
Vol.:(0123456789)1 3

Journal of Medical and Biological Engineering (2020) 40:91–100 
https://doi.org/10.1007/s40846-019-00491-w

ORIGINAL ARTICLE

Support Vector Machine‑Based Classifier for the Assessment of Finger 
Movement of Stroke Patients Undergoing Rehabilitation

Toyohiro Hamaguchi1   · Takeshi Saito1,2 · Makoto Suzuki1 · Toshiyuki Ishioka1 · Yamato Tomisawa3 · Naoki Nakaya1 · 
Masahiro Abo4

Received: 8 April 2019 / Accepted: 5 September 2019 / Published online: 12 September 2019 
© The Author(s) 2019

Abstract
Purpose  Traditionally, clinical evaluation of motor paralysis following stroke has been of value to physicians and therapists 
because it allows for immediate pathophysiological assessment without the need for specialized tools. However, current 
clinical methods do not provide objective quantification of movement; therefore, they are of limited use to physicians and 
therapists when assessing responses to rehabilitation. The present study aimed to create a support vector machine (SVM)-
based classifier to analyze and validate finger kinematics using the leap motion controller. Results were compared with those 
of 24 stroke patients assessed by therapists.
Methods  A non-linear SVM was used to classify data according to the Brunnstrom recovery stages of finger movements by 
focusing on peak angle and peak velocity patterns during finger flexion and extension. One thousand bootstrap data values 
were generated by randomly drawing a series of sample data from the actual normalized kinematics-related data. Bootstrap 
data values were randomly classified into training (940) and testing (60) datasets. After establishing an SVM classification 
model by training with the normalized kinematics-related parameters of peak angle and peak velocity, the testing dataset 
was assigned to predict classification of paralytic movements.
Results  High separation accuracy was obtained (mean 0.863; 95% confidence interval 0.857–0.869; p = 0.006).
Conclusion  This study highlights the ability of artificial intelligence to assist physicians and therapists evaluating hand 
movement recovery of stroke patients.
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1  Introduction

The most common paresis to occur following stroke is con-
tralateral hemiplegia with involvement of upper extremi-
ties and fingers [1]. Stroke can result in motor dysfunction, 
such as paralysis of one side of the body [2]. The majority 

of stroke survivors experience ongoing limitations in their 
activities of daily life resulting in impaired quality of life. 
Assessment of motor dysfunction is mainly dependent on 
subjective measures or patient descriptions, which have 
limited applicability in evaluating rehabilitation interven-
tions such as hand dexterity training and spasticity-reducing 
treatments.

Objective measurement of motor dysfunction and finger 
activity may improve the quality of testing and evaluation. 
One drawback of most traditionally used clinical assess-
ment methods is that while they report whether a person 
can implement a task or not (for example, lift and move a 
small object), they fail to quantify the process of the activity, 
amount of compensatory movements from other joints, time 
to peak velocity, or sequence of joint involvement. Measure-
ment of these parameters may provide better insight into the 
underlying mechanisms of movement disorders [3, 4].
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The recovery process of hand paralysis is typically eval-
uated by physicians and therapists before and after reha-
bilitation exercises [5]. The Brunnstrom Recovery Stages 
(BRSs) system is a commonly used tool for evaluating para-
lytic symptoms of hands and fingers and for estimating the 
degree of recovery with kinematics-related parameters (peak 
angle or final forms of finger flexion or extension) [6]. Tra-
ditionally, clinical evaluation of paralysis has been favored 
by physicians and therapists because it provides immediate 
evaluation without the need for special tools. However, this 
assessment does not provide the movement time as assessed 
by the start and end times of movement of the paralytic hand. 
The status of recovery from paralysis may be more accu-
rately assessed by considering the velocity as well as range 
of voluntary movements [5, 7]. Furthermore, evaluation of 
the kinematics-related velocity of hand movement may pro-
vide greater insight into paralysis recovery even in cases 
involving an unchanged range of motion (ROM).

