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Enhancing kinetics of Li-S batteries by graphene-like
N,S-codoped biochar fabricated in NaCl non-aqueous
ionic liquid
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ABSTRACT Graphene-like N,S-codoped bio-carbon
nanosheets (GNSCS) were prepared by a facile and
environment-friendly NaCl non-aqueous ionic liquid route to
house sulfur for lithium-sulfur battery. The natural nori
powder was calcined at 900°C for 3 h under Ar, in which NaCl
non-aqueous ionic liquid can exfoliate carbon aggregates into
nanosheets. The structural characterization of GNSCS by a
series of techniques demonstrates the graphene-like feature.
When evaluated as the matrix for sulfur cathode, GNSCS/S
exhibits more prominent cycling stability and rate capability.
A discharge capacity of 548 mA h g−1 at a current density of
1.6 A g−1 after 400 cycles was delivered with a capacity fade
rate of only 0.13% per cycle and an initial Coulombic effi-
ciency (CE) as high as 99.7%. When increasing the areal sulfur
loading up to 3 mg cm−2, the discharge capacity can still be
retained at 647 mA h g−1 after more than 100 cycles with a low
capacity degradation of only ~0.30% per cycle. The features of
N/S dual-doping and the graphene-like structure are propi-
tious to the electron transportation, lithium-ion diffusion and
more active sites for chemically adsorbing polysulfides. It is
anticipated that other functional biochar carbon can also be
attained via the low-cost, sustainable and green method.

Keywords: nori powder, graphene-like N,S-codoped bio-carbon
nanosheets, NaCl non-aqueous ionic liquid, reaction kinetics,
lithium-sulfur batteries

INTRODUCTION
With the ever-growing demand for energy storage tech-

nologies, the advanced battery systems have been intri-
guing extensive research [1]. Lithium-sulfur (Li-S)
batteries have emerged as one of the most attractive
candidates to satisfy the next generation commercialized
electrochemical power storage sources due to the high
theoretical capacity and energy density (1,675 mA h g−1

and 2,500 W h kg−1) besides cost effectiveness and en-
vironmental friendliness [2]. However, many challenges
still should be solved [3]. First, the lower electronic
conductivity of sulfur and the discharge products (Li2S)
causes the low utilization of sulfur [4]. Second, the higher
solubility of Li2Sn (3≤n≤8) in the ether electrolyte leads to
a rapid capacity fade and low Coulombic efficiency [5].
Third, the larger volume expansion of about 80% from
sulfur to Li2S is a main reason of the pulverization of the
entire electrode [6].

In order to deal with the above problems, specific
carbon structures have been selected as hosts for sulfur,
including graphite or graphene [7,8], carbon nanotubes/
fibers [9,10] and meso/microporous carbon [11,12] and
so on [13,14]. However, the synthetic routes developed
for these carbon materials have seriously hampered the
application of Li-S batteries due to the tedious processing
conditions, high cost, and environmental friendliness
[15]. For instance, the carbon materials are reported to be
derived from different metal-organic frameworks (MOF)
precursors [16], which needs hot alkali solution or hy-
drofluoric acid to remove the metal-involved species.
Thus, it is of necessity to search for highly efficient and
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cost-effective sources of carbon to build high perfor-
mance sulfur-based composites.

The derivation of biochar from biomass has become
one of the most popular strategies because the natural
materials have intrinsic specialty in terms of structure and
composition, let alone the low cost, eco-friendliness and
sustainability. To date, various kinds of porous biochar
have been reported due to the high yield and easy scalable
processes [17,18]. Gu et al. [19] explored the microporous
carbon material obtained from natural bamboo as the
host of sulfur. When the sulfur loading was 50%, the
composite showed high initial capacity and Coulombic
efficiency (CE). Yu’s group [20] reported the preparation
of N-doped microporous carbon from human hair and
the activation with KOH at 900°C. With the sulfur
loading up to 69 wt%, it showed a good reversible capa-
city of 989 mA h g−1 and CE of 99.8% after 300 cycles at
0.2 C. However, in most research documents of biological
carbon, the traditional KOH was always used as the ac-
tivation agent to obtain the targeted carbon materials
[20]. But the low yield problem is annoying with respect
of the fact that the carbon lost so much after activation.
Moreover, the synthesis of graphene-like structure has
not been reported based on the biomass source.

