. It follows from observing the Petersen graph the
stabilizer subgroup of each line acts on the line by permuting three intersection points with other lines. If
one considers these points as the zero set of a binary form φ of degree 3, then its Hessian binary form of
degree 2 given as the determinant of the matrix of second partial derivatives of φ has zeros at two points,
the Hessian duad.
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The reducible membersCc andC ′
c of theWiman–Edge pencil are proper transforms

of the members of the pencil of plane curves

(x + εy + ε2z)(x + εy − ε2z)(x − εy + ε2z)

· (x − εy − ε2z)(x2 + ε2y2 + εz2) = 0,

where ε 
= 1, ε3 = 1. As shown already by Edge, they correspond to parameters
(λ:μ) = (1:±√−3). We leave these computations to the reader, they are straightfor-
ward.

3.6 Irregular orbits in S

Recall that if a group acts on a set, an orbit is called regular if the stabilizer of one (and
hence any) of its points is trivial; otherwise it is called an irregular orbit. For what
follows it will helpful to have a catalogue of irregular an S5-orbits and A5-orbits in
S. Here we can observe that anS5-orbit is an A5-orbit if and only if itsS5-stabilizer
is not contained in A5 (otherwise it splits into two A5-orbits). So a determination of
the irregularS5-orbits determines one of the irregular A5-orbits. TheS5-equivariant
incarnation of S as the moduli space of stable, 5-pointed genus zero curves makes this
determination (which is in fact due to Coble) rather straightforward, as we will now
explain.

A point of M0,5 is the same thing as a stable map x : {1, 2, . . . , 5} → P
1 (where

‘stable’ means here that every fiber has at most two elements), given up to a compo-
sition with a Möbius transformation. The S5-stabilizer of a stable map x consists of
the set of σ ∈ S5 for which there exists a ρ(σ) ∈ PGL2(C) with the property that
xσ = ρ(σ)x . Since x is stable, its image has at least three distinct points, and so ρ(σ)

will be unique. It follows that ρ will be a group homomorphism. Its image will be a
finite subgroup of PGL2(C) with the property that it has in P

1 an orbit of size � 5.
Klein determined the finite subgroups of PGL2(C) up to conjugacy: they are the

cyclic groups, represented by the group μn of nth roots of unity acting in C ⊂ P
1 as

scalar multiplication; the dihedral groups, represented by the semidirect product of
μn and the order 2 group generated by the inversion z �→ z−1; and the tetrahedral,
octahedral and icosahedral groups, which are isomorphic to A4,S4,A5 respectively.
The octahedral and icosahedral groups have no orbit of size � 5 in P

1, and hence
cannot occur here. The tetrahedral group has one such orbit: it is of size 4 (the vertices
of a tetrahedron), but since we want a degree 5 divisor, it then must have a fixed point,
and this is clearly not the case.

It remains to go through the dihedral and cyclic cases. We denote by Cn a cyclic
group of order n and by D2n the dihedral group of order 2n isomorphic to Cn �C2
(2). The conjugacy classes of the nontrival cyclic subgroups of A5 are represented by
〈(12)(34)〉 ∼= C2 and 〈(123)〉 ∼= C3, and for S5 we have the two additional classes
represented by 〈(12)〉 ∼= C2 and 〈(12)(345)〉 ∼= C6. Likewise, there are three conjugacy
classes of dihedral subgroups in A5 represented by

2 We follow the now standard ATLAS notation for finite groups.
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〈(12)(34), (13)(23)〉 ∼= D4, 〈(12)(45), (123)〉 ∼= D6 ∼= S3,

〈(12)(34), (12345)〉 ∼= D10

and additional three conjugacy classes in S5:

〈(12), (34)〉 ∼= D4, 〈(12), (123)〉 ∼= D6, 〈(12), (1324)〉 ∼= D8.

To distinguish the conjugacy classes of dihedral subgroups of order 4 or 6 we denote
them by Dev

4 ,Sev
3 , resp. Dodd

4 ,Sodd
3 if they are contained in A5, resp. in S5, but not

in A5. A similar convention applies to C2: we have Codd
2 and Cev

2 .
We then end up with the following list, due to Arthur Coble [7, pp. 400–401].

Theorem 3.13 (The irregular orbits of S5 acting on S) The set of irregular orbits
of S5 acting on S is one of the following sets, named by the conjugacy class of a
stabilizer subgroup:

Codd
2 For example, 〈(12)〉 is the stabilizer of (0, 0,∞, 1, z) when z is generic. An

orbit of this type has size 60. It is a regular A5-orbit.
Cev
2 For example, 〈(12)(34)〉 is the stabilizer of (z,−z, 1,−1,∞) when z is generic.

An orbit of this type has size 60 and decomposes into two A5-orbits of size 30.
C4 For example, 〈(1234)〉 is the stabilizer of (1,

√−1,−1,−√−1,∞). This is an
S5-orbit of size 30. It is also an A5-orbit of type Cev

2 (take z = √−1).
Dodd

4 For example 〈(12), (34)〉 is the stabilizer of (0, 0, 1,−1,∞). This is anS5-orbit
of size 30, which is also an A5-orbit of type Cev

2 (let z → 0).
Sev

3 For example 〈(23)(45), (123)〉 is the stabilizer of (1, ζ3, ζ 2
3 , 0,∞). This is an

S5-orbit of size 20 which splits into two A5-orbits of size 10.
D8 For example, 〈(12), (1324)〉 is the stabilizer of (0, 0,∞,∞, 1). This is the

unique S5-orbit of size 15. It is also an A5-orbit of type Dev
4 .

C6 For example, 〈(12)(345)〉 is the stabilizer of (∞,∞, 1, ζ3, ζ 2
3 ). This is a single

orbit of size 20 which is also an A5-orbit of type C3.
D10 For example, 〈(25)(34), (12345)〉 is the stabilizer of (1, ζ5, ζ 2

5 , ζ 3
5 , ζ 4

5 ). The
associated orbit is of size 12 and splits into two A5-orbits of size 6.

In particular, the irregular A5-orbits are of type Cev
2 are parametrized by a punctured

rational curve.

Remark 3.14 It is clear from Theorem 3.13 that we have a curve of irregularA5-orbits
of size 30. However the locus of such points in S has 15 irreducible components. This
is because the preimage of an A5-orbit under the map w ∈ C �→ (w,−w, 1,−1,∞)

is generically of the form {z, 1/z}. An example of the closure such an irreducible
component is the preimage of the line defined in P

2 by t2 = t0 + t1 under the blow-
up of the vertices of the coordinate vertex (it is pointwise fixed under an even linear
permutation of these vertices). Since this line does not pass through any of the four
vertices, this also shows that its preimage in S is a rational normal curve of degree 3.
We thus obtain anS5-invariant curve on S of degree 45 (defined by a section of ω−9

S )
with 15 irreducible components. A priori this section is A5-invariant, but as Clebsch
[6] showed, it is in fact S5-invariant (see also Remark 6.6).
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Since we have already determined the size of some orbits in the anticanonical model,
we can now interpret the orbits thus found. We do this only insofar it concerns A5-
orbits, because that is all we need. Note that this is not a closed subset. Here is what
remains, but stated in terms of the Wiman–Edge pencil:

Corollary 3.15 The irregular A5-orbits in S ∼= M0,5 of size 30 are parametrized by
punctured rational curve and the others (named by the conjugacy class of a stabilizer
subgroup) are as follows:

C3 This 20-element orbit is the base point locus � of C.
Dev

4 This 15-element orbit is the singular locus of C∞.
Sev

3 This consists of two 10-element orbits in M0,5 ∼= S�C∞ equal to Sing(Cc)

and Sing(C ′
c).

D10 This consists of two 6-element orbits, namely the singular loci of the two irre-
ducible members of the Wiman–Edge pencil, Sing(Cir) and Sing(C ′

ir).

The orbit pairs of type Sev
3 and D10 are swapped by an a conjugacy with an element

of S5�A5 (which induces a nontrivial outer automorphism of A5).