Various three-dimensional (3D) motion analyzers that 
provide temporal and spatial analysis of limb movement 
have been applied to assess rehabilitation progress [8–10]. 
However, all the described methods have limitations. The 
Crescent Vicon technology is space-occupying, requires 
markers that can be recognized by limb-sensor cameras, and 
involves considerable preparation time prior to measurement 
[11]. The Microsoft Kinect v2 device utilizes infrared sen-
sors to perform high-accuracy 3D analysis of limb motion 
without the requirement of markers, but the software can 
only track the movement of 25 joints in the body. Further-
more, two trackable positions of the hand tip (collective fin-
gertips) and thumb have been reported to be unsuitable for 
the analysis of fine movements [12–14]. The Leap Motion 
Controller (LMC; United States Patent, US 8, 638, 989 B2) 
uses three infrared irradiators and two infrared receivers, 
and it can be used to detect hand movements with a tem-
poral resolution of up to 120 Hz and a spatial resolution of 
1/100 mm without the need for markers. The device can also 
recognize hand gestures [15, 16].

The movement data for fingers flexion or extension in 
patients with hemiplegia, with simultaneous recording, may 
help physicians and therapists when evaluating the state of 
recovery of hand movement. Therefore, technologies that 
use artificial intelligence, such as the classifier and calcu-
lation methodology, must be able to perform assessments 
equivalent to a medical practitioner to have clinical utility. 
The present study investigated the utility of artificial intel-
ligence for assessing recovery of hand dysfunction following 
stroke through the analysis of finger kinematics obtained 
with LMC by using a support vector machine (SVM).

2 � Methods

2.1 � Participants

A total of 24 patients were enrolled from the 154 stroke 
inpatients who were treated at Tokyo Dental College Ichi-
kawa General Hospital between June 1, 2016 and Novem-
ber 30, 2016. Thirty patients initially satisfied the inclusion 
criteria of age 20 years or older and no previous diagnosis 
of stroke and the exclusion criteria of one or more fingers 
missing or severely limited ROM, difficulty understanding 
verbal instructions due to dementia or aphasia, assignment to 
bedrest, difficulty remaining seated for 30 min, or difficulty 
maintaining limb position for measurements even with assis-
tance. All 30 participants received written and oral expla-
nation of the study and provided signed consent to partici-
pate. However, six patients (females, two; males, four) were 
excluded from the analysis because the infrared sensors of 
LMC did not provide adequate data. The skin temperatures 
of these patient’s fingers were probably low and the infrared 
sensors might not have been able to distinguish them from 
the background temperature. Finally, data from five females 
and 19 males who completed the study were analyzed. The 
demographic information and stroke-related information of 
participants are detailed in Table 1.

2.2 � Ethical Considerations

In conformance with the ethics policy for medical research 
with human subjects, the design and protocol of the present 

Table 1   Demographic and stroke-related information of participants

Categorical data are presented as numbers; continuous data are pre-
sented as mean ± standard deviation

Characteristic Classification Data

Sex Female:male 5:19
Age (years) 67 ± 12
Dominant Right-handedness 24

Left-handedness 0
Focal side Right:left 11:13
Days after onset 13 ± 9
Diagnosis Cerebral infarction 10

Cerebral hemorrhage 4
Lacunar infarction 3
Atherothrombotic cerebral 

embolism
3

Brain stem thromboembolism 3
Brainstem hemorrhage 1

BRS Stage, n I, 1; II, 2; III, 
2; IV, 4; V, 
7; VI, 8
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study were approved by the Ethics Committee of Saitama 
Prefectural University (Approval no. 27083) and the Inde-
pendent Ethics Committee of Tokyo Dental College Ichi-
kawa General Hospital (I15-71).

2.3 � Tools

2.3.1 � Digital Measurements

The LMC uses an infrared sensor and obtains joint-centered 
coordinates via Unity game software (http://japan​.unity​
3d.com/). We created an original application to record-
ing finger movement (code name Fahrenheit, Patent no. 
6375328; Saitama Prefectural University, Japan). The vec-
tor representing each presumed finger bone was derived 
from two of the joint coordinates representing finger joints. 
The joint angles and distances between joints for each set 
of assumed metacarpophalangeal, proximal interphalangeal, 
and distal interphalangeal joints were then derived by using 
the law of cosines in the application. The LMC with Fahr-
enheit was operated by using a laptop computer with a Win-
dows 8 64-bit operating system (Microsoft, Kobe, Japan), 
and the resulting data were stored on the hard drive of the 
same computer.

