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Epitaxial growth of horizontally aligned single-crystal
arrays of perovskite
Yitan Li1,2, Yuguang Chen1, Lu Han1, Xuemei Li3, Jian Sheng1, Hao Sun4 and Yan Li1,2*

ABSTRACT Well-aligned single-crystal nanowire arrays of
CH3NH3PbI3 have shown potentials in laser sources and
photovoltaic applications. Here we developed a solution based
epitaxial method to grow CH3NH3PbI3 nanowire arrays. By
confining the precursor solution between a silicon wafer and
ST-cut quartz, the evaporation rate of the solvent was slowed
down which brings a more stable and controllable solution
environment. Relying on the lattice match between
CH3NH3PbI3 and ST-cut quartz, arrays of single-crystal
nanowires of CH3NH3PbI3 have been grown epitaxially. The
densities and lengths of CH3NH3PbI3 nanowires can be tuned.
The lengths of the resultant crystals range from several
microns to over one millimeter. Such CH3NH3PbI3 arrays with
good alignment and crystallinity were then applied to fabri-
cate photovoltaic devices with good performances.

Keywords: CH3NH3PbI3, single crystal, arrays, epitaxial growth,
tunable lengths

INTRODUCTION
Well-organized single-crystal arrays on substrates are
preferred for the fabrication of devices with high per-
formances [1–4]. Such arrays have been realized by var-
ious strategies, among which epitaxy has shown great
success in fabricating ordered crystalline nanostructures
of giant magnetoresistance materials and semiconductors
on specific substrates [5–10]. To date, most epitaxial
growth processes are based on gas phase deposition at
high temperature by using state-of-art facilities. Solution-
based material processing approaches are known to be
flexible and cost-effective, and therefore have been
broadly applied for the deposition of functional materials
on substrates. However, it is still challenging to prepare

well-aligned single-crystal arrays via solution pathways
[11–16].

Lead halide perovskites, which are normally processed
with solution based techniques or chemical vapor
deposition process, have shown significant potentials for
photovoltaic and electronic applications and drawn great
attentions relying on the high absorption coefficients,
balanced and long diffusion lengths, and ambipolar car-
rier transport properties [17–23]. Single-crystal per-
ovskites with reduced-dimensional structures including
nanoplates (NPs), nanowires (NWs) and quantum dots
(QDs) have been applied in photonic and quantum de-
vices such as single-photon sources [24], light-emitting
diodes [25,26] and photodetectors [27–29]. In particular,
low-dimensional perovskite crystals have shown to be
good candidates for small solid-state laser at room tem-
perature since the amplification of spontaneous emission
(ASE) was firstly demonstrated by Xing et al. [30–34] in
2014. For such applications, alignment of the crystals is
important. Recently, studies about perovskite epitaxy by
chemical vapor deposition have been reported [23,28–29]
while few of them are based on solution process.

In a previous study, we reported the crystal structure
match of the (010) plane of CH3NH3PbI3 to the surface
lattice of ST-cut quartz [35]. Both the lattice spacings of
(001) and (101) planes of CH3NH3PbI3 and the crystal
face angle fit the structural periodicity of ST-cut quartz.
Utilizing this lattice match, aligned CH3NH3PbI3 crystals
were obtained when precursor solutions were directly
coated and evaporated on the ST-cut quartz. However,
because of the unstable mass transport and random
nucleation sites, it is difficult to obtain organized crystals
with high quality and clean surface [36–38]. The crystal
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qualities as well as the morphologies still need to be
improved.

In open systems, the large gas-liquid interface area
brings quick evaporation and fluid instabilities which are
unfavorable for both the growth of high-quality crystals
and the exerting of template effect of the substrate. On
the other hand, a confined system has shown great
advantage in harnessing the fluid behavior. Herein, we
developed a method to realize the epitaxial crystal growth
in confined solution systems. By restricting the precursor
solution within the micrometer scaled space between two
paralleled substrates (ST-cut quartz and Si/SiO2), the
evaporation rate of the solution is significantly reduced,
making the crystallizing process more controllable. More
importantly, meniscuses with tiny solution tips between
two substrates are created, pushing the nucleation sites
closer to the ST-cut quartz. Therefore, the template effect
of the substrates can be well utilized. With this method,
ultralong single-crystal CH3NH3PbI3 nanowire arrays
with nearly perfect alignment and high qualities were
obtained. The lengths and densities of CH3NH3PbI3 can
be adjusted, showing the flexibility of our method.