Proof Theorem 3.13 yields a complete list of the irregular A5-orbits in terms ofM0,5
of size smaller than 30. We have already encountered some of these orbits as they
appear in this corollary. All that is then left to do is to compare cardinalities. ��

4 Projection to a Klein plane

4.1 The Klein plane

The two representations I and I ′ of A5 are the complexification of two real represen-
tations that realize A5 as the group of motions of a regular icosahedron. They differ
only in the way we have identified this group of motions with A5. The full group
of isometries of the regular icosahedron (including reflections) is a direct product
{±1}×A5, and is in fact a Coxeter group of type H3, a property that will be quite
helpful to us when we need to deal with the A5-invariants in the symmetric algebra
of I . Both A5-actions give rise to A5-actions on the unit sphere in Euclidean 3-space.
Via the isomorphism SO3(R) ∼= PU2, they can also be considered as actions of A5 on
the Riemann sphere P

1. These projective representations are what we have called the
Schwarzian representations and are the only two nontrivial projective representations
of A5 on P

1 up to isomorphism.
We observed above that a Schwarzian representation has three irregular orbits of

sizes 12, 20 and 30, corresponding respectively to the vertices, the barycenters and
the midpoints of the edges of a spherical icosahedron. The antipodal map, when
considered as an involution P

1, is antiholomorphic: it comes from assigning to a line
in C

2 its orthogonal complement. We can think of this as defining anA5-invariant real
structure on P

1 without real points. In particular, the involution is not in the image
of A5. Yet it preserves the A5-orbits, so that each orbit decomposes into pairs. The
preimages of A5 ↪→ Aut(P1) under the degree 2 isogeny SU2 → PU2 define two
representations of degree 2 of an extension Ã5 of A5 by a central subgroup of order
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2, called binary icosahedral group. As above, these two representations of Ã5 differ
by an outer automorphism. If we take the symmetric square of such a representation,
then the kernel {±1} of this isogeny acts trivially and hence factors through a linear
representation of A5 of degree 3. This is an icosahedral representation of type I or I ′.

We can phrase this solely in terms of a given Schwarzian representation of A5 on a
projective line K . For then the projective plane P underlying the associated icosahedral
representation is the one of effective degree 2 divisors on K (the symmetric square of
K ) and K embedsA5-equivariantly in P as the locus definedbypointswithmultiplicity
2. This is of course the image of K under theVeronese embedding andmakes K appear
as a conic.

We will identify K with its image in P , and following Klein [18] we refer to this
image as the fundamental conic. It is also defined by a non-degenerate A5-invariant
quadratic form on the icosahedral representation (which we know is self-dual). We
call P a Klein plane. So an x ∈ P� K can be understood as a 2-element subset of K .
The latter spans a line in P and this is simply the polar that the conic K associates to
x (when x ∈ K , this will be the tangent line of X at x).

Following Winger, we can now identify all the irregular A5-orbits in P . As we
have seen, K has exactly three irregular A5-orbits having sizes 30, 20 and 12, each of
which being invariant under an antipodal map. This antipodal invariance implies that
the antipodal pairs in the above orbits span a collection of resp. 15, 10 and 6 lines in P ,
each of which makes up an A5-orbit. When we regard these pairs as effective divisors
of degree 2, they also yield A5-orbits in P� K of the same size (K parameterizes the
nonreduced divisors). The bijection between lines and points is induced by polarity
with respect to K . This yields all the irregular orbits in the Klein plane:

Lemma 4.1 (Winger [26, Section1])There are unique irregularA5-orbits in P having
size 12, 20 (both in K ), 6, 10 or 15 (all three in P� K ). The remaining irregular orbits
in P have size 30 and are parametrized by a punctured rational curve. Further, the
points with stabilizer a fixed τ ∈ A5 of order 2 is open and dense in the image of the
map K → P given by z ∈ K �→ (z) + (τ (z)).

Proof We can think of a point of K as a point on the icosahedron in Euclidean 3-space.
An element of P� K is represented by an effective degree 2 divisor on K which has
the same A5-stabilizer. If we identify K with its A5-action as a spherical icosahedron
in Euclidean 3-space with its group of motions, then such a divisor spans an affine line
in Euclidean 3-space with the same stabilizer. When the line passes through the origin,
we get the three orbits of sizes 30, 20 and 12, otherwise the stabilizer is of order 2. ��
We call a member of the 6-elementA5-orbit in P� K , a fundamental point and denote
this orbit by F . We call the polar line of such a point a fundamental line.

4.2 Two projections

The irreducible S5-representation ES splits into two 3-dimensional irreducible A5-
representations IS and I ′

S . The two summands give a pair of disjoint planes P̌(IS) and

P̌(I ′
S) in P̌(E), to which we shall refer as Klein planes. We abbreviate them by P resp.
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P ′, and denote by K ⊂ P and K ′ ⊂ P ′ the fundamental (A5-invariant) conics.We have
A5-equivariant (Klein) projections p : S ��� P and p′ : S ��� P ′ of the anticanonical
model S ⊂ P̌(E) with center P ′, resp. P . Precomposition with an element ofS5�A5
exchanges these projections.

Proposition 4.2 The Klein planes are disjoint with S and the Klein projections are
finite morphisms of degree 5. Together they define a finite morphism

f ..= (p, p′) : S → P× P ′

that is birational onto its image.

The first assertion of Proposition 4.2 is [20, Theorem 5].

Proof We focus on p : S → P . Let us first note that P ′ ∩ S is A5-invariant and
equals the base locus of the linear system of anticanonical curves parametrized by
P(I ) ⊂ P(E). The curve part Y of P ′∩S has degree< 5. The class [Y ] ∈ H2(S; Z) of
Y isA5-invariant. Since the span of KS is supplemented in H2(S; C) by an irreducible
A5-representation isomorphic to V , we must have [Y ] = −d KS for some integer
d � 0. But then

5 > deg(Y ) = [Y ] ·(−KS) = 5d

and so Y = ∅. It follows that the base locus is finite. Since it is a linear section of S
it has at most five points. But Lemma 4.1 shows that P ′ has no orbit of size � 5 and
so the base locus is empty.

To see that p : S → P is surjective, suppose its image is a curve, say of degree m.
The preimage of a general line in P in S is an anticanonical curve and hence connected.
This implies that m = 1. But then S lies in hyperplane and this is a contradiction.

So p is a surjection of nonsingular surfaces. If some irreducible curve is contracted
by p, then this curve will have negative self-intersection. The only curves on S with
that property are the lines, and then a line is being contracted. SinceA5 acts transitively
on the lines, all of them are then contracted. In other words, the exceptional set is the
union C∞ of the 10 lines on S. But C∞ has self-intersection (−2KS)2 = 20 > 0 and
hence cannot be contracted.

So the preimage of a point in P is finite. This is also the intersection of the quintic
surface S with a codimension 2 linear subspace and so this fiber consists of five points,
when counted with multiplicity.

For the last assertion, we notice that since one of the components of f has degree 5,

the degree of S
f−→ f (S)must divide 5. So it is either 1 or 5. If it is 5 then p and p′ will

have the same generic fiber so that p′ factors through p via an isomorphism h : P
∼=−→

P ′. But this wouldmake theA5-representations I and I ′ projectively equivalent, which
is not the case. (We could alternatively observe that then the elements of S5�A5
preserve the fibers of p so that we get in fact an action of S5 on P which makes p
S5-equivariant. But there is no projective representation of S5 on P

2.) ��
The proof of the next proposition makes use of the Thom–Boardman polynomial for
the A2-singularity locus. Let us first state the general result that we need. Let f be a
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morphism between two compact, nonsingular complex surfaces. Assume first that f
has a smooth locus of critical points (= ramification divisor) �1( f ). As Whitney and
Thom observed, f |�1( f ) need not be a local immersion: generically it will have a
finite set �1,1( f ) of (Whitney) cusp singularities; at such a point f exhibits a stable
map-germ which in local-analytic coordinates can be given by (x, y) �→ (x3+ xy, y).

In the more general case when �1( f ) is a reduced divisor (when defined by the
Jacobian determinant), �1,1( f ) is defined as a 0-cycle on the source manifold. While
is not so hard to prove that the degree of �1,1( f ) is a characteristic number of the
virtual normal bundle ν f of f , it is another matter to obtain a closed formula for it. In
the present case it is equal to 〈c21(ν f ) + c2(ν f ), [S]〉 (see for instance [21, Theorem
5.1], where this is listed as the case A2).

Proposition 4.3 (The ramification curve) The ramification curve R of the finite mor-
phism p : S → P is a singular irreducible member of the Wiman–Edge pencil, and
hence obtained as an A5-curve by means of the procedure of Lemma 3.9.

Proof The divisor class [R] is given by the well-known formula KS − p∗(KP ). Since
KP is −3 times the class of a line, and p∗ takes the class of a line to the class of
hyperplane section (i.e.,−KS), we have p∗(KP ) = 3KS . It follows that [R] = −2KS .
Since R isA5-invariant, it must be a member of theWiman–Edge pencil. In particular,
R is reduced.

We now apply the above formula to p : S → P . The Chern classes of the virtual
normal bundle of p are easily computed: c1(νp) = 2KS and c2(νp) takes the value
−2 on the fundamental class [S] of S. We find that

〈c1(νp)
2 + c2(νp), [S]〉 = 4 ·5 − 2 = 18.