The LMC with Fahrenheit application provides a 3D rep-
resentation of the finger position in the form of x, y, and z 
axis coordinates in millimeters within the frame of refer-
ence. If the position of a fingertip is given as (x, y, z) = [100, 
100, − 100], then this implies that x = 10 cm, y = 10 cm, and 
z = − 10 cm. Given the vectors (x1, y1, z1) and (x2, y2, z2) in 
the 3D space, the cosine formula was used to calculate fin-
ger ROM by using the Fahrenheit application. The angular 
velocity was calculated by the angle of finger ROM divided 
by time resolution 60 Hz.

The measurement setup consisted of a system composed 
of the LMC, a software package to obtain and record hand 
and wrist ROM from the Fahrenheit application, and a 
Unity-based graphical user interface that instructed partici-
pants to perform movements as well as analyzed data.

Two movement parameters were measured in accordance 
with the BRS assessment of disjunctive finger movement: 
all-fingers flexion, during which all fingers were maximally 
flexed from the position of maximum extension; and all-
fingers extension, during which all fingers were maximally 
extended from the position of maximum flexion. The two 
measurements were analyzed from the LMC coordinates by 
using an algorithm. The algorithm was performed using out-
put measurement values ranging from 0 (the minimal value 
of movement; 14 finger joints within a hand as 5 metacar-
pophalangeal joints; 4 proximal interphalangeal joints, 4 dis-
tal interphalangeal joints, and 1 interphalangeal joint were 
extended maximally in normal adults; 0° converted to 0) to 
1 (the maximum value of movement was converted to 1; 

maximal flexion computed as 90° multiplied by 14 joints is 
1260°) during voluntary ROM at a resolution of 0.001 mm 
and a sampling rate of 60 frames per second (fps).

2.3.2 � Brunnstrom Recovery Stages

The BRSs represent six stages on an ordinal scale, from flac-
cid paralysis (stage I) to free disjunctive movement (stage 
VI). Determination of the stage for fingers was performed on 
the basis of flexion, extension, pinch, and grasp formation 
[6]. The BRS criteria can also be applied to the Fugl–Meyer 
standardized assessment of movement capability in stroke 
cases, and its correlation with the Stroke Impairment Assess-
ment Set has been established [7].

2.4 � Procedures

Measurements were performed with participants in a seated 
position in a chair or wheelchair, with the shoulder joint on 
the paretic side relaxed in a slightly abducted position, elbow 
joint at approximately 90°, forearm in the pronated posi-
tion, and wrist joint in the neutral position (Fig. 1). First, the 
participants were asked to hold up their hands to the LMC 
measurements for the tester to confirm recognition of the fin-
gers by the LMC. The tester simultaneously gave the signal 
to begin measurement and pressed the measurement button. 
Second, the tester provided oral, action-based instructions 
for the starting limb position, confirmed assumption of the 
position, and instructed the participant to maintain the posi-
tion for 5 s. At 5 s after beginning the measurement, the 
tester orally instructed the participant to begin the move-
ment. The participant maintained the maximally attained 
limb position until the end of the measurement period (10 s 

B Applica�on of hand mo�on 
recording

Leap Mo�on Controller detec�onA

Fig. 1   Experimental setup. a Leap motion controller (LMC) setup 
for positioning the arms of participants. b Animation of hand motion 
generated from data detected from the patient’s hand by using the 
LMC

http://japan.unity3d.com/
http://japan.unity3d.com/
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after beginning the movement). After one or two practice 
attempts, an experimental measurement was performed 
once, with each participant demonstrating two movements 
of the paretic side: all-fingers extension and flexion. The 
range was determined by a preliminary investigation of each 
movement, wherein measurement data were calculated from 
0 to 7 s after the tester cued for movement.

