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Cationic and anionic energetic materials based on a
new amphotère
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In general, amphotères can be divided into organic and
inorganic amphoteric compounds. Oxides and hydro-
xides of aluminum, gallium, zinc, copper and chromium
are inorganic amphoteric compounds [1], while organic
amphoteric compounds, such as amino acids, peptides
and proteins, usually include amino and carboxyl groups
in one molecule [2]. In the field of energetic materials,
some significant progresses have been made in recent
years; however, amphoteric molecules are relatively rare
[3–8]. As shown in Scheme 1, 1H-tetrazole (TZ) is an
important core of energetic materials because of its

practical significance and diversity of properties. TZ can
be deprotonated to an anionic TZ-b easily using common
bases such as hydrazine, ammonia, or alkali and alkaline
earth metal hydroxides or carbonates [9,10]. It can also be
protonated to a cationic TZ-a under perchloric acid, but it
is relatively difficult [11]. Similar to TZ, 5-aminotetrazole
(5-ATZ), a weak acid (pKa~6), nitrogen-rich (82%)
compound, also presents an amphoteric characteristic
and undergoes two acid-base equilibria, leading to three
distinct states (neutral, cationic 5-ATZ-a, and anionic 5-
ATZ-b), as depicted in Scheme 1 [12–14]. But it has most
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Scheme 1 Different distinct states of TZ, 5-ATZ, FOX-7, and HFOX.
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often been employed as a cation precursor in energetic
salts [15,16]. In addition to TZ and 5-ATZ, 1,1-diamino-
2,2-dinitroethene (FOX-7) and 1-amino-1-hydrazino-2,2-
dinitroethene (HFOX) also exhibit amphoteric properties
(Scheme 1) [17–21].

Triazole derivatives have been used successfully to
produce a large number of energetic materials. Nitro-
amino-substituted monocyclic and bridged bicyclic tri-
azoles are very important species (Fig. 1 A–G) [22–27].
By implementing nitroamino moieties, the oxygen bal-
ance and the energetic performance of the target molecule
can be optimized. Simultaneously, the chemistry of A–G
with bases to generate the corresponding anionic sub-
strates was well established. But they have never been
employed as cation precursors in energetic salts. 5,5ʹ-
diamino-4,4ʹ-dinitramino-3,3ʹ-bi-1,2,4-triazole (1) and its
anionic salts based on 1-b were synthesized by Klapötke
et al. [28–30] in 2016. However, evidence for protonated
1 was not developed. The isolation of such species is of
great interest to study a new form of nitroamino- and
amino-substituted triazole and these molecules have po-
tential as promising precursors that may enhance the
properties of energetic salts. Herein we describe proto-
nated 1 and coordination of 1-b by the syntheses of salt
containing the first cationic state of 1 and the potassium
based 3D metal-organic framework (MOF) of 1-b.

For the protonated products of 1, there are four pos-
sible forms (1-a1–1-a4, see Scheme 2). Theoretically,
except for the two nitroamino groups and the nitrogen
atoms to which they are attached, other nitrogen atoms
may be protonated with acids. Single-crystal X-ray ana-
lysis indicated that the proton was introduced at the N2

nitrogen and double bond transferred from C–N2 to C–
N3, leading to the formation of 1-a4.

Compound 1 can be obtained by selective nitration of
4,4ʹ,5,5ʹ-tetraamino-3,3ʹ-bi-1,2,4-triazole (2) or a new
synthetic route from 3,9-diamino-6,7-dihydro-5H-bis
([1,2,4]triazolo)[4,3-e:3ʹ,4ʹ-g][1,2,4,5]tetrazepine-2,10-
diium chloride (3) [31,32]. Deprotonation of 1 with KOH
gave the dipotassium salt 4. Compound 1 was first treated
with an excess of nitric acid (HNO3) at 25°C to yield
nitrate monohydrate (crystals), 5 (Scheme 3).

Compound 1 (Fig. S1) crystallizes in the orthorhombic
space group Pbca with four molecules in the unit cell with
a calculated density of 1.783 g cm−3 at 205 K (1.789 g cm−3

at 173 K [28]). 1 has a zwitterionic resonance structure
with a formal negative charge at the nitrogen atom N2
and a protonated nitrogen atom N5. A very strong inter-
molecular hydrogen bond is found between the atoms N5
and N2 [N5–H5…N2 2.803(3) Å]. The N5 atom proton
forms two weak hydrogen bonds to the nitro group [N5–
H5…O1 3.086(3) Å; N5–H5…N1 3.430(3) Å].