So�1,1(p) is a 0-cycle whose support is anA5-invariant subset of S contained in R. In
Sect. 3.6, we found thatA5 has two 6-element orbits in S (each being the singular locus
of an irreducible member of the Wiman–Edge pencil) and that any other A5-orbit has
at least 10 elements. Since R is a member of theWiman–Edge pencil, we conclude that
that it must be one with six nodes (and that each node has multiplicity 3 in �1,1(p)).
This also proves that p|R is a local isomorphism at the 20-element orbit �. ��
Remark 4.4 The assertion of Proposition 4.3 can be confirmed by computation. If
π : S → P

2 is the blowing down morphism and φ : S → P
5 = P(E) is the S5-

equivariant anti-canonical embedding, then the composition φ◦π−1 : P
2 ��� P(E)

and the A5-equivariant projection P(E) ��� P(I ) is given by

(t0 :t1 :t2) �→ (
f0(t0, t1, t2) : f1(t0, t1, t2): f2(t0, t1, t2)

)

where

f0 = − x3 + y3 + z3 − λx2y − λ′x2z + λ′xy2 − λy2z + λxz2 − λ′yz2,

f1 = λ′x3 + λy3 − (λ + 1)x2y − (λ′ + 1) y2x + xz2 + yz2,

f2 = λy3 + z3 − (λ + 1)x2y − λ′x2z − λy2z + yz2.
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Here λ = (1 + √
5)/2 and λ′ = (1 − √

5)/2 are two roots of the quadratic equation
t2 − t − 1 = 0. Here we use the coordinates in the plane in which the equation of
the Wiman–Edge pencil is written. Computing the Jacobian J ( f0, f1, f2) we find the
equation of a irreducible singular member of the pencil with parameters (1:5√5).

Proposition 4.5 The preimage CK = p∗K of the fundamental conic in P is a non-
singular member of the Wiman–Edge pencil. The ordered 4-tuple (C0, C∞, CK , CK ′)
consists of four distinct members of the Wiman–Edge pencil which lie in harmonic
position: there is a unique affine coordinate for C that identifies this 4-tuple with
(0,∞, 1,−1).

Proof It is clear thatCK is anA5-invariantmember of |−2KS| and therefore amember
of the Wiman–Edge pencil. It is defined by the quadric Q and similarly CK ′ is defined
by the quadric Q′. The last clause of the proposition then follows as C0, resp. C∞, is
defined by Q + Q′, resp. Q − Q′.

If CK is singular, then it must be one of Cc, C ′
c, R, R′. We shall exclude each of

these possibilities.
Suppose that CK = Cc or C ′

c. Then let Y be an irreducible component of CK . Now

both Y and K are conics and since p is a linear projection, Y
p−→ K must be of degree

1. On the other hand, R meets CK transversally in �, and so Y meets R transversally
in four distinct points. This implies that Y

p−→ K must have degree 3 and we arrive at
a contradiction.

We cannot haveCK = R, for then p would ramify along p∗K and so p∗K would be
2-divisible: this would make it twice an anticanonical divisor (a hyperplane section)
and R is clearly not of that type. If CK = R′, then R′ = CK

p−→ K must ramify in the
singular part Sing(R′) of R′ and so R contains Sing(R′). This contradicts the fact that
the two members R and R′ of the Wiman–Edge pencil intersect transversally. ��
We can also improve the statement about the birationality of the map (p, p′).

Theorem 4.6 The map

(p, p′) : S → P × P ′

is a local isomorphism onto its image. Further,

f!(1) = 5(h2 + hh′ + h′2)

where (h, h′) is the standard basis in H2(P × P ′; Z), and hence the composite of f
with the Segre embedding

P × P = P̌(I )×P̌(I ′) ↪→ P̌(I ⊗ I ′) ∼= P
8

has degree 20.

Proof We have already proved that the map is of degree 1 onto its image and hence
coincides with the normalization of the image.

It remains to show that (p, p′) is a local isomorphism. Suppose it is not. Since the
projection p, resp. p′, is a local isomorphism on S� R, resp. S� R′, the map could only
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fail to be local isomorphism at some x ∈ R ∩ R′. Let L be the kernel of the derivative
at x . Then L is mapped to 0 under the composition with the both projections. This
implies that L coincides with the tangent line of R and R′ at x . But we know that
two curves in the Wiman–Edge pencil intersect transversally at a base point. This
contradiction proves the assertion.

Next represent h, resp. h′, by general lines � ⊂ P , resp. �′ ⊂ P ′. Then f ∗(h.h′)
is represented by p∗�.p′∗�′. This is evidently a plane section of S and hence is a
class of degree 5. Since p and p′ are also of degree 5, it follows that f∗(1) is as
asserted. ��
Remark 4.7 Themap (p, p′) : S → P × P ′ is not injective.Wewill make this explicit
in Remark 5.7, but we here give a general argument that implies that there must exist a
whole curve of fibers consisting of more than a single point. Let us write f for (p, p′).
The double point formula asserts that its virtual number of double points is equal to
the degree of f ∗ f!(1) − c2(ν f ) [21]. The degree of

f ∗ f!(1) = f ∗(5(h2 + hh′ + h′2))

is equal to 5 ·5+5 ·5+5 ·5 = 75. On the other hand, ifμS ∈ H4(S) is the fundamental
class (so that K 2

S = 5μS) then c(θS) = 1+KS+7μS (the coefficient 7 is the topological
Euler characteristic of S) and

p∗c(θP ) = p∗(1 + 3h + 3h2) = 1 − 3KS + 15μS .

Thus

c(ν f ) = c(θS)−1 p∗c(θP )p′∗c(θP ′) = (1 + KS + 7μS)−1(1 − 3KS + 15μS)2

= (1 − KS − 2μS)(1 − 6KS + 75μS) = 1 − 7KS + 103μS .

This tells us that the degree of ν f is 103. It follows that the number of virtual double
points is −28. This can only be interpreted as saying that the double point locus of f
must contain a curve on S with negative self-intersection.

4.3 The projection of irregular orbits

Let us describe the images of the irregular A5-orbits in S under the projection map
p : S → P . Since the projection is A5-equivariant, the image of an irregular A5-orbit
in S is an irregular orbit in the Klein plane. According to Lemma 4.1, there are A5-
orbits in P of size 6, 10, 15 (all outside the fundamental conic) and of 12 and 20 (all
on the fundamental conic), of which those of size 6 and 10 come in pairs, the others
being unique. The other irregular orbits in P are of size 30 and are parametrized by a
rational curve. On the other hand, by Corollary 3.15, in S there are two A5-orbits in S
of size 6 and 10, one of size 15 and 20, and an irreducible curve of orbits of size 30.

This immediately implies that the orbits on S of cardinalities 6, 10, 15 are mapped
one-to-one to the orbits of the same cardinality in the Klein plane. This is also true for
the 20-element orbit, since it consists of the base points of the Wiman–Edge pencil
C and hence is mapped to the 20-element orbit on the conic. The size 12 orbit in K
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Table 3 Irregular A5-orbits in P of cardinality 
= 30 explained by A5-orbits in S

special A5-orbit O in S #(O) p(O) ⊂ K ? #(p(O))

Base locus � of C 20 Yes 20

A regular orbit in CK 60 Yes 12

Singular part of C∞ 15 No 15

Singular part of Cc or C ′
c 10 (2) No 10

Singular part of R or R′ 6 (2) No 6

must be the image of an orbit in S whose size is divisible by 12 and so this can only
be a regular orbit. Since the A5-orbits of size 30 in S and in P are parametrized by an
irreducible curve; p will map the generic point of the former to the generic point of
the latter. This information, insofar relevant here is displayed in Table 3; it will help
us to determine the p-images of the special members of the pencil.

4.4 The projection of the Wiman–Edge pencil

We will later investigate the p-images of the special members of the Wiman–Edge
pencil, but at this point it is convenient to already make the following observation.

Proposition 4.8 The divisor p∗C∞ is the sum of the 10 lines that are spanned by the
antipodal pairs in the 20-element orbit p(�) on K . Each singular point of p∗C∞ lies
on exactly two lines and the resulting

(10
2

) = 45 double points make up two irregular
A5-orbits, one of which is the unique 15-element orbit defined by pairs of lines which
meet in S (and so the other has size 30).

Proof The image of a line on S is a line in P and so p∗C∞ is a sum of 10 lines. The
polars of these lines make up an A5-orbit in P of size � 10. There is only one such
orbit and it has exactly 10 elements.