2.5 � Therapist Assessment of Finger Movement 
Capability

Finger movement assessment of each participant during 
Brunnstrom recovery test of finger function was performed 
either by occupational therapists or physical therapists 
(n = 3; 6 ± 3 years of post-qualification experience; mean 
age, 28 ± 3 years) who had not previously met any of the 
participants. Assessment was performed by observation of 
the video-recordings of finger movements. The therapists 
assessed the movement in accordance with the BRS method 
for well-accomplished movements. All therapist assessments 
were performed independently, and therapists were blinded 
to information of the results obtained by other therapists or 
the SVM.

2.6 � Data Analysis

The kinematics-related parameters that were evaluated were 
the peak angle and peak velocity of finger flexion and exten-
sion for each participant. To normalize finger angles, the 
measured angle changes were first divided individually by 
the maximum angle. Second, to adjust all initial finger posi-
tions to 0, all data were subtracted from the initial angle. The 
peak angle was calculated from the recorded finger angle 
for the 7-s movement duration. Peak velocity was calcu-
lated from the maximum slope of the differentiated finger 
angle curve for the 7-s movement duration. Correlation of 
the kinematics-related parameters including the peak angle 
and peak velocity of finger flexion and extension and BRSs 
were examined by Spearman’s rank correlation coefficient.

Thereafter, 1000 bootstrap data values were generated by 
randomly drawing a series of sample data from the actual 
kinematics-related data. This bootstrap resampling method 
is widely used in demographic studies [17–19]. Then, the 
bootstrap kinematics-related data were inputted into a non-
linear SVM [20]. This powerful classification method can 
discriminate non-linearly separable data by using kernel 
functions to map the data to a higher dimensional space 
wherein the data become more separable [20, 21]. Equa-
tion (1) shows the basic concept of SVM model:

(1)y = wTx + b

where y is the output set, wT is the normal vector, x is the 
input set, and b is the offset. Equation (2) shows the mul-
tiplier method to create a discriminant function that maxi-
mizes the margin:

subject to yi = wTxi + b ≥ 1, i = 1… ,m

The undetermined multiplier method is shown in Eq. (3).

subject to 
l∑

i=1

yi�i = 0, i = 1… , l Equations (4) and (5) 

show a kernel method that constructs an optimal discrimi-
nant function. The optimal solution is α = (α1,…,αl)T. 
Choose αj to calculate the threshold:

and construct the decision function:

Therefore, the linear function is changed non-linearly 
according to Eqs. (1) to (5). In our case, the SVM focused 
on peak angle and peak velocity patterns and found the 
hypersurface that maximized the margin between the five 
distributions to classify data into the five BRSs, including 
stage I–II, III, IV, V, and VI.

The bootstrap kinematics-related data were then ran-
domly classified into 940 training data values and 60 testing 
data values. By using the training dataset, an SVM algo-
rithm was proposed to establish the classification model. 
After training, the SVM classification model was applied to 
the training dataset to predictively assign the testing data-
set to the appropriate class of BRS stages. This validation 
procedure was repeated 10 times, and the accuracy rate was 
calculated as AR = (TP + TN)/N, (AR, accuracy rate; TP, 
true positive; TN, true negative; N, sum of true positive, true 
negative, false positive, and false negative). This ensured 
that the trained SVM could generalize data to be applied to 
peak angle and peak velocity patterns when presented newly 
to the SVM algorithm [22]. All analyses were performed 
with R 3.4.0 software (R Foundation for Statistical Comput-
ing, Vienna, Austria).

(2)min
w,b

1

2
||w||2

(3)min
�

1

2

n∑

i=1,j=1
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3 � Results

Results of BRS for all participants were agreed upon by 
3 therapists on the day of the experiment (see last line 
in Table 1). The time-series plots of normalized finger 
angles recorded during the 7-s movement duration for each 
BRS are illustrated for 24 patients in Figs. 2 and 3. The 
plots reveal that ROM increased as the BRS increased. The 
time-series plots of normalized velocities during the 7-s 
movement duration for each BRS are shown in Fig. 4. The 
peak angles of finger flexion increased with the BRS stage, 
whereas those of finger extension decreased (Spearman’s 
rank correlation coefficients; finger flexion, r = 0.681, 
p = 0.003; finger extension, r = -0.848, p < 0.0001) 
(Fig. 5a, b). The peak velocities of finger flexion also 
increased with the BRS stage, whereas the peak veloci-
ties of finger extension did not correlate with the BRS 
stage (Spearman’s rank correlation coefficients; finger 
flexion, r = 0.776, p = 0.0002; finger extension, r = 0.285, 
p = 0.267) (Fig. 5c, d). The bootstrap data values were 

