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ABSTRACT Time-resolved (TR) photoluminescence (PL)
technique has shown great promise in ultrasensitive biode-
tection and high-resolution bioimaging. Hitherto, almost all
the TRPL bioprobes are based on the parity-forbidden f→f
transition of lanthanide ions. Herein, we report TRPL bio-
sensing by taking advantage of the d→d transition of transition
metal (TM) Mn2+ ion. We demonstrate that the Förster re-
sonance energy transfer (FRET) signal can be distinguished
from that of radiative reabsorption process through measur-
ing the PL lifetime of Mn2+, thus establishing a reliable method
for Mn2+ in homogeneous TR-FRET biodetection. We also
demonstrate the biotin receptor-targeted cancer cell imaging
by utilizing biotinylated CaF2:Ce,Mn nanoprobes. Further-
more, we show in a proof-of-concept experiment the appli-
cation of the long-lived PL of Mn2+ for TRPL bioimaging
through the burst shot with a cell phone. These findings
provide a general approach for exploiting the long-lived PL of
TM ions for TRPL biosensing, thereby opening up a new
avenue for the exploration of novel and versatile applications
of TM ions.

Keywords: manganese, time-resolved photoluminescence, en-
ergy transfer, biodetection, bioimaging

INTRODUCTION
Time-resolved (TR) photoluminescence (PL) technique
has shown great promise in ultrasensitive biodetection
and high-resolution bioimaging, owing to its ability to
eliminate the short-lived background noise from biolo-
gical autofluorescence and scatter light (in the nanose-
cond range) by setting a temporal delay in signal
acquisition [1–5]. Hitherto, almost all the TRPL biop-
robes are based on lanthanide chelates or lanthanide-
doped nanoparticles (NPs), by taking advantage of the

long-lived PL (μs−ms range) of lanthanide ions origi-
nating from the parity-forbidden intra-4fN electronic
transition [6–10]. In addition to lanthanide ions, the
forbidden d→d transition of transition metal (TM) ions
such as Mn2+ with d5 configuration results in a long PL
lifetime ranging from microseconds to tens of milli-
seconds [11–15]. The long PL lifetime of Mn2+ ions makes
it a potential bioprobe in TRPL biosensing, which, how-
ever, has scarcely been reported [16].
Mn2+-activated luminescent materials typically possess

a broad emission band varying from green to deep red
depending on the crystal field of Mn2+ [17]. For example,
the octahedrally coordinated Mn2+ in CaF2 lattice display
green emission with a long PL lifetime up to tens of
milliseconds [18–20]. Such long-lived and broad-band PL
of Mn2+ along with the excellent biocompatibility of CaF2

is desirable for homogeneous TR Förster resonance en-
ergy transfer (FRET) biodetection [21–24]. The broad
emission band of Mn2+ enhances spectral overlap with the
excitation band of the energy acceptor, resulting in an
enhanced FRET efficiency [25–28]. Nonetheless, the re-
absorption process, which is unavoidable in homo-
geneous luminescent bioassays, may interfere with the
FRET signal and lead to incorrect detection results [29–
31]. Therefore, it is of fundamental importance to gain
deep insights into the energy transfer process and estab-
lish a reliable method for Mn2+ in homogeneous TR-
FRET biodetection.
Herein, we report the application of CaF2:Ce,Mn NPs

for TRPL biodetection and bioimaging by utilizing the
long-lived PL of Mn2+. We demonstrate that the PL life-
time of Mn2+ can be exploited as a distinguishable FRET
signal for Mn2+ in TR-FRET biodetection based on the
energy transfer between the NP donor and organic dye
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acceptor in an avidin/biotin model system. We also de-
monstrate the biotin receptor-targeted cancer cell ima-
ging by biotinylated CaF2:Ce,Mn NPs as luminescent
nanoprobes. Furthermore, we propose a convenient and
versatile method, namely, the burst shot with a cell phone
for TRPL bioimaging of zebrafish fed with the nanop-
robes, thereby revealing the great potential of the for-
bidden d→d transition of TM ions in TRPL biosensing.