The singular locus of C∞ is a 15-element orbit and we observed that this orbit
maps bijectively onto the unique 15-element orbit in P . It follows from the discussion
in Sect. 3.6, that the stabilizer of each singular point of C∞ is the group Dev

4 . Its
projection has the same stabilizer group. Thus the image of Sing(C∞) consists of 15
points. Since there is only one orbit in P of cardinality 15, the remaining 45−15 = 30
points form an orbit of A5 in P . ��
This has implications for a generic member C of C, as follows. The curve p∗C∞ being
reduced and of geometric genus 6, it follows that p∗C has the same property. As p
is linear, p∗C is a plane curve of the same degree as C , namely 10. So the arithmetic
genus of p∗C is (10− 1)(10− 2)/2 = 36, and hence its genus defect is 30. Since the
singular set of C specializes to a subset of the singular set of C∞, it follows that this
singular set consists of 30 nodes and makes up an A5-orbit (but remember that such
orbits move in a curve and can degenerate into an orbit of smaller size).

So C ∈ C �→ p∗C defines a morphism from the baseB of the Wiman–Edge pencil
(a copy of P

1) to |OP (10)|. We denote its image by p∗B. It is clear that every point of
p∗Bwill be anA5-invariant curve. AnA5-invariant curve in P admits anA5-invariant
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equation (because every homomorphismA5 → C
× is trivial), and so everymember of

p∗C lands in the projectivization of (Sym10 I )A5 (recall that P is the projectivization
of the dual of I ).

Since A5 acts on I as the group of orientation-preserving elements of a Coxeter
group of type H3, this space is easy to determine using the invariant theory of Coxeter
groups: if �2 is an equation for K and �6,�10,�15 an equation for the A5-invariant
union of resp. 6, 10 and 15 lines, then these generate the A5-invariants in the sym-
metric algebra of I . The first three generate the invariants of the Coxeter group and
are algebraically independent (�15

2 is a polynomial in these). So (Sym10 I )A5 is of
dimension 3 and has the basis {�2

5,�6�2
2,�10}. Thus everyA5-invariant decimic in

P can be written by the equation

a�2
5 + b�6�2

2 + c�10 = 0 (3)

In particular, p∗B is a plane curve. Since p∗� is the transversal intersection of the 10
lines union and K (the common zero set of �2 and �10), we also see from equation
(3) that every A5-invariant decimic in P passes through p∗� and is there tangent to
the 10 lines union unless it contains K as an irreducible component of multiplicity 2
(i.e., c = 0).

The formula (3) also proves the following

Proposition 4.9 (The net of A5-decimics) All members of the net of A5-decimics
intersect the fundamental conic transversally at 20 points and they are all tangent at
these points to one of the 10 lines that joins two antipodal points.

Of course, the 20 points in the statement of Proposition 4.9 are the projection of the
set � of base points of the Wiman–Edge pencil.

Proposition 4.10 The members of p∗C distinct from 5K are reduced and intersect K
transversally in p∗�. The map B → p∗B defined by C �→ p∗C is injective, and p∗B
is a curve of degree 5 in |OP (10)|.

Proof If C ∈ C is not equal to CK then

p∗C ·K = C ·CK = (−2KS)2 = 20.

Since this is also the size of p(C) ∩ K = p(�), it follows that p∗C is reduced and
meets K transversally in p(�).

Let C1, C2 be members of theWiman–Edge pencil distinct from CK . Since p∗Ci is
reduced, the map p : Ci → p∗Ci is a normalization and so the equality p∗C1 = p∗C2
lifts to an A5-equivariant isomorphism C1 ∼= C2. As C is the universal family, it
follows that C1 = C2. So the map B → p∗B is injective.

It also follows that for z ∈ P generic, then through each of the five points of
p−1(z) passes exactly one member of C and these members are distinct and smooth.
This means that the hyperplane in |OP (10)| of decimics passing through z meets p∗B
transversally in five points and so the curve in question has degree 5. ��
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In particular, p∗C is not a pencil. We can be a bit more precise. If a�2
5 + b�6�2

2 +
c�10 = 0 represents p∗C ∈ p∗C, with p∗C 
= 5K , then the fact that p∗C is transversal
to K implies that c 
= 0. So such a curve has unique equation for which c = 1. In
particular, p∗ R has an equation of the form

�R
..= aR�2

5 + bR�6�2
2 + �10.

(We will see later that this curve is in fact the Klein decimic.) It follows that
�2,�6,�R,�15 still generate the algebraic A5-invariants.

Proposition 4.11 The plane curve p∗B has two singular points, namely the points
represented by p∗ R and by 5K , where it has a singularity of type A4, resp. E8 (having
local-analytic parameterizations t �→ (t2, t5), resp. t �→ (t3, t5)).

Proof Let x ∈ �. Since p has simple ramification at x , we can find local-analytic
coordinates (z1, z2) at x and (w1, w2) at p(x) such that p∗w1 = z21 and p∗w2 = z2,
and such that K is at p(x) given by w2 = 0. So the ramification locus R is given at x
by z1 = 0 and CK by z2 = 0.

A tangent direction at x not tangent to CK has in the (z1, z2)-coordinates a unique
generator of the form (λ, 1). We therefore can regard λ as a coordinate for the
complement in P(Tx S) of the point defined by Tx CK and hence as a coordinate
for the complement B+ ⊂ B of the point representing CK . This means that the
member of C�{CK } corresponding to λ has a local parametrization at x given by
z1 = λz2(1 + c1(λ)z2 + · · · ). Its image under p has then the local parametrization
w1 = λ2w2

2(1 + 2c1(λ)w2 + · · · ), which shows that λ2, when regarded as a regular
function on B+, is in fact a regular function on its image p∗B+.

Now let us make these coordinate choices compatible with the chosen basis of
invariants. For this we choose a third root �1/3

6 of �6 and take w1 = �R�
−5/3
6 (this

means that z1 must be a square root of this) and w2 = �2�
−1/3
6 . We write a member

of p∗B+ uniquely as

a(λ)�2
5 + b(λ)�6�2

2 = �R

with a and b polynomials of degree � 5 and 5 being attained. If we multiply this
equation by �

−5/3
6 , then it becomes

a(λ)w2
5 + b(λ)w2

2 = w1.

It follows from the preceding that b(λ) = λ2. Hence a has degree 5. By Proposition
4.10, the curve λ �→ (a(λ), λ2) must be injective. This means that a(λ) − a(−λ) is
nonzero when λ 
= 0. This can only happen when there is at most one odd power of λ

appearing in a. This power must then be 5, of course. It follows that P
1 ∼= B → p∗B

is given by

[λ:μ] �→ (λ5a5 + λ4μa4 + λ2μ3a2)�2
5 + (λ2μ3)�6�2

2 − μ5�R,

where a5, a4, a2 are constants with a5 
= 0. The proposition follows from this. ��
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5 Images of some members of the Wiman–Edge pencil in the Klein plane

5.1 The preimage of a fundamental conic

We will characterize CK and CK ′ as members of C by the fact that they support an
exceptional even theta characteristic. Recall that a theta characteristic of a projective
smooth curve C is a line bundle κ over CK endowed with an isomorphism φ : κ⊗2 ∼=
ωC . It is called even or odd according to the parity of the dimension of H0(C, κ).

The strong form of Clifford’s theorem as stated in [2] implies that

dim |κ| � 1

2
(g(C) − 1)

provided that C is not hyperelliptic. If |κ| is 1-dimensional and without fixed points,
then the associated morphism C → P̌(H0(C, κ)) ∼= P

1 is of degree � g(C) − 1 and
has as fibers the moving part of |κ|. We can obtain this morphism by means of a linear
projection of the canonical image: the natural map Sym2H0(C, κ) → H0(C, ωC ) is
injective (with image a 3-dimensional subspace), so that dually, we have a projection
onto a projective plane

P̌(H0(C, ωC )) ��� P̌(Sym2H0(C, κ)).

The latter contains a conic that can be identified with the image of P̌(H0(C, κ)) under
the Veronese map. The composition with the canonical map C → P̌(H0(C, ωC )) has
image in this conic and thus realizes C → P̌(H0(C, κ)). Note that this conic can be
understood as a quadric in P̌(H0(C, ωC )) of rank 3 that contains the canonical image
of C .

Proposition 5.1 The morphism CK → K is obtained as the complete linear system of
an even theta characteristic κ on CK followed by the (Veronese) embedding K ⊂ P.
The A5-action on CK lifts to an action of the binary icosahedral group Ã5 on κ in
such a way that H0(CK , κ) is an irreducible Ã5-representation of degree 2. Similarly
for CK ′ → K ′, albeit that H0(CK ′ , κ ′) will be the other irreducible Ã5-representation
of degree 2.

There are no other pairs (C, θ), where C is a member of C and θ is an A5-invariant
theta characteristic with dim |θ | = 1.