identical to the actual kinematics-related data (Table 2). 
After establishing the SVM classification model by train-
ing based on 940 kinematics-related bootstrap data values 
of peak angle and peak velocity, the 60 testing bootstrap 
data values were predictively assigned as BRSs. The accu-
racy rate of 10 SVM classifications ranged from 0.850 to 
0.878 (mean 0.863; 95% confidence interval 0.857–0.869; 
p = 0.006), which indicated high separation accuracy and 
low variability (Fig. 6).

4 � Discussion and Conclusions

This study analyzed the kinematics involved in finger flexion 
and extension in stroke patients by using machine-learning 
technology and a bootstrap method generated from actual 
kinematics-related data. This study investigated the poten-
tial to train artificial intelligence to predictively assign the 
BRS finger movement classification. According to previ-
ous reports, accuracy rates of SVM-based classifiers were 
67–97% [23] and 86–88% [24]. Our results demonstrated 

Fig. 2   Plots of finger angles 
recorded from the 24 par-
ticipants. Plots of a finger 
extension and b flexion trials. 
The transverse axis indicates 
the time course; the bold line 
during 0–7 s indicates the 
accounting data for analysis. 
The vertical axis indicates the 
voluntary range of motion of 
patients with stroke; 1 indicates 
full flexion and 0 is full exten-
sion of all finger joints. Lines 
indicate individual changes in 
finger angles among 24 patients
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that high separation accuracy was obtained by using an 
established SVM classification model based on normal-
ized kinematics-related parameters for peak angle and peak 
velocity. This suggests that a classifier could be used to 
distinguish the state of recovery in the fingers by assessing 
their peak angle and velocity during flexion and extension. 
Artificial intelligence based on the bootstrap method may be 
able to judge the state of finger paralysis more accurately if 
an increased amount of actual finger flexion and extension 
data were recorded to enhance the training of the classifier. 
This presents the possibility that artificial intelligence can 
improve prognostic assessment as well as prediction-based 
therapeutic approaches and enhance the accuracy of results 
that are achieved by human assessment [25–27].

The status of hand paralysis recovery is typically evalu-
ated by physicians and therapists by examining the voluntary 
ROM [28]. Few assessment techniques consider the veloc-
ity of finger movement, even though these are thought to 
be a useful kinematic index of voluntary movement. The 
development of tools that evaluate the recovery status of 

paralysis is ongoing. For example, 3D motion capture sys-
tems, such as the LMC, have recently been developed to 
record the kinematics of human fingers [29]. Developments 
in the field of robotic rehabilitation are therefore beginning 
to provide precise tools for the evaluation of human motion 
[30–32]. Currently, it is possible to measure the kinematics 
of finger flexion and extension during a short time by using a 
motion capture system to collect data. However, this form of 
artificial intelligence is not suitable for clinical use currently 
because of the limited amount of patient data.

The present study had some limitations. Only two param-
eters of paralysis (finger flexion and extension) could be sep-
arated by using artificial intelligence and generated bootstrap 
data values because of the very small sample size available. 
The accuracy rate of SVM classification in this study was 
only 85–88%. The bootstrap method was used in this study; 
therefore, the variance of the generated training data was 
smaller than the actual kinetics-related data, which might 
have affected the accuracy of the SVM classifier. The actual 
angles and velocities of finger flexion correlated with BRSs, 
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Fig. 3   Plots of finger angles recorded from the 24 participants with 
Brunnstrom recovery stages 1–6, as evaluated by therapists. The solid 
lines and gray zones indicate the means and standard errors of the 
mean, respectively. Graphs show results of a–e finger flexion and f–j 

finger extension trials. The time point of 0 s represents the movement 
start cue. Range of motion increases at higher stages. Abbreviations: 
BRSs, Brunnstrom recovery stages
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whereas the actual velocities of finger extension did not 
correlate with BRSs in this study. Even though the results 
of correlation analysis between actual BRSs and kinetics-
related data validated the bootstrap data, the generation of 
bootstrap data from small actual data in the BRSs category 
is a limitation of this study.