Herein, we first proposed a facile and environment-
friendly route to prepare graphene-like N/S-codoped bio-
carbon nanosheets (denoted as GNSCS) by the applica-
tion of NaCl non-aqueous ionic liquid. As we all know,
NaCl is a kind of common ionic crystals. When the
temperature is higher than its melting point, i.e., 801°C,
NaCl will melt into a non-aqueous ionic liquid [21],
which can offer an ionic environment to enhance the
diffusivity of starting materials and prevent the agglom-
eration into the bulk. Cocoon-like β-CaSiO3 nanos-
tructure was reported to be prepared by the solid-state
reaction in NaCl–H2O system [22,23]. Relying on the
special functionality of NaCl, we have successfully pre-
pared graphene-like bio-carbon nanosheets by exfoliating
the carbon. Moreover, the elements of sulfur and nitrogen
from the abundance of amino acids in nori were in situ
doped into carbon lattice. The as-prepared GNSCS were
applied to hold sulfur for Li-S batteries, exhibiting the
excellent electrochemical performance even at the con-
dition of high areal sulfur loading.

EXPERIMENTAL SECTION

Materials and chemicals
The nori was purchased from a supermarket and all the
other chemicals in our experiments were purchased from

Shanghai Sinopharm Chemical Reagent Co. Ltd.

Preparation of GNSCS matrix
The GNSCS was prepared by the carbonization of natural
nori. Before using it, the nori was washed with deionized
water and ethanol for several times, dried at 80°C over-
night, and ground into powder. Then, the mixture of nori
powder and NaCl was mixed at a mass ratio of 10:1 with
ultrapure water and intensely stirred for 0.5 h, followed
by transferring into a 50 mL Teflon-lined autoclave. After
sealing, the autoclave was kept at 200°C for 20 h, and then
naturally cooled to room temperature. The resulting
brown product was heated at 95°C to evaporate water,
ground into powder and finally calcined at 900°C under
an argon flow with a heating rate of 2°C min−1 for 3 h.
The product was soaped in 1.0 mol L−1 HCl at room
temperature for 8 h to remove the impurity to obtain the
GNSCS sample.

Preparation of carbon/S composites
In a typical synthesis, the as-obtained powder and sub-
limed sulfur were mixed with a mass ratio of 2:3 in a glass
beaker and then stirred until homogeneous mixing. The
obtained carbon/S mixture was heated at 155°C for 10 h
under inert atmosphere.

Characterization
The characterization of microstructure and morphology
for the as-obtained samples was carried out by field
emission scanning electron microscopy (FESEM, G300,
Zeiss), and transmission electron microscopy (TEM,
JEM-1011 and JEOL-2011). The Bruker D8 X-ray dif-
fractometer with Cu Kα radiation (λ=1.5418 Å) was used
to record X-ray powder diffraction (XRD) patterns. The
nitrogen adsorption–desorption isotherms were given by
Micromeritics ASAP-2020HD88 analyzer at 77 K. The
sulfur contents of the composites were tested using
MettlerToledoTGA/SDTA851 thermal analyzer from
room temperature to 800°C at a heating rate of
5 °C min−1 in nitrogen. The X-ray photoelectron spec-
trum (XPS) was acquired by ESCALAB 250 spectrometer
(Perkin-Elmer). The Raman spectra were investigated
through NEMUS670 NEXUS670FT-IR Raman spectro-
meter with an excitation wavelength of 632 nm.