Proof Observe that the preimage of a line in P meets CK in a canonical divisor
and that any effective degree 2 divisor on K spans a line in P . This implies that the
fibers of CK → K belong to the divisor class of a theta characteristic (κ, φ : κ⊗2 ∼=
ωCK ). The A5-action on CK need not lift to such an action on κ , but its central
extension, the binary icosahedral group A5, will (in a way that makes φ equivariant).
Thus H0(CK , κ) becomes an Ã5-representation. It contains a 2-dimensional (base
point free) subrepresentation which accounts for the morphism CK → K . To see
that this inclusion is an equality, we note that by Clifford’s theorem as cited above,
dim H0(CK , κ) � 3. If it were equal to 3, then Ã5 would have a trivial summand in
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H0(CK , κ) and hence so would H0(CK , κ⊗2) = H0(CK , ωCK ). This contradicts the
fact that the latter is of type I ⊕ I ′ as an A5-representation.

It is clear that we obtain (CK ′ , κ ′) as the transform/pull-back of (CK , κ) under an
element of S5�A5.

If (C, θ) is as in the proposition, then C lies on an A5-invariant quadric of rank
3. This quadric will be defined by λQ + λ′Q′ for some (λ:λ′) (with Q and Q′ as in
Sect. 2.5), and so the rank condition implies λ = 0 or λ′ = 0. In other words, (C, θ)

equals (CK , κ) or (CK ′ , κ ′). ��

5.2 The image of reducible singular members

Recall that Cc and C ′
c are theA5-orbit of a special conic. So the following proposition

tells us what their p-images are like.

Proposition 5.2 The projection p maps each special conic isomorphically onto a
conic in P that is tangent to four lines that are the projections of lines on S, and
passes through four points of the 10-element A5-orbit.

Proof Let Y be a special conic. Since Y is part of Cc or C ′
c, Y meets � in four distinct

points and p∗Y is a degree 2 curve which meets p(�) in four points. In particular p
maps Y isomorphically onto its image (not on a double line). For each a ∈ Y ∩�, p(a)

and its antipode span a line in P and according to Proposition 4.10, p(Y ) is tangent
to the line at p(a). ��

5.3 The decimics of Klein and Winger

Let us call a projective plane endowed with a group G of automorphisms isomorphic
to A5 a Klein plane (but without specifying an isomorphism G ∼= A5). Such a plane
is unique up to isomorphism (it is isomorphic to both P and P ′). For what follows it
is convenient to make the following definition.

Definition 5.3 (Special decimics) We call a reduced, G-invariant curve in a Klein
plane of degree 10 a special decimic if it is singular at each fundamental point and its
normalization is rational. If the singularity at a fundamental point is an ordinary node,
we call it a Winger decimic; otherwise (so when it is worse than that) we call it a Klein
decimic.

We will see that each of these decimics is unique up to isomorphism, and that p(R) is
a Klein decimic and p(R′) aWinger decimic. We will also show that the singularity of
a Klein decimic at a fundamental point must be a double cusp (i.e., with local analytic
equation (x3− y2)(y3− x3)). As to our naming: a Klein curve appears in [18, Chapter
4, Section 3] (p. 218 in the cited edition), and a Winger curve appears in [26, Section
9].

Let us first establish the relation between special decimics and the Wiman–Edge
pencil. Let K be a copy of a P

1 and let G ⊂ Aut(K ) be a subgroup isomorphic to
A5. Recall that K has a unique G-orbit F# of size 12 (think of this as the vertex
set of a regular icosahedron) which comes in six antipodal pairs. Let us denote by
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z ∈ F# �→ z′ ∈ F# the antipodal involution, and let K be obtained from Ỹ by
identifying every z ∈ F# with z′ ∈ F# as to produce an ordinary node. This is just the
curve of arithmetic genus 6 that we constructed in Lemma 3.9.

Notice that the normalization of a special decimic factors through this quotient of
K : it is the image of K under a 2-dimensional linear system of degree 10 divisors on
K that comes from a 3-dimensional irreducible subrepresentation of H0(K ,OK (10)).
In order to identify these subrepresentations, we focus our attention on the dualizing
sheaf ωK of K . This is the subsheaf of the direct image of ωK (F#) characterized by
the property that the sum of the residues in a fiber add up to zero. So H0(K , ωK ) is
the subspace of H0(K , ωK (F#)) consisting of differentials whose residues at the two
points of any antipodal pair add up to zero.

Lemma 5.4 There is an exact sequence of G-representations

0 → H0(K , ωK ) → H0(K , ωK (F#)) → H̃0(F; C) → 0

where the last term denotes the reduced cohomology of F. Further, H̃0(F; C) is an
irreducible G-representation of dimension 5 (hence of type W ).

Proof For every x ∈ F there is a linear form on H0(K , ωK (F#)) that assigns to
α ∈ H0(K , ωK (F#)) the sum of the residues at the associated antipodal pair on K .
By the residue formula, these six linear forms add up to zero. Apart from that, residues
can be arbitrarily described andwe thus obtain the exact sequence. The character of the
permutation representation on F (which can be thought of as the set of six lines through
opposite vertices of the icosahedron) is computed to be that of trivial representation
plus that of W . This implies that H̃0(F; C) ∼= W as G-representations. ��
We know by Propositions 3.10 and 4.3 that the dualizing sheaf of K defines the
canonical embedding for K and that the 6-dimensional G-representation H0(K , ωK )

decomposes into two irreducible subrepresentations of dimension 3 that are not of
the same type. This enables us to prove that there are only two isomorphism types of
special decimics.

Corollary 5.5 (Classification of special decimics) Let Y ⊂ P be a special decimic
and let K → Y define a partial G-equivariant normalization (so that the six nodes
of K lie over the six fundamental points of P). Then Y can be identified in a G-
equivariant manner with the image of K under the linear system that comes from one
of the two irreducible 3-dimensional G-subrepresentations of H0(K , ωK ). In fact,
p∗ R and p′∗ R are special decimics and every special decimic is isomorphic to one of
them.

Proof The line bundleωK (F#) is of degree 10. The fact thatωK is of degree−2+12 =
10 implies that P(H0(K , ωK (F#))) is the complete linear system of degree 10. As
the G-embedding Y ⊂ P is of degree 10, the G-embedding Y ⊂ P is definable by a
3-dimensional G-invariant subspace of H0(K , ωK (F#)). It follows from Lemma 5.4
that this subrepresentation must be contained in H0(K , ωK ), and hence is given by
one of its 3-dimensional summands.
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Let us write EK for H0(K , ωK ) and PK for P̌(EK ). The canonical map K → PK

is an embedding and realizes K as a member of the Wiman–Edge pencil: if we regard
this embedding as an inclusion, then the A5-embedding R ⊂ PS is obtained from the
G-embedding K ⊂ PK via a compatible pair of isomorphisms (G, EK ) ∼= (A5, ES).
The preimage SK ⊂ PK of S ⊂ PS is a G-invariant quintic del Pezzo surface which
contains K . We have a decomposition EK = IK ⊕ I ′

K into two irreducible subrep-
resentations such that the two associated linear systems of dimension 2 reproduce
the projections p|R and p′|R. So p∗ R and p′∗ R represent the two types of special
decimics. ��
Theorem 5.6 The preimage p−1F of the set of fundamental points is the disjoint
union of Sing(R) and Sing(R′). Moreover, p∗ R′ is a Winger decimic and p∗ R is a
Klein decimic.

Proof We know that the singular set of R makes up an A5-orbit and that such an
A5-orbit is mapped to F . The same is true for R′ and so each fundamental point is a
singular point of both p∗ R and p∗ R′. For every singular point x of R, p−1p(x)�{x}
consists of k � 5− 2 = 3 points. So p−1 p(Sing(R))�Sing(R) is an A5-invariant set
of size 6k ∈ {6, 12, 18}.

Our irregular orbit catalogue for the A5-action on S (see Sect. 3.6) shows that only
k = 1 is possible, so that this must be the 6-element orbit in S different from Sing(R),
i.e., Sing(R′). This proves that the (disjoint) union of Sing(R) and Sing(R′) make up
a fiber of p. In particular, p∗ R′ has an ordinary double point at p(x) and hence is a
Winger decimic. On the other hand, p∗ R has multiplicity at least 4 at p(x): this is
because the restriction of p to a local branch of R has a singularity at x (because of
the presence of the other branch). So p∗ R must be a Klein decimic. ��
Remark 5.7 Theorem 5.6 shows that there is a unique A5-equivariant bijection

Sing(Cir)
∼=−→ Sing(C ′

ir)

that commutes with p. This gives rise to a bijection σ : F ∼= F ′ between the set of
fundamental points in P and those in P ′. Similarly, p′ will determine anA5-equivariant
bijection σ ′ : F ′ → F . The composition σ ′◦σ is a permutation of F that commutes
with the A5-action. Since that A5-action contains 5-cycles (which have just one fixed
point in F), it follows that this permutation must be the identity: the two bijections
are each others inverse. It follows that for every x ∈ Sing(Cir), the set {x, σ (x)} is a
fiber of p× p′ : S → P× P ′.