EXPERIMENTAL SECTION

Growth of CH3NH3PbI3 arrays and fabrication of
photodetectors
Typically, 0.2565 g CH3NH3I (99.9%, Dyesol, Australia)
and 0.7435 g PbI2 (AR, Aldrich) were dissolved in 3 g
N,N-dimethylformamide (DMF, AR, Aldrich) to make a
CH3NH3PbI3 precursor solution with a mass fraction of
25 wt.% (0.1026 g CH3NH3I and 0.2974 g PbI2 in 3.6 g
DMF for CH3NH3PbI3 precursor solution with a mass
fraction of 10 wt.%). The precursor solution was sand-
wiched by ST-cut quartz and Si/SiO2 with varying dis-
tances ranging from 20 to 300 μm. All the preparation
processes were conducted in the glovebox under ambient
temperature. A vacuum evaporator was used to deposit
Ag layer with a thickness of 100 nm as the electrode of
CH3NH3PbI3-based photodetectors.

Characterizations
The CH3NH3PbI3 nanowires grown on quartz were
directly characterized with a cold-field emission scanning
electron microscope (SEM-Hitachi S4800, operated at
2.0 kV, 10 μA). The transmission electron microscopy
(TEM) specimen was prepared by directly rubbing the
grid on the substrates with products. The high resolution
TEM (HRTEM) characterization was carried out on a FEI
Tecnai G2 T20 microscope. A Dimension Icon SPM

(Bruker, Santa Barbara, CA, USA) was used to perform
the AFM topographic measurements of the CH3NH3PbI3
arrays. The photo response performance of the devices
was studied at ambient condition using a tungsten lamp.

RESULTS AND DISCUSSION
The setup of this confined epitaxial method was shown in
Fig. 1a, where the CH3NH3PbI3 precursor solution was
simply confined by two substrates (Si/SiO2 on top and
ST-cut quartz at the bottom) with distances at micro-
meter scales. As the solution evaporated from side to
central part, the distribution of concentration in the
whole solution system varied. The tips of solution
meniscuses reached saturation at first and then aligned
CH3NH3PbI3 crystal nanowire arrays appeared as shown
in Fig. 1b. When evaporating in the open air, the pre-
cursor solution coated on the ST-cut quartz experiences
uniform evaporation, which often makes the nucleation
sites away from the surface of ST-cut quartz. As shown in
Fig. S1, irregular CH3NH3PbI3 arrays with poor alignment
and wide size distributions were produced. It is observed
that CH3NH3PbI3 microribbons interconnect with each
other with rough surfaces.

In our method, the confinement setup decreased the

Figure 1 (a, b) Schematic illustrations of the growing process of aligned
CH3NH3PbI3 nanowire arrays by the confined epitaxial method. (c, d)
SEM images of CH3NH3PbI3 nanowire arrays at low (c) and high (d)
magnifications. (e, f) TEM image (e) and HRTEM image (f) of single-
crystal CH3NH3PbI3 nanowires with selected area electron diffraction
(SAED) patterns (up) and fast Fourier transform (FFT) patterns (down)
inserted.
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evaporating rate and limited most of the fluid flow in the
solution to be laminar, providing a stable environment
for the growth of high-quality single crystals. The
meniscuses formed near the edges of solution bring the
nucleation sites to the quartz substrate, increasing the
template efficiencies. We were able to fabricate ultralong
CH3NH3PbI3 nanowire arrays of millimeter scale on
ST-cut quartz with good alignment (Fig. 1c, d). As shown
in the TEM image in Fig. 1e, CH3NH3PbI3 wires have
rectangular shapes and uniform sizes. The HRTEM image
(Fig. 1f) exhibited fringes perpendicular to the longi-
tudinal direction of the crystal with an inter-distance of
~3.4 Å, which can be assigned to (004) planes [39–41].
These results indicated that the CH3NH3PbI3 nanowires
were single crystals with high quality. It can be observed
that both CH3NH3PbI3 nanowires and their surroundings
are quite clean, indicating that almost all the materials in
the precursor solution were utilized in the crystallization
(Fig. 2a, b). These clean nanowires are favorable for
building high performance electronic and photovoltaic
devices.

The lengths of CH3NH3PbI3 nanowires can also be
adjusted. Compared to the open system, our confined
system introduces a more controllable lower evaporating
rate. As the solution meniscuses move from edges to
central parts, the evaporating rate decreases correspond-
ingly due to the increased diffusion length for DMF
vapor. (Fig. S2) It can be observed that CH3NH3PbI3
nanowires are longer at the central part of the substrate
than those near the edges. (Fig. 2d–f) The faster eva-

poration at the beginning brings about a higher super-
saturation and more nucleation sites. This is why shorter
CH3NH3PbI3 wires were obtained in the margin region.
On the contrary, slower evaporation results in fewer
nuclei and eventually longer wires with low density are
obtained. The initiate concentration of precursor solution
also affects the length and density of the wires. (Fig. 2g–i)

To statistically characterize the length distributions of
CH3NH3PbI3 nanowires at different regions and grown
from precursor solutions with different concentrations,
we measured more than one thousand CH3NH3PbI3
nanowires in total (Fig. 3). From side parts to middle
parts of ST-cut quartz, the average lengths of
CH3NH3PbI3 nanowires increased from 12.5 μm to
38.0 μm (Fig. 3a, b) for 10 wt.% precursor solution and
from 28.9 μm to 276.8 μm (Fig. 3c, d) for 25 wt.% pre-
cursor solution. In fact, at central parts, we found that the
lengths of CH3NH3PbI3 nanowires could reach more than
500 μm for 10 wt.% precursor solution and more than
1.5 mm for 25 wt.% precursor solution. In addition,
CH3NH3PbI3 nanowires tend to grow denser as the con-
centration of solution increases.