Electrochemical measurements
First, the slurry of the cathode for Li-S batteries, active
material, conductive carbon and poly(vinylidenedi-
fluoride) (PVDF) with a ratio of 7:2:1 were dissolved in
N-methyl-2-pyrrolidinone with stirring for 0.5 h. The
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slurry was spread onto aluminum foil as the current
collector and dried in oven at 60°C for 12 h, which was
then cut into disks with a diameter of 12 mm. The 2016R
coin-type cells were assembled in an argon-filled glove-
box (the value of water and oxygen <0.1 ppm), lithium
metal foil worked as the counter electrode, and the se-
parator was Celgard 2400 membrane. The electrolyte was
prepared by dissolving 1 mol L−1 bis(trifluoromethane)
sulfonamide lithium salt (LITFSI, 99%, Acros Organics)
in a mixed solvent of 1,2-dimethoxyethane (DME, 99.5%,
Alfa Asea), and 1,3-dioxolane (DOL, 99.5%, Alfa Asea)
(volumetric ratio of 1:1) with 2 wt% LiNO3 added. The
LAND CT2001A charge-discharge testing system was
used to test charge–discharge performance at 30°C at a
voltage window between 1.7 and 2.8 V vs. Li+/Li. The
cyclic voltammetry (CV) at a scan rate of 0.1 mV s−1,
electrochemical impedance spectroscopy (EIS) spectra
were detected by an electrochemical workstation (CHI
760E, Shanghai Chenhua).

RESULTS AND DISCUSSION
Fig. 1 shows the illustration of the preparation process of
the GNSCS from biomass. When nori powder was mixed
with NaCl bearing a mass ratio of 10:1, followed by the
calcination at 900°C for 3 h under Ar atmosphere. During
the process, the NaCl salt melted into non-aqueous ionic
liquid composed of Na and Cl ions, which could
permeate into the structure of carbon material so that it
could been exfoliated into nanosheets. The natural nori is
rich in the amino acids which could serve as the source of
nitrogen and sulfur [24], which were readily doped in situ
into the carbon lattice.

The morphology and microstructure of GNSCS were
monitored by the technique of FESEM and TEM. As
shown in Fig. 2a–d, it is clearly to observe the mor-

phology of graphene-like nanosheets with remarkably
porous texture. To demonstrate the role of NaCl non-
aqueous ionic liquid in the formation of the nanosheets, a
control experiment was conducted by the direct carbo-
nization of the raw natural nori under the same condition
except the absence of NaCl to obtain the N,S-codoped
bulky porous bio-carbon (denoted as NSBPC). As dis-
played in Fig. S1, NSBPC consists of bulky aggregates by
structure stacking. It can be believed that the formation of
graphene-like nanosheets was attributed to the stripping
effect of NaCl non-aqueous ionic liquid, which could
permeate at higher temperature so that the bulky carbon
could be exfoliated into nanosheets. To further explore
the elemental component of the GNSCS, the corre-
sponding elemental mappings were measured. Fig. 2e–h
shows the homogeneous distribution of carbon, nitrogen
and sulfur throughout the GNSCS, which further iden-
tifies that N and S are dual-doped into the carbon lattice.

Raman spectra of the two samples are presented in
Fig. 3a and both of them have two typical characteristic

Figure 1 Schematic illustration of the synthesis of graphene-like N,S-
codoped bio-carbon nanosheets (GNSCS) and N,S-codoped bulky por-
ous bio-carbon (NSBPC).

Figure 2 TEM (a, b), FESEM (c, d), and elemental mapping (e–h)
images of GNSCSs. Scale bars: (a) 500 nm, (b, d) 100 nm, (c) 200 nm, (e)
250 nm, (f) 150 nm.
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peaks, i.e., D band at around 1,348 cm−1 and G band at
around 1,594 cm−1 [25–27]. The former originates from
the defective or disordered carbon while the latter is
corresponding to the graphitic structure. The ratios of ID/
IG for GNSCS and NSBPC are 1.13 and 1.10, respectively,
resulting from the heteroatoms of N and S doped into the
carbon lattice.