We can now also say a bit more about the special decimics.

Proposition 5.8 The singular set of a Winger decimic consists of 36 ordinary double
points, and a local branch at each fundamental point has that node as a hyperflex.
The singular points that are not fundamental make up a 30-element orbit.

Proof For the first assertion, we essentially follow Winger’s argument. The normal-
ization q : Ỹ → Y ⊂ P is a rational curve that comes with an automorphism group
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G ∼= A5. The points of Ỹ mapping to a flex point or worse make up a divisor D of
degree 3(10 − 2) = 24 (if t is an affine coordinate of Ỹ , and (z0 :z1 :z2) is a coordi-
nate system for P such that q∗z0, resp. q∗zi , is a polynomial of degree 10 − i , resp.
� 10 − i , then D is the defined by the Wronskian determinant (z0, z1, z2) and is
viewed as having degree (10 + 9 + 8) − 3 = 24). If a point of Ỹ maps to cusp or a
hyperflex (or worse) then it appears with multiplicity � 2. We prove that each of the
two points of Ỹ lying over a fundamental point of P has multiplicity � 2 in D. This
implies that D is� twice the 12-element G-orbit in Ỹ and hence, in view of its degree,
must be equal to this. It will then follow that Y has only nodal singularities and that
these will be 36 in number by the genus formula.

Let us first note that since G has no nontrivial 1-dimensional character, Y admits
a G-invariant equation. Let x ∈ P be a fundamental point. Let U ⊂ P be the affine
plane complementary to the polar of x and make it a vector space by choosing x as
its origin. Then Gx acts linearly on U . The stabilizer Gx is a dihedral group of order
10, and we can choose coordinates (w1, w2) such that (w1, w2) �→ (w2, w1) and
(w1, w2) �→ (ζ5w1, ζ

−1
5 w2) define generators of Gx . The algebra of Gx -invariant

polynomials is then generated by w1w2 and w1
5 + w2

5.
The germofY at x admitsGx -invariant equation and this is givenbyw1w2+order �

2. So the tangent lines of the branches of Y at x are the coordinate lines. The subgroup
of Gx generated by (w1, w2) �→ (ζ5w1, ζ

−1
5 w2) fixes each branch. So the branch

whose tangent line is w1 = 0 has a local equation of the type

w1 + aw1
2w2 + bw1

3w2
2 + cw4

2 + (terms of order � 5) = 0.

This branch meets w1 = 0 at the origin with multiplicity � 4 and hence has there a
hyperflex.

So Sing(p∗ R′)� F is anA5-invariant 30-element subset of P and it suffices to prove
that this is an A5-orbit. This set does not meet the fundamental conic K (for p∗ R′ is
transversal to that conic). There are unique A5-orbits in P� K of size 6 and 10; the
others have size 30 and 60. Hence Sing(p∗ R′)� F is a 30-element orbit in P� K . ��

5.4 Construction of the Klein decimic

We now give a construction of the Klein decimic, which will at the same time show
that it will have double cusp singularities at the fundamental points.

Let P be a Klein plane. We first observe that its fundamental set F does not lie on
a conic. For if it did, then this conic would be unique, hence A5-invariant and so its
intersection with K would then produce an orbit with � 4 elements, which we know
does not exist. This implies that for each x ∈ F there is a conic Kx which meets F in
F �{x}.

Now blow up F . The result is a cubic surface X for which the strict transform K̃x

of Kx is a line (an exceptional curve) and these lines are pairwise disjoint(3). The set

3 This surface is isomorphic to the Clebsch diagonal cubic surface in P
4 defined by

∑4
i=0 Z3

i = 0,
∑4

i=0 Zi = 0; the evident S5-symmetry accounts for its full automorphism group and its isomorphism
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of six exceptional curves arising from the blow-up and the K̃x form what is called a
double six in X . So they can be simultaneously blown down to form a copy P† of
a projective plane. The naturality of this construction implies that the A5-symmetry
is preserved. In particular, P† comes with a nontrivial A5-action, and so we have
defined a fundamental conic K † ⊂ P†. The image of

⋃
x K̃x in P† is an A5-invariant

subset of size 6 and so this must be the fundamental set F† ⊂ P†. So the diagram

P
q←− X

q†−→ P† is involutive. The birational map

(q†)−1q : P ��� P†

is defined by the linear system IK of quintics in P which have a node (or worse) at
each fundamental point, so that P† gets identified with the projective space dual to
|IK |.
Lemma 5.9 If �x is the polar line of x, then Kx ∩ K = �x ∩ K and hence Kx is
tangent to K at these two points.

Proof The divisor
∑

x∈F Kx · K in K is A5-invariant and of degree 6 ·4 = 24. Given
the A5-orbit sizes in K (12, 20, 30, 60), this implies that that this divisor is twice the
12-element orbit. Hence Kx meets K in two distinct points of this orbit and is there
tangent to K . Assigning to x the polar of K ∩ Kx then gives us a map from F onto a
6-element orbit of P . This orbit can only be F itself. We thus obtain a permutation of
F which commutes with the A5-action. Since every point of F is characterized by its
A5-stabilizer, this permutation must be the identity. ��
Corollary 5.10 The Cremona transformation q†q−1 : P ��� P† takes K ⊂ P to
a Klein decimic in P†. This Klein decimic has a double cusp (with local-analytic
equation (x2− y3)(x3− y2) = 0) at each fundamental point, and is smooth elsewhere.

Proof Since q is an isomorphism over K , we can identify K with q−1K . Any singular
point of q†q−1K will of course be the image of some Kx . Since we can regard Kx

as the projectivized tangent space of the fundamental point in P† to which it maps,
Lemma 5.9 shows that the image of K at this fundamental point is as asserted: we
have two cusps meeting there with different tangent lines. ��
Note that by the involutive nature of this construction, q(q†)−1 will take K † to the
Klein decimic in P .

Remark 5.11 Theorem 5.6 and the preceding corollary imply that the double cusp
singularity appears as a discriminant curve of a finite morphism between surface
germs of degree 4. Here is a local description for it that also takes into account the
D5-symmetry: there exist a local-analytic coordinate system (z1, z2) for S at a singular
point of R and a local-analytic coordinate system (w1, w2) at its image in P such that

p∗w1 = z21 + z32, p∗w2 = z31 + z22.

Footnote 3 continued
type is characterized by that property. The intersection of this cubic surface with the quadric defined by∑4

i=0 Z2
i = 0 is the Bring curve mentioned in Remark 5.12; its automorphism group is also S5.
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Note that it is indeed of degree 4 at the origin. The ramification locus is defined by
z1z2(9z1z2 − 4) = 0, hence is near the origin given by z1z2 = 0. The image of the
ramification locus at the origin is the double cusp, for the z1-axis, parametrized by
(z1, z2) = (t, 0) is the the parametrized cusp (w1, w2) = (t2, t3) and likewise z2-axis
maps to the parametrized cusp (w1, w2) = (t3, t2).

The A5-isotropy groups of the two points is a dihedral isotropy group of order 10
and so the map-germ must have this symmetry as well. We can see this being realized
here as in fact coming from two linear representations of this group. Let D5 be the
dihedral group of order 10, thought of as the semi-direct product of the groupμ5 of the
5th roots of unity and an order 2 group whose nontrivial element s acts by inversion:
sζ = ζ−1s. Then letting D5 act on the source, resp. target, by

s(z1, z2) = (z2, z1); ζ(z1, z2) = (ζ z1, ζ
−1z2);

s(w1, w2) = (w2, w1); ζ(w1, w2) = (ζ 2w1, ζ
−2w2)

makes the map-germD5-equivariant. It can also be verified that the �1,1-multiplicity
of this germ is 3, as it must be, in view of the proof of Proposition 4.3.

Remark 5.12 We have seen that the curve of Wiman decimics in P contains both 5K
and the A5-invariant sum of 10 lines. It has as a remarkable counterpart: the pencil of
sextics spanned by 3K and the A5-invariant sum of six lines. This pencil was studied
in detail by Winger [26] and is discussed in [8, 9.5.11]. The six lines meet K in the
12-element orbit and this intersection is evidently transversal. It follows that this orbit
is the base locus of the Winger pencil (as we will call it) and that all members of the
pencil except 3K have a base point as a flex point (with tangent line the fundamental
line passing through it). Note that a general member W of the pencil is smooth of
genus 10.