A detailed separation of recovery stages would require 
greater numbers of highly variable actual samples to 
improve the training of the classifier. In addition, the SVM-
based classifier was used instead of vector quantization (VQ) 
in this study. The SVM had unique advantages because of its 
pattern recognition in small training samples using the peak 
angle of joints and velocity. VQ is the process of replacing 
the data set represented by the vector with a finite number of 
representative patterns without data loss [33, 34]. VQ also 
scientifically conquered sprouting [35, 36], and it might be 
used for high-quality motion capture during future research.

Comparisons of the different measurement techniques 
of finger ROM have been performed [37], and flexion 
and extension of all fingers were assessed with the LMC 
and a goniometer (the standard technique). The analogue 

goniometer measured the dorsal side of the hand and wrist 
(the center of rotation was exterior to the joint), whereas 
the LMC estimated the center of rotation as being inte-
rior to the joint. The LMC estimated rather than measured 
the joint angles during occlusion. This may explain the 
smaller standard deviations for LMC results compared to 
goniometer-acquired data [38]. The issues with measure-
ments during occlusion can be solved by using multiple 
LMCs. Placidi et al. used two LMCs to track the position 
of the hand in 3D and reported a reduction in occlusions 
without incurring further complications [31].

As new motion sensor and capture techniques are devel-
oped, future studies focusing on the use of these in com-
bination with human diagnosis or predictive prognosis for 
enhancing hand and finger rehabilitation are required. As 
an example of this approach, a deep learning architecture 
for video-based person reidentification has been developed 
[39]. The kinematic indices of deviations in arm motion 
have been presented; these quantify the degree to which 
an individual’s joint-angle curves deviate from the mean 
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resent the standard error of the mean. Peak angles of finger flexion 

increase and those of extension decrease as BRS increases; higher 
BRSs exhibit higher peak velocities. BRSs Brunnstrom recovery 
stages

Table 2   Kinematics-related actual and bootstrap data

BRS Finger flexion Finger extension

Peak angle Peak velocity Peak angle Peak velocity

Actual Bootstrap Actual Bootstrap Actual Bootstrap Actual Bootstrap

I–II 0.06 ± 0.04 0.06 ± 0.02 0.12 ± 0.06 0.12 ± 0.04 − 0.02 ± 0.01 − 0.02 ± 0.00 0.18 ± 0.12 0.18 ± 0.07
III 0.12 ± 0.10 0.12 ± 0.05 0.66 ± 0.51 0.68 ± 0.26 − 0.07 ± 0.03 − 0.07 ± 0.02 0.12 ± 0.08 0.12 ± 0.04
IV 0.37 ± 0.19 0.38 ± 0.11 1.80 ± 1.24 1.76 ± 0.70 − 0.23 ± 0.09 − 0.23 ± 0.05 0.48 ± 0.48 0.46 ± 0.28
V 0.49 ± 0.11 0.48 ± 0.07 4.47 ± 3.63 4.45 ± 2.20 − 0.50 ± 0.12 − 0.50 ± 0.07 0.27 ± 0.10 0.27 ± 0.06
VI 0.47 ± 0.06 0.47 ± 0.04 4.61 ± 2.49 4.56 ± 1.58 − 0.52 ± 0.07 − 0.52 ± 0.05 0.25 ± 0.11 0.25 ± 0.07
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curves of a normal population. However, the indices do 
not describe the manner of deviation [40].

In conclusion, the present study demonstrated a method 
using artificial intelligence to evaluate the recovery of hand 
movements of stroke patients. This method has the potential 
for enhancing the diagnosis and prognosis of patients under-
going rehabilitation. Further studies are required to enhance 
the feature learning model and optimize motion capture.
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