The detailed porous texture of GNSCS matrix was in-
vestigated by nitrogen adsorption–desorption isotherms.
As we can see in Fig. 3b, GNSCS exhibits a type II iso-
therm (a Langmuir type isotherm). The H4 hysteresis
loop is indicative of the slit-like pores present in the
GNSCS [28] caused by the sheet structure. The Brunauer
−Emmett−Teller (BET) surface area of GNSCS is
249.2 m2 g−1 and the total pore volume is 0.24 cm3 g−1.
From the Barrett-Joyner-Halenda (BJH) pore size dis-
tribution curve in the inset of Fig. 3b, mesopores dom-
inate. Hence, the GNSCS are promising for high sulfur
loading and could provide more space to accommodate
volume expansion [29] (~80%) of sulfur to its discharge
production (Li2S) during the charge–discharge process,
and facilitate the lithium ion diffusion.

After combination with sulfur, the composite of
GNSCS/S was obtained. The pristine sulfur, GNSCS, and
GNSCS/S composite were measured by X-ray diffraction
(XRD). As shown in Fig. 3c, two broad peaks at about 25°

and 44° are related with the (002) and (101) diffraction
peaks of graphitic carbon [30], suggesting a good gra-
phitization degree. What’s more, compared with the
sharp peaks of pristine sulfur, the peak intensity of the
GNSCS/S composite is weaker, corroborating that the
part of sulfur particles were successfully distributed in the
pores of GNSCS [18,31]. By comparison, XRD patterns of
pristine sulfur, NSBPC, and NSBPC/S composite have
been shown in Fig. S3c. The sulfur content in the GNSCS/
S and NSBPC/S composites is determined to be about
63% by thermogravimetric analysis (TGA) shown in Fig.
3d. The weight loss occurred between 150 and 300°C,
ascribed to the evaporation of sulfur in the composite
materials.

To further prove the heteroatom doping in GNSCS, the
full XPS spectrum is presented in Fig. 4a. The peaks at
around 164, 285, 399 and 532 eV are characteristic of S
2p, C 1s, N 1s and O 1s, respectively [32,33]. In addition,
the atomic contents of N and S are calculated to be 2.19%
and 0.94% in GNSCS. The high-resolution C 1s spectrum
in Fig. 4b can be divided into three peaks. The typical
peak at 284.7 eV is used as the reference from C–C to
calibrate the binding energy of elements. The peaks at
285.6 and 287.4 eV are ascribable to C–S and N–C=O,
respectively [24]. As for the S 2p spectrum in Fig. 4c, the
notable peaks at 165.2 and 164.0 eV originate from the

Figure 3 (a) Raman spectra of GNSCS and NSBPC. (b) N2 adsorption–desorption isotherms and the corresponding pore-size distributions of
GNSCS. (c) XRD patterns of pristine sulfur, GNSCS, and GNSCS/S composite. (d) The TGA curve of GNSCS/S sample under inert atmosphere.
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signals of S 2p1/2 and S 2p3/2 due to their spin orbit
coupling. Additionally, the peak at 168.9 eV is featured by
the oxidized S (SOx species) caused by the oxidation of
active sulfur in air [34,35]. Three peaks in the N 1s
spectrum in Fig. 4d are located at 398.5, 400.9, and
402.3 eV, attributed to pyridinic N, pyrrolic N, and gra-
phitic N, respectively [12,36]. The content of pyridinic N
and pyrrolic N can be up to 86.7% which advantageously
help raise the electrochemical active sites and anchor the
discharge intermediates dissolved in the electrolyte by
forming Li2Sx–N bonding due to the interaction between
electrophilic Li+ and the above electronegative N atoms,
effectively inhibiting the dissolution of polysulfides and
lithium sulfides and improving the sulfur utilization [37–
39]. In addition, the presence of graphitic N was good for
increasing electrical conductivity and stability of the
carbon framework [40,41] Moreover, S atoms doped in
carbon lattice can also confine lithium polysulfides for the
reason that S heteroatoms with a lone pair of electrons
can serve as electron-rich donors to bond with lithium
polysulfides [42]. The above results and analyses all
confirm that N and S atoms have embedded in the carbon
lattice.