Winger shows that this pencil has, besides its two generators, which are evidently
singular, two other singular members. Both are irreducible; one of them has as its
singular locus a node at each fundamental point (the 6-element orbit of A5) and the
other, which we shall call the Winger sextic, has as its singular locus a node at each
point of the 10-element orbit of A5, and each local branch at such a point has this
point as a flex point. So their normalizations have genus 4 and 0 respectively. The
former turns out be isomorphic to the Bring curve (whose automorphism group is
known to be isomorphic to S5) and the latter will be isomorphic as an A5-curve
to K .

In fact, as an abstract curve with A5-action, the Winger sextic can be obtained in
much the same way as the curve constructed in Lemma 3.9, simply by identifying
the antipodal pairs of its 20-element orbit so as to produce a curve with 10 nodes.
This plane sextic is also discussed in [9]. With the help of the Plücker formula (e.g.,
[8, formula 1.50]), it then follows that the dual curve of the Winger sextic is a Klein
decimic. (A priori this curve lies in the dual of P , but in the presence of the fundamental
conic K ⊂ P we can regard it as a curve in P: just assign to each point of the Winger
curve the K -polar of its tangent line.)
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924 I. Dolgachev et al.

Other remarkable members of this pencil include the two nonsingular Valentiner
sextics with automorphism group isomorphic to A6 (4).

6 Passage to S5-orbit spaces

The goal of this section to characterize the Wiman curve as a curve onM0,5, or rather
itsS5-orbit space inS5\M0,5. The latter is simply themoduli space of stable effective
divisors of degree 5 on P

1.

6.1 Conical structure of S5\M0,5

We first want to understand how theS5-stabilizerS5,z of a point z ∈ M0,5 acts near z.
The finite group action on the complex-analytic germ ofM0,5 at z can be linearized in
the sense that it is complex-analytically equivalent to the action on the tangent space.
It then follows from a theorem of Chevalley that the local orbit space at S5\M0,5 is
nonsingular at the image of z if and only ifS5,z acts on TzM0,5 as a complex reflection
group.

Lemma 6.1 The S5-stabilizer of any point not in � is a Coxeter group (and hence a
complex reflection group) so that S5\M0,5 is nonsingular away from the point δ that
represents the orbit �.

Proof If z is represented in the Hilbert–Mumford model by (x1, . . . , x5) ∈ (P1)5, then
the tangent space TzM0,5 fits naturally in a short exact sequence:

0 → H0(P1, θ
P
1) →

5⊕

i=1

Txi P
1 → TzM0,5 → 0 (4)

where H0(P1, θ
P
1) is the space of vector fields on P

1 (which in terms of an affine
coordinate t has basis ∂/∂t, t∂/∂t, t2∂/∂t) and the map is given by evaluation at
x1, . . . , x5 respectively. With the help of this formula it is fairly straightforward to
determine the action of S5,z on TzM0,5. When S5,z is of order 2, we need to verify
that S5,z leaves a line in TzM0,5 pointwise fixed. This is left to the reader. There are
three other cases to consider:

Case 1: z = (1, ζ3, ζ 2
3 , 0,∞), andS5,z ∼= Sev

3 is the group generated by t �→ ζ3t and
the involution t �→ t−1 (which gives the exchanges ζ3 ↔ ζ 2

3 and 0 ↔ ∞). The fact
that H0(P1, θ

P
1) maps onto the direct sum of tangent spaces at the third root of unity

implies that

T0P
1⊕T∞P

1 → TzM0,5

4 The first author uses the opportunity to correct the statement in [8, Remark 9.5.11] where the Valentiner
curve was incorrectly identified with the Wiman sextic.
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is an isomorphism. Multiplication by ζ3 acts here as (v0, v∞) �→ (ζ3v0, ζ
−1
3 v∞) and

inversion exchanges v0 and v∞. We thus find that S5,z acts as the Coxeter group A2
on TzM0,5.

Case 2: z = (0, 0, 1,∞,∞), and S5,z ∼= D8 acts in the obvious manner. We again
find that T0P1⊕T∞P

1 → TzM0,5 is an isomorphism. The groupS5,z now acts as the
Coxeter group B2: It consists of the signed permutations of (v0, v∞).

Case 3: z = (1, ζ5, ζ 2
5 , ζ 3

5 , ζ 4
5 ), and S5,z ∼= D10 is generated by t �→ ζ5t and the

involution t �→ t−1 (which gives the exchanges ζ i
5 ↔ ζ−i

5 ). For i � −1 let v(i) ∈⊕
ζ 5=1 Tζ P

1 be the restriction of the vector field t i+1d/dt . Then scalar multiplication

by ζ5 multiplies v(i) by ζ−i
5 , so that this is a basis of eigenvectors for this action. The

vectors v(−1), v(0), v(1) span the image of H0(P1, θ
P
1), and hence v(2) and v(3) span

TzM0,5. Multiplication by ζ5 sends (v(2), v(3)) to (ζ−2
5 v(2), ζ−3

5 v(3)) and the involution
sends it to (−v(3),−v(2)). Thus it acts through the Coxeter group I2(5). ��
It is clear from Proposition 3.2 that the A5-orbit space of every smooth member of C
is a smooth rational curve. This is also true for a singular member, for we have seen
that A5 is transitive on its irreducible components and that an irreducible component
is rational (a quotient curve of a rational curve is rational). It is clear that S5\M0,5
will inherit this structure. Since the base locus � is a single A5-orbit and all members
of the Wiman–Edge pencil are nonsingular at �, it then follows that the image of the
Wiman–Edge pencil gives A5\M0,5 the structure of a quasi-cone with vertex δ.

Proposition 6.2 Regard P
2 as a projective cone with vertex the origin o of the affine

part C
2 ⊂ P

2. Let C6 be the automorphism group of this cone generated by

(u0 :u1 :u2) �→ (u0 :ζ3u1,−ζ3u2).

Then S5\M0,5 is as a quasi-cone isomorphic to C6\P
2 (which has an A2-singularity

at its vertex) and embeds in a projective space by means of the 5-dimensional linear
system defined by the degree 6 subspace of C[u0, u1, u2]C6 . This embedding is of
degree 6 and is such that C0 maps onto a line; any other member of C maps onto a
conic.

Proof The type of this cone can be determined by a local study at a point of � in
the way we did this in the proof of Lemma 6.1. One such point is represented in the
Hilbert–Mumford model by z ..= (0, 0, 1, ζ3, ζ 2

3 ) ∈ (P1)5. The S5-stabilizer of z is
cyclic of order 6 with a generator σ with

σ(x1, x2, x3, x4, x5) = (x2, x1, ζ3x3, ζ3x4, ζ3x5)

and the tangent space TzM0,5 is identified with T0P1⊕T0P1. If we identify T0P1 with
C by taking the coefficient of ∂/∂t |t=0, then we see that σ acts as (t1, t2) ∈ C

2 �→
(ζ3t2, ζ3t1) ∈ C

2. So if we pass to (u1, u2) = (t1 + t2, t1 − t2), then σ(u1, u2) =
(ζ3u1,−ζ3u2). An affine neighborhood of the vertex of the cone S5\M0,5 is the
quotient of C

2 by the automorphism group generated by σ .
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The diagonal form of σ shows that it leaves invariant only two lines through the
origin: the u2-axis defined by u1 = 0, on which it acts faithfully with order 6, and
the u1-axis defined by u2 = 0 on which it acts with order 3. Since C0 and C∞ are
the only members of C that are S5-invariant, these axes must define their germs at z.
The S5-stabilizer of z (which we have identified with C6) acts on the germ of C∞ at
0 through a subgroup of S3 (for it preserves a line on the quintic del Pezzo surface)
and so C6 cannot act faithfully on it. It follows that C0 is defined by u1 = 0.

Since σ 3 sends (u1, u2) to (u1,−u2), its algebra of invariants is C[u1, u2
2]. Now σ

sends (u1, u2
2) to (ζ3u1, ζ

−1
3 u2

2), so that its orbit space produces a Kleinian singularity
of type A2. Following Klein, its algebra of invariants is generated by u3

1, u1u2
2, u6

2. So
the degree 6 part of C[u0, u1, u2]C6 has basis u6

0, u3
0u3

1, u3
0u1u2

2, u6
2, u6

1, u2
1u4

2, u4
1u2

2,
and this C6\P

2 in P
5. Its image is clearly of degree 6. We have seen that the image

of C0 is given by u1 = 0 and the above basis restricted to nonzero monomials are
u6
0 and u6

2 and so its image is a line. If we substitute u2 = λu1 (with λ fixed), then
the monomials in question span u6

0, u3
0u3

1, u6
1 and so the image of this line is indeed a

conic. ��
Remark 6.3 The conclusion of the previous lemma and proposition agrees with the
explicit isomorphismS5\M0,5 ∼= P(1, 2, 3) from Remark 6.6 below. The only singu-
lar point of the quotient is the point (0 :0 :1), which is a rational double point of type
A2. The points projecting to the singular point satisfy I4 = I8 = 0. We know that
I4 = 0 defines the Wiman curve on S and I8 = 0 defines the union CK + C ′

K . They
intersect at 20 base points with the subgroup Sodd

3 as the stabilizer subgroup.
The weighted projective space P(1, 2, 3) is obtained as the quotient of P

2 by a
cyclic group of order 6 acting on coordinates as

(x0 :x1 :x2) �→ (x0 :ζ 3
6 x1 :ζ 2

6 x2).