RESULTS AND DISCUSSION
Monodisperse CaF2:Ce,Mn NPs were synthesized through
a solvothermal method in the presence of oleic acid as the
surfactant and sodium ions as the codopant [32,33]. The
as-synthesized NPs were hydrophobic and can be readily
dispersed in nonpolar organic solvents such as cyclo-
hexane. TEM image showed that the NPs were roughly
cubic with an average length of 6.0±1.1 nm (Fig. 1a and
Fig. S1a). High-resolution TEM image and XRD pattern
confirmed the cubic phase and high crystallinity of the
resulting NPs (Fig. 1b and Fig. S1b). Compositional
analysis by EDS and ICP revealed the elements of Ca, F,
Ce, Mn, and Na in the NPs (Fig. S1c and Table S1).
To achieve efficient PL in CaF2:Ce,Mn NPs, the nom-

inal dopant concentrations of Ce3+ and Mn2+ were opti-
mized to be 5 mol% and 5 mol%, respectively (Fig. S2).
Upon UV excitation at 304 nm, bright green PL of the
colloidal NPs can be explicitly observed in cyclohexane
solution (Fig. 1c). PL emission spectrum showed a broad
emission band centered at 520 nm (Fig. 1d), which can be
assigned to the spin-forbidden 4T1g(G) →6A1g(S) transi-
tion of Mn2+ occupying an octahedral site (Oh) in CaF2

lattice [18]. By monitoring the Mn2+ emission at 520 nm,
two broad excitation bands centered at 260 nm and
304 nm were detected. The excitation band at 304 nm can
be assigned to the 4f→5d transition of Ce3+ in C4v center,
indicating an energy transfer from Ce3+ to Mn2+ [19]. The
excitation band at 260 nm is associated with the Ce3+

transitions in clusters (Fig. S3) [20]. The PL decay from
4T1g indicates an ultralong effective PL lifetime of 49.6 ms
for the Mn2+ emission (Fig. 1e and Table S2), typical of
the forbidden d→d transition within Mn2+ ions [17].
For bioapplications, we rendered the hydrophobic

CaF2:Ce,Mn NPs to be hydrophilic and biocompatible by
removing the oleate ligands from their surface through an
acid-washing treatment [34], which was confirmed by
Fourier transform infrared (FTIR) spectra and thermo-

Figure 1 (a) TEM and (b) HRTEM images of CaF2:5%Ce,5%Mn NPs. (c) PL photograph of the NPs dispersed in cyclohexane under 304-nm UV
lamp irradiation. (d) PL emission spectrum (black) of CaF2:5%Ce,5%Mn NPs upon UV excitation at 304 nm, and their excitation spectrum (red) by
monitoring the Mn2+ emission at 520 nm. (e) PL decay from 4T1g by monitoring the Mn2+ emission at 520 nm.
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gravimetric analysis (TGA) for NPs before and after acid-
washing treatment (Figs S4, S5). As a result, these ligand-
free NPs exhibited well water solubility. More im-
portantly, we found that the integrated PL intensity of
ligand-free NPs was enhanced by a factor of 3.1 relative to
their oleate-capped counterparts, with their PL lifetime
increasing from 49.6 ms to 59.5 ms (Fig. S6). Accordingly,
the absolute PL quantum yield, defined as the ratio of the
number of emitted photons to the number of absorbed
photons, was determined to increase remarkably from
15.3±0.8% in oleate-capped NPs to 37.0±2.3% in ligand-
free NPs, which is attributed to the increased absorption
of the excitation light by Ce3+ followed by energy transfer
to Mn2+ [35]. The long PL lifetime is probably due to the
change of refractive index of the surrounding medium,
which changed the radiative decay rate of Mn2+, as well
documented in LaPO4:Ce/Tb NPs with nanocrystal-cavity
model proposed by Meijerink et al. [36].
Due to the removal of surface ligands, positively