The electrochemical performance of these composites
was assessed by assembling coin cells. Fig. 5a, b present
the corresponding CV curves scanned at a rate of
0.1 mV s−1 within a voltage window between 1.7 and
2.8 V versus Li+/Li. Fig. 5a shows two typical cathodic
peaks at 2.29 and 2.04 V in the first scanning, which was
attributed to the reduction of S8 molecules to the higher-
order lithium polysulfides and further to Li2S2 or Li2S,

respectively [43]. In the anodic curves, two oxidation
peaks for the GNSCS/S electrode at 2.38 and 2.48 V are
pertaining to the reverse reactions, i.e., the formation of
Li2Sn and further oxidation to sulfur (S8) [44]. In the
following curves, the CV curves are highly overlapped,
which indicates the good reversibility of GNSCS/S elec-
trode. The NSBPC/S electrode displayed a similar CV
profile in Fig. 5b. However, the redox peaks are widened
and much lower in current, indicating a sluggish kinetic
process between the S and polysulfide [38,39,45]. For the
comparison, the potentials of peaks during the redox
reactions of GNSCS/S and NSBPC/S were summarized in
Fig. 5c. It is clearly observed that the GNSCS/S electrode
has lower oxidation potential and higher reduction po-
tential than NSBPC/S, suggesting that the GNSCS/S offers
significantly lower polarization. It could be caused by the
graphene-like carbon nanosheets which can expose a
higher concentration of N/S-involved active sites for the
oxidation/reduction of S/Li2S. The result can be further
testified by the charge/discharge voltage profiles of
GNSCS/S and NSBPC/S electrodes in Fig. 5d at a current
density of 0.3 A g−1 within a voltage window between 1.7
and 2.8 V versus Li+/Li. A relatively small potential gap is
clearly observed for GNSCS/S (~228 mV) than that of
NSBPC/S (~331 mV) between charge and discharge
curves. The lower polarization suggests the better elec-
trochemical reaction dynamics and reversibility in the Li-
S battery [46,47].

The rate performance of GNSCS/S and NSBPC/S
electrodes was tested at different current densities
(Fig. 6a). It can be clearly seen that the GNSCS/S delivers

Figure 4 XPS spectra analysis of GNSCS: (a) survey spectrum, (b) C 1s,
(c) N 1s, and (d) S 2p.

Figure 5 Kinetics of electrochemical reactions in Li-S batteries. (a, b)
CV curves and (c) the corresponding peak potentials of 1) GNSCS/S and
2) NSBPC/S electrodes. (d) Charge/discharge voltage profiles of the first
cycle at the current density of 300 mA g−1.
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an initial discharge capacity of 1,003 mA h g−1 at current
density of 0.3 A g−1, slightly higher than that of NSBPC/S
electrode (995 mA h g−1). When the current density in-
creases from 0.3 to 0.8 and 1.6 A g−1, the discharge ca-
pacity is 1,003, 772 and 653 mA h g−1, respectively. It is
noteworthy that when the current density reaches up to
3.2 A g−1, the discharge capacity of GNSCS/S remains
about 587 mA h g−1, much higher than that of the
NSBPC/S electrode (142 mA h g−1). It results from the
good electronic conductivity favoring the kinetics [36]
and the capacity performance at higher rates [29]. In
addition, when the current density returns to 0.3 A g−1,
the GNSCS/S exhibits a discharge capacity of

793 mA h g−1 higher than that of NSBPC/S electrode
(707 mA h g−1), indicating a good rate performance of the
GNSCS/S composites. The discharge–charge voltage
profiles of both cathodes at various current rates are
provided in Fig. 6b and Fig. S3. The respective discharge
and charge plateaus of GNSCS/S are much longer than
that of NSBPC/S electrode due to electrode polarization.
Moreover, the plateau at higher rate is obviously shorter
than that at lower rate, suggesting that the slow redox
reaction kinetics and serious polarization are the perfor-
mance-limiting factor in the condition of high current
density [47].