To further illustrate the importance of confinement, we
changed the distances between two substrates from 20 to
300 μm (Fig. S3). As the distances between two substrates
increased, the CH3NH3PbI3 crystals became less ordered
and eventually disordered. This result can be ascribed to
the change of the guiding efficiency of the substrate to the
crystal formation of the materials. As the distance in-
creases, the size and shape of meniscus change, bringing

Figure 2 (a, b) AFM image (a) of CH3NH3PbI3 nanowires with height
data (b). (c) Schematic illustration of the CH3NH3PbI3 arrays formed at
different regions of the ST-cut quartz in the confined epitaxial growth
process. (d–i) SEM images of CH3NH3PbI3 arrays grown from precursor
solutions of different concentrations at different regions of the ST-cut
quartz.

Figure 3 Length distributions of CH3NH3PbI3 nanowires at side parts (a,
c) and middle parts (b, d) of the ST-cut quartz which are grown from
precursor solutions with concentrations of 10 wt.% (a, b) and 25 wt.% (c,
d), respectively.
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the nucleation farther away the substrate. In addition, the
vessel contains more solution when the distance between
the two slides is bigger. When the CH3NH3PbI3 arrays
formed, new nucleation may happen in the excessive
saturated solution, resulting in poor morphologies (Fig.
S3f).

Due to the ultrafast charge generation, high mobility,
long charge carrier lifetime and diffusion length [42–45],
CH3NH3PbI3 single crystal arrays showed potentials for
photodetector applications. We directly evaporate 100 nm
Ag on the substrate as electrodes to fabricate long channel
photodetectors and study their photoresponsive perfor-
mances (Fig. 4). The channel length between two elec-
trodes was about 800 μm. This long channel is beneficial
to suppressing dark current and responsible for improv-
ing the detectivity of photodetectors. We measured I–V
curves under incident light with power varying from 0 to
10 W and I–t curves under an ON/OFF interval of ~10 s.
The photo response time was measured to be ~50 ms,
which actually already reached the limitation of our de-
tector. In addition, when we annealed the sample under
80°C for 2 h, there was no obvious change in photo-
responsive performances, indicating the stability of the
CH3NH3PbI3 nanowires endowed by the high crystal-
linity.

CONCLUSIONS
In summary, large-scale single-crystal CH3NH3PbI3
nanowire arrays have been grown on the ST-cut quartz
via an epitaxial process in a confined solution system.
Besides the lattice match between CH3NH3PbI3 and

ST-cut quartz, the confinement of the solution is also
essential for the epitaxy. The precursor solution was
sandwiched by a Si/SiO2 wafer and a ST-cut quartz sub-
strate, creating solution meniscuses with small tips con-
tacting the substrates. Therefore the nucleation occurs on
the ST-cut quartz then the further crystallization is tem-
plated by the substrate, resulting in high-quality
CH3NH3PbI3 nanowire arrays. The lengths of
CH3NH3PbI3 nanowires can be adjusted from several
microns to a subcentimeter scale with nearly perfect
alignment and a narrow distribution of diameters. The
well-aligned single-crystal perovskite nanowire arrays
may find applications in electronic devices, sensors, and
lasers.
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利用外延生长构建水平单晶钙钛矿阵列
李逸坦1,2, 陈昱光1, 汉露1, 李雪梅3, 盛建1, 孙昊4, 李彦1,2*

摘要 有序单晶CH3NH3PbI3钙钛矿纳米线阵列在激光和光电领域具有良好的应用前景. 溶液法被认为是一种简便、高效且成本低廉的方
法并被用于构建钙钛矿晶体材料. 本文介绍了一种限域外延生长方法并将其用于构建有序单晶CH3NH3PbI3钙钛矿纳米线阵列. 通过将钙
钛矿材料的前驱体溶液限制在由硅片和ST-cut的石英构成的反应腔中, 溶液挥发行为受到限制, 进而为晶体生长提供了更加稳定可控的
环境. 由于CH3NH3PbI3和ST-cut石英之间存在晶格匹配, 可以在石英表面获得密集的单晶钙钛矿纳米线阵列. 通过调节反应腔尺寸, 可以
进一步调控钙钛矿纳米线的长度, 获得长度为由微米尺寸到亚厘米尺寸不等的阵列. CH3NH3PbI3钙钛矿阵列进一步被用于光电器件的构
建并获得了较好的性能.
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