Suitable single crystals of 4 were grown in water solu-
tions. Complex 4 crystallizes as a dihydrate in the
monoclinic space group with a 3D porous framework. As
depicted in Fig. 2, the central K ion displays a distorted
quadrangular pyramid coordinated by three nitrogen
atoms (N3, N6, and N6) from three different 1-b ligands
and two oxygen atoms (O3) from water molecules. Each
1-b ligand exhibits a tetradentate coordination mode (see
Fig. 2a), in which the N3 and N6 atoms adopt a bridging
mode to connect to six different K ions. Every two ad-
jacent amino groups (N6) of different ligands are bridged
by two K ions to form a 1D chain. A 2D layer is formed

Figure 1 Energetic derivatives of triazole. 3-nitroamino-1,2,4-triazole (A), 4-nitroamino-1,2,4-triazole (B), 1-nitroamino-1,2,3-triazole (C), N,Nʹ-
(5,5ʹ-dinitro-2H,2ʹH-3,3ʹ-bi(1,2,4-triazole)-2,2ʹ-diyl)dinitramide (D), N-(3-nitro-1-(trinitromethyl)-1H-1,2,4-triazol-5-yl)nitramide (E), N,Nʹ-(1,1ʹ-
(ethane-1,2-diyl)bis(3-nitro-1H-1,2,4-triazole-5,1-diyl))dinitramide (F), and bis[3-(5-nitroamino-1,2,4-triazole)] (G).
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based on the coordination of N3 atoms with K ions (N3-
K: 3.1024 Å) in the direction of a axis (Fig. 2c). The ad-
jacent layers are linked by coordination of O3 from H2O
molecules with K ions (O3-K: 3.2129 and 3.2295 Å),
producing the stable 3D supramolecular network (see Fig.
2d). In terms of topology, the ligand can be viewed as an
ensemble of eight-connected (8-c) node, with the K+

serving as six-connected (6-c) node. Thus, the underlying

binodal (6,8-c) net with stoichiometry (6-c)2(8-c) presents
a new topology (see Fig. S4).

Salt 5 crystallizes with one molecule of water in the
monoclinic space group P121/c1 system (Fig. 3). It is
composed of four molecules per unit cell with a crystal
density of 1.878 g cm−3 at 173 K. 5 has two protonated
nitrogen atoms (N6 and N3) in the triazole moieties and
two protonated nitrogen atoms (N9 and N11) in the

Scheme 3 Synthesis of 1, 4 and 5.

Scheme 2 Possible deprotonation and protonation sites of 1.
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nitramino moieties. To obtain a better understanding of
interactions between 1-a4 and nitrate ions, the two-
dimensional (2D) fingerprint plot of 1-a4 in the crystal
stacking of 5 and the associated Hirshfeld surface were
calculated [33] (see Fig. 4). Only one remarkable spike on
the bottom left (H…O interactions constitute 31.2% of
the total weak interactions) in the Fig. 4a denotes the

hydrogen bonds (blue dashed lines in Fig. 4b) from 1-a4
to nitrate ions and water molecules, while weaker O…O,
O…N, and O…C interactions were found among
neighboring 1-a4 cations.

By comparison, we specify the atomic labels of 1, 1-b in
4 · 2H2O, and 1-a4 in 5 as shown in Table 1. The C1–C1’
and the C2–N4 bonds in 1-a4 are shorter than those in 1

Figure 2 (a) Coordination model of 1-b in 4 · 2H2O. (b) Coordination environment of K+ in 4 · 2H2O. (c) The 2D layer in 4 · 2H2O. (d) The 3D
supramolecular framework in 4 · 2H2O viewed down a axis.

Figure 3 (a) Crystal structure of 5; thermal ellipsoids are drawn at the 50% probability level. (b) Packing diagram of 5 viewed down the a axis. Unit
cell indicated and dashed lines represent hydrogen bonding.
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and similar to those in 1-b. The observed bond lengths of
N3–N5 and N5–N6 in the three compounds are between
the values of a N–N single bond and a N=N double bond

due to electron delocalization in the triazole ring. The
N3–C1–C1’–N3 and N1–N2–C2–N4 torsion angles are
nearly 180°, which means both ring systems and the
amino groups are located in plane. The two nitramino
groups are tilted out of the plane by 78° (1), 66° (1-b), and
67° (1-a4), respectively.

The physiochemical energetic properties for 1, 4, 5 and
standard energetic properties for comparison are reported
in Table 2. The thermal stability (onset temperature) of 4
and 5 were evaluated by thermal gravimetric analysis
(TGA, see Fig. S5). 4 has good thermal stability with an
onset decomposition temperature (Tdec) of 220.4°C, which
is comparable to that of the reported potassium based
primary explosives, such as potassium 4,4ʹ-bis(dinitromethyl)-
3,3ʹ-azofurazanate (229°C) [34] and potassium 4,5-bis
(dinitromethyl)furoxanate (218°C) [35], and slightly
lower than that of the dilithium 3,3ʹ-diamino-4,4ʹ-
dinitramino-5,5ʹ-bi-1,2,4-triazolate trihydrate (240°C)
[29]. The weight loss (4.3%) at 108.3°C for protonated
compound 5 was related to dehydration; however it was
found to be more thermally stable (Tdec = 262.2°C) than
deprotonated product 4, while they have better thermal
stabilities than RDX (1,3,5-trinitro-1,3,5-triazacyclo-
hexane, 204°C).