To further demonstrate the durability of GNSCS/S

Figure 6 (a) Rate capability of GNSCS/S and NSBPC/S hybrids at different current rates, (b) discharge–charge voltage profiles of GNSCS/S at
different current rates, (c) cycling performance of GNSCS/S and NSBPC/S at the current density of 1.6 A g−1, (d) cycling performances of GNSCS/S at
the current density of 0.3 A g−1 with a high areal sulfur loading of 3.0 mg cm−2.
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composite cathode, the long-term cycle behavior of
GNSCS/S and NSBPC/S was investigated at the current
density of 1.6 A g−1 in Fig. 6c. The first five cycles were
activated at 0.2 A g−1 and the initial discharge capacity
can reach up to 1,140 mA h g−1. After activation, the cell
was continually tested at a current density of 1.6 A g−1.
After 400 cycles, the GNSCS/S hybrid electrode delivered
a better discharge capacity of 548 mA h g−1 with a capa-
city fade rate of only 0.13% per cycle. The initial CE of
GNSCS/S is 99.7%, remaining around 100% during the
whole testing process and suggesting the excellent re-
versibility of GNSCS/S electrode in the electrochemical
process. In addition, a large capacity loss was also ob-
served initially. From the XRD, it can be seen that the
sulfur was largely located on the surface of the carbon
hosts as the crystal. During the first several cycles, the
sulfur and discharge products would redistribute on the
surface after repeated electrochemical reactions, wherein
some lithium polysulfides were not anchored by the
carbon scaffolds and escaped into the electrolyte. Hence,
the corresponding capacity of the cell was decreased
during the initial cycling. Nevertheless, the NSBPC/S
hybrid only delivers an initial discharge capacity of
839 mA h g−1 and discharge capacity of 423 mA h g−1

after 400 cycles. It is further testified that GNSCS/S can
improve the cycling stability and rate performance of
sulfur cathode superior to NSBPC relying on the doping
effect. Fig. S4 describes the galvanostatic charge-discharge
curves of GNSCS/S and NSBPC/S for the 20th, 30th, 40th,
50th and 100th cycles in the voltage window of 1.7–2.8 V
vs. Li+/Li at the current density of 1.6 A g−1. The larger
voltage gap between discharge and charge profiles of
NSBPC/S electrode infers the much more serious polar-
ization occurring during the charge–discharge process.

Considering the practical application of Li-S batteries,
the electrode with a high areal sulfur loading of
3.0 mg cm−2 has been designed. Fig. 6d shows the corre-
sponding cycle performance at a current density of
0.3 A g−1. The discharge capacity can be initiated at
942 mA h g−1 and maintained at 647 mA h g−1 after more
than 100 cycles with a high initial CE of 98.4%. The
corresponding capacity fades only ~0.30% per cycle, de-
monstrating that the GNSCS/S hybrid still has excellent
cycle stability and kinetics even as the sulfur loading was
up to 3 mg cm−2.

To dig out the excellence of GNSCS/S in Li-S batteries,
galvanostatic intermittent titration technique (GITT) and
EIS were used to explore the microstructure transition
and the reaction kinetics in the electrochemical process
[48,49]. The GITT curve is presented in Fig. 7a wherein

GNSCS/S and NSBPC/S electrodes were charged/dis-
charged by a series of current pulses at 0.1 C with an
equal duration period of 20 min and followed by an equal
interval time of 2 h. The plots of reaction resistance vs.
specific capacity are derived for both samples during the
GITT testing in Fig. 7b. The reaction resistance at the Li
ion insertion/extraction process was calculated via di-
viding the overpotential (∆E) by the pulse current den-
sity. As can be observed, the GNSCS/S electrode exhibits
a higher capacity of 1,177.6 mA h g−1 than that of
NSBPC/S electrode (1,121 mA h g−1). During discharge
progress, the reaction resistances for GNSCS/S and
NSBPC/S electrodes dramatically decrease and then re-
main stable. What’s more, the GNSCS/S electrode shows
a lower reaction resistance than that of the NSBPC/S
sample in the charge/discharge platforms. It can be in-
ferred that the GNSCS/S electrode can enhance Li-ion
insertion/extraction kinetics than that of the NSBPC/S
sample.