The linear space of C3-invariant homogeneous polynomials of degree 6 is spanned by
six monomials x60 , x61 , x40 x21 , x20 x41 , x62 , x30 x32 . They define a C6-invariant map P

2 →
P
5 which factors through the quotient P(1, 2, 3) = P

2/C6. In terms of weighted
homogeneous coordinates t0, t1, t2 in P(1, 2, 3) it is given by monomials of the map
t60 , t31 , t40 t1, t20 t21 , t22 , t30 t2. The restriction of the map to the coordinate line t0 = 0 is
given by the monomials t31 , t22 . This shows that the image of the Wiman curve under
the composition

S = M0,5 → P(1, 2, 3) → P
5

is a line. One can interpret this map as the map

f : M0,5 → P(V (5)) = S5\(P1)5 ∼= P
5,

where V (5) is the space of binary quintic. According to [1], this map can be given
explicitly by

(a1, . . . , a5) �→ R(a1, . . . , a5) =
5∏

i=1

(Ti z − S3
i w) =

5∑

i=0

Bi z5−iwi,
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where S, T are fundamental invariants of degrees 2 and 3 of binary forms of degree 4
satisfying S3−27T 2 equal to the discriminant. The reference gives explicit expressions
for the coefficients Bi as polynomials of degree 24 in basic invariants I4, I8, I12 of
binary quintic forms.

6.2 The cross ratio map

The embedding of S5\M0,5 in projective 5-space that we found in Proposition 6.2
has a modular interpretation, which we now give.

As was mentioned in Sect. 2.1, the conic bundles of S have such an interpretation
onM0,5 as forgetful morphisms

fi : M0,5 → M0,4
(i) ∼= P

1

(it forgets the i th point). The notationM0,4
(i) used heremeans that we do not renumber

the four points and let them be indexed by {1, . . . , 5}�{i}; this helps to makemanifest
the S5-action on the product

∏5
i=1M0,4

(i) for which the morphism

f = ( f1, . . . , f5) : M0,5 →
5∏

i=1

M0,4
(i)

is S5-equivariant. The following is well known.

Lemma 6.4 The map f = ( f1, . . . , f5) : M0,5 → ∏5
i=1M0,4

(i) is injective.

Proof On M0,5 this is clear, since given an ordered 5-element subset (x1, . . . , x5)
of a smooth rational curve C , there is a unique affine coordinate z on C such that
(z(x1), z(x2), z(x3)) = (0,∞, 1), and then z(xi ) = fi (C; x1, x2, x3, x4) for i = 4, 5.
Since this even allows x4 = x5, we have in fact injectivity away from the zero dimen-
sional strata. A typical zero dimensional stratum is represented in a Hilbert–Mumford
stable manner by a 5-term sequence in {1, 2, 3} with at exactly two repetitions, e.g.,
(1, 2, 3, 1, 2) and then the value of fi on it is computed by removing the i th term and
stipulating that of the four remaining two items two that are not repeated are made
equal (and are then renumbered in an order preserving manner such that all terms lie
in {1, 2}). (In our example the value of f1 is (2, 1, 1, 2), the value of f2, f3, f4 is
(1, 2, 1, 2), and the value of f5 is (1, 2, 2, 1).) Elementary combinatorics shows that
f is here injective, too. ��
Recall that M0,4

(i) is naturally a 3-pointed smooth rational curve and that the S5-
stabilizer of the factor M0,4

(i), S5,i (the permutation group of {1, . . . , 5}�{i}), acts
onM0,4

(i) through the full permutation group of these three points. SinceS5,i \M0,4
(i)

is independent of any numbering, it is canonically isomorphic toS4\M0,4, and hence
with P

1 (such an isomorphism can be given by the j-invariant of the double cover of
P
1 ramifying in a prescribed 4-element subset). So theS5-orbit space of

∏5
i=1M0,4

(i)

is then identified with Sym5(P1). Since we can regard Sym5(P1) as the linear system
of degree 5 on P

1, it is a projective space of dimension 5. Let
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� : S5\M0,5 → S5\
5∏

i=1

M0,4
(i) ∼= Sym5(P1)

be obtained from f by passing to the S5-orbit spaces and denote by

�̃ : M0,5 → Sym5(P1)

its precomposite with the quotient morphism. It follows from Lemma 6.4 that � is
injective andProposition 6.2 tells us thatS5\M0,5 naturally embeds in a 5-dimensional
projective space as a quasi-cone.

Theorem 6.5 The morphism �̃∗ takes the hyperplane class of Sym5(P1) to −12KS,
and � is projectively equivalent to the projective embedding found in Proposition 6.2.
In particular, �̃(C∞) is a line in Sym5(P1).

Proof The hyperplane class of Sym5(P1) pulled back to (P1)5 is the sum of the degree
1 classes coming from the factors. The map

M0,4 → S4\M0,4 ∼= P
1

is of degree 6. The sum of the two special conics that appear as fibers of f5 : M0,5 →
M0,4 represent the pull-back of a degree 2 class on M0,4 and so the pull-back of
the degree 1 class on P

1 is 3 times the sum of these two special conics. Hence the
hyperplane class pulled back to M0,5 is equal to 3(Cc + C ′

c) = −12KS . The degree
of the image of � is then computed as

(−12KS)2

#(S5)
= 122 ·5

120
= 6.

This is also the degree of the image of S5\M0,5 in P
5 embedded as a quasi-

cone. One verifies in straightforward manner that C6\P
2 is simply-connected and

so Pic(C6\P
2) ∼= H2(C6\P

2; Z) is infinite cyclic. It follows that the two morphisms
must be projectively equivalent. ��
Remark 6.6 Let V (5) be the space of binary quintic forms. It is classically known (and
a fact that can be found in any text book on invariant theory) that the subalgebra of SL2-
invariants in the polynomial algebra C[V (5)] is generated by the Clebsch invariants
I4, I8, I12, I18 of degrees indicated in the subscripts (the last invariant is skew, i.e., it
is not a GL2-invariant). Their explicit form can be found in Salmon’s book [22]. There
is one basic relation among these invariants, which is of the form

I 218 = P(I4, I8, I12).

Since the subspace spanned by elements of degrees 4k is the subalgebra freely gen-
erated by the first three invariants, we see that the GIT-quotient SL2\\P(V (5)) is
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isomorphic to the weighted projective plane P(1, 2, 3). So in view of the discussion
above, we obtain

S5\S = S5\M0,5 ∼= P(1, 2, 3).

With the help of exact sequence (4) we can identify H0(S, ω−k
S )S5 with C[V (5)]2k .

In other words, the zero set (or, more precisely, closed subscheme) of any invariant
of degree 2k pulls back to a curve on S defined by an S5-invariant section of ω−k

S . It
then makes sense to ask what the curves on S are corresponding to the basic invariants
I4, I8, I12, I18, as these correspond to S5-invariant sections of ω−2

S , ω−4
S , ω−6

S , ω−9
S

respectively. We see for example right away that I4 corresponds to our Wiman curve.
The discriminant � of a binary quintic is a polynomial in coefficients of degree

8, and as such it must be a linear combination of I 24 and I8. In fact, it is known that
� = I 24 − 128 I8. It is also a square of an element D ∈ C[V (5)]4 and so D must
correspond to the curve C∞. It is clear that any SL2-invariant in C[V (5)]8 is a linear
combination of � = D2 and I 24 , in other words, has the form (aD + bI4)(aD − bI4)
for some (a, b) 
= (0, 0). So this defines on S a reducible S5-invariant divisor which
is the sum of two A5-invariant divisors. In other words, it represents the union of two
S5-conjugate members of the Wiman–Edge pencil.

The invariant I18, being the, up to proportionality unique, invariant of degree 18must
represent a unique curve on S defined by an S5-invariant section of ω−9

S . According
to Clebsch [6, p. 298], the invariant I18 vanishes on a binary form when its four zeros
are invariant with respect to an involution of P

1 and the remaining zero is a fixed point
of this involution. This is precisely the locus parametrized by Cev

2 and according to
Remark 3.14 indeed defined by a section of ω−9

S .
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