Experimental densities measured at 25°C show that the
protonated compound 5 has a higher density
(1.84 g cm−3) than RDX and 1. The density of 4 is
1.98 g cm−3 and it is equal to that of the potassium based
3D MOF, potassium 4-(5-amino-3-nitro-1H-1,2,4-triazol
-1-yl)-3,5-dinitropyrazole [36].

Figure 4 (a) 2D fingerprint plot of 1-a4 in the crystal stacking of 5. (b) Hirshfeld surface for 1-a4. (c) The individual atomic contact percentage
contribution to the Hirshfeld surface.

Table 1 Selected bond lengths (Å), angles (°) and torsion angles (°) of
1, 1-b in 4 · 2H2O, and 1-a4 in 5

1 1-b in 4 · 2H2O 1-a4 in 5

Bond lengths

C1–C1’ 1.559(4) 1.447(5) 1.443(3)

C1–N1 1.284(3) 1.288(3) 1.288(3)

C2–N2 1.405(3) 1.332(3) 1.335(3)

C1–N3 1.359(3) 1.392(3) 1.388(3)

C2–N3 1.405(3) 1.367(3) 1.365(3)

C2–N4 1.459(3) 1.299(3) 1.301(3)

N1–N2 1.527(3) 1.378(3) 1.378(3)

N3–N5 1.384(2) 1.370(3) 1.368(3)

N5–N6 1.235(2) 1.427(3) 1.417(3)

Bond angles

N6–N5–N3 101.72(16) 113.66(19) 112.94(17)

Torsion angles

N3–C1–C1’–N3’ 180.00 180.00 179.50

N1–N2–C2–N4 178.60 178.65 178.60
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The heats of formation of 4 and 5 were calculated by
using the Gaussian 09 suite of programs [37] (see the
Supplementary information). Using the densities and
calculated heats of formation, the energetic properties of
4 and 5 were calculated using Explo5 program [38]. 4 was
predicted to have a detonation velocity (D) of 7,872 m s−1

and detonation pressure (P) of 25.8 GPa which are su-
perior to those of the traditional primary explosives
Pb(N3)2 (D = 5,877 m s−1, P = 33.4 GPa). And the deto-
nation temperature of 4 (3,451 K) is comparable to that of
the Pb(N3)2 (3,353 K). The D of 5 is 9,076 m s−1, which is
slightly lower than that of HMX (1,3,5,7-tetranitro-
1,3,5,7-tetraazacyclooctane, 9,221 m s−1).

The impact and friction sensitivities of 4 and 5 were
determined using a standard BAM fall hammer and a
BAM friction tester, respectively [39]. 5 has an acceptable
impact sensitivity (IS) of 8 J and friction sensitivity (FS)
of 200 N compared to those of RDX and HMX (IS = 7.4 J,
FS = 120 N). However, it exists as the monohydrate which
would lower its measured sensitivities. 4 exhibits sensi-
tivity to external stimuli with an IS of 4 J and FS of 40 N.

In summary, the exciting discovery of the first isolated
cationic 5,5ʹ-diamino-4,4ʹ-dinitramino-3,3ʹ-bi-1,2,4-tri-
azole salt (5) that has been synthesized and fully char-
acterized by single-crystal X-ray analysis. 5 is a secondary
explosive with high decomposition temperature
(262.2°C), enhanced detonation parameters in compar-
ison to those of RDX, and lower sensitivity to HMX.
Coordination of the anionic 5,5ʹ-diamino-4,4ʹ-dini-
tramino-3,3ʹ-bi-1,2,4-triazole yielded the primary ex-
plosive 4, the higher performance and larger nitrogen and
oxygen content of which relative to Pb(N3)2 make this

compound a competitive candidate as a green primary
explosive. The deprotonated and protonated approach
resulted in two new compounds which not only fall into
different classes of explosives but also show improved or
comparable properties to those of the standard com-
pounds.
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基于一个新两性化合物的阳离子和阴离子含能材料
许元刚1, 王鹏程1, 林秋汉1, 杜耀2, 陆明1*

摘要 本文报道了5,5ʹ-二氨基-4,4ʹ-二硝氨基-3,3ʹ-双-1,2,4-三唑(1)的第一种阳离子形式及其合成和表征. 化合物1与硝酸反应生成了5, 与
RDX相比, 这是一种具有更高的分解温度和更好爆轰性能的炸药, 与HMX相比其感度更低. 1的阴离子作为配体和钾离子的自组装合成了
起爆药4, 与目前广泛使用的Pb(N3)2相比较, 它的性能更加优异. 两性化合物1的两个衍生物的分离具有重要意义: (1) 说明了化合物1的两
性性质; (2) 开启了它们作为有前景的含能前体的研究, 为更多含能离子盐的合成提供参考.
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