The Nyquist plots of the two cell systems at the open-
circuit voltage and after 20 cycles in the frequency range
of 105–0.01 Hz at 10 mV amplitude are shown in Fig. 7c,
d. A depressed semicircle in the high frequency region
corresponds to the charge-transfer resistance (Rct) oc-
curring at the electrolyte–electrode interface. The sloped
line in the low-frequency region accounts for the ion-
diffusion process corresponding to the semi-infinite
Warburg impedance [47,50]. Before discharging, the Rct
of GNSCS/S electrode is 144.1 Ω, much lower than that of
NSBPC/S electrode (207.5 Ω). After charging/discharging

Figure 7 (a) GITT voltage and (b) reaction resistance profiles of
GNSCS/S and NSBPC/S electrodes during the first charge/discharge
cycle. The Nyquist plots of the two electrodes at the open-circuit voltage
(c) and charged to 2.8 V after 20 cycles (d) with a frequency range of
100 kHz to 0.01 Hz at voltage amplitude of 10 mV.
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for 20 cycles, the Rct of both electrodes largely decreases
benefited by the activation process where the sulfur and
Li2S redistribute within the whole electrode [51]. How-
ever, the GNSCS/S electrode is still much smaller than
NSBPC/S in Rct value. This analytical result further con-
firms the acceleration of electronic and ion transportation
and the improvement of the electrochemical activity by
the heteroatom doping and the structure of graphene-like
carbon nanosheets. In addition, the electrochemical per-
formance of GNSCS/S electrode was compared in Table
S1 with many other porous carbon derived from biomass
used as sulfur holders in the literature [18,52–59].

CONCLUSIONS
In summary, graphene-like N/S-codoped bio-carbon na-
nosheets (GNSCS) were firstly fabricated by a facile and
environment-friendly route. With the biomass as the raw
sources, NaCl non-aqueous ionic liquid served as the
exfoliation reagent to render the formation of graphene-
like nanosheets. Furthermore, the electric conductivity of
GNSCS is also greatly improved compared with that of
bulk bio-carbon, favoring high-rate kinetics. When used
as the cathode for Li-S batteries, it exhibits excellent cy-
cling stability and rate capability and delivers a better
discharge capacity of 548 mA h g−1 with a capacity fade
rate of only 0.13% per cycle at a current density of
1.6 A g−1 after 400 cycles. The initial CE of GNSCS/S is as
high as 99.7%. Even when the sulfur loading was up to
3 mg cm−2, the discharge capacity can be maintained at
647 mA h g−1 after more than 100 cycles with a high in-
itial CE of 98.4% and a low capacity degradation of only
~0.30% per cycle. The excellent electrochemical kinetics is
largely resulting from N/S dual-doping and the graphene-
like structure, favorably accelerating electron/ion trans-
portation and providing sufficient active sites for che-
mically adsorbing polysulfides. This work paves the
avenue for design and preparation of porous carbon
materials from biomass with the aid of NaCl non-aqueous
ionic liquid.
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在NaCl非水离子液体中制备类石墨烯状氮硫共掺杂生物质碳材料来提高锂硫电池的动力学研究
黄曼1, 杨靖宇1, 奚宝娟1, 弭侃1, 封振宇1, 刘静2, 冯金奎3, 钱逸泰1,4, 熊胜林1*

摘要 本论文通过结构设计利用简单方法成功制备了一种二维N,S共掺杂类石墨烯纳米片复合结构, 即利用NaCl非水离子液体的剥离作
用使生物质剥离得到二维片层类石墨烯结构. 这种新的非水离子液体剥离技术较其他的碳材料剥离技术具有环境友好性、低成本、安全
无毒性等优势, 有利于实现量化制备锂硫电池电极材料. 该材料采用大自然中广泛存在的紫菜作为原料, 其内部富含的氨基酸为原位掺杂
N,S元素提供了可能性. 二维结构的纳米片能够提供有效的导电性和电解液浸润性的网络结构, 同时还能够有效地降低电池在充放电循环
过程中导致的体积膨胀效应, 最终实现一种高机械性能、优异电化学活性的电极在锂硫电池储能领域中的应用.
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