charged Ca2+ ions were exposed on the surface of ligand-
free NPs, endowing the NPs with a zeta potential of +48.2
mV at pH 6.9. As a consequence, these ligand-free NPs
are allowed for direct conjugation with electronegative
groups of hydrophilic and biocompatible molecules such

as biotin and poly(acrylic acid) (PAA) through the strong
chelation of Ca2+ [37,38]. The conjugation of biotin and
PAA to the NP surface was confirmed by FTIR spectra,
TGA, dynamic light scattering and zeta potential mea-
surements (Figs S4, S5, and S7). The PAA-capped NPs
and biotinylated NPs preserved the intense PL of ligand-
free NPs with PL lifetimes of 60.5 ms and 54.1 ms, re-
spectively (Fig. S6 and Table S2).
To validate the feasibiliy of the long-lived and broad-

band PL of Mn2+ for homogeneous TR-FRET biodetec-
tion, we selected CaF2:Ce,Mn NPs and tetramethylrhod-
amine B isothiocyanate (TRITC) as the energy donor and
acceptor, respectively, in view of the large spectral overlap
between the emission band of the NPs (450–700 nm) and
the excitation band of TRITC (450–600 nm) (Fig. 2a). Fig.
2b compares the steady-state with TRPL emission spectra
for the aqueous solution containing 50 μmol L−1 of PAA-
capped NPs and 10 nmol L−1 of TRITC upon UV ex-
citation at 304 nm, which show similar emission bands
from 450 to 700 nm consisting of both Mn2+ and TRITC
emissions. The steady-state PL emissions of Mn2+ and
TRITC were attributed to direct excitation of the NPs and
TRITC by the 304-nm UV light (Fig. S8). In the TRPL
spectrum, the intrinsic short-lived PL (2.7 ns) of TRITC

Figure 2 (a) PL emission spectrum of CaF2:5%Ce,5%Mn NPs (black); excitation (red) and emission (blue) spectra of TRITC. (b) Steady-state and
TRPL (delay time=100 μs, gate time=5 ms) emission spectra for the aqueous solution containing 50 μmol L−1 of PAA-capped NPs and 10 nmol L−1 of
TRITC upon UV excitation at 304 nm. (c) PL decays of TRITC by monitoring its emission at 650 nm upon excitation with a 397-nm nanosecond
pulsed laser. IR denotes the instrument response. (d) PL decay of the NPs-TRITC mixture by monitoring the TRITC emission at 650 nm under
excitation at 304 nm. (e) PL decays of PAA-capped NPs (black) and NPs-TRITC mixture (red) by monitoring the Mn2+ emission at 520 nm under
excitation at 304 nm.
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arising from direct excitation (Fig. 2c) was eliminated by
setting a delay time of 100 μs. Thus, the long-lived PL of
TRITC in the TRPL spectrum was ascribed to the energy
transfer from the NPs to TRITC (Fig. S9), which caused
the longer PL lifetime of TRITC from 2.7 ns to 45.9 ms
due to the slow population of the TRITC excited state
from the long-lived Mn2+ excited state (Fig. 2d) [25].
Because no specific binding between PAA-capped NPs
and TRITC could bring them within effective FRET dis-
tance [39], we deduced that the NPs-to-TRITC energy
transfer is governed by a radiative reabsorption process
rather than a non-radiative FRET process. Such radiative
energy transfer was further evidenced by the identical PL
lifetime of Mn2+ in either NPs-TRITC mixture or pure
PAA-capped NPs (Fig. 2e), since non-radiative FRET
always results in a decrease in PL lifetime of energy donor
by imposing additional relaxation channel on the donor
[40]. These results unveil that the radiative energy
transfer from long-lived energy donor to short-lived en-
ergy acceptor is able to lengthen the PL lifetime of the
acceptor. Note that this is the first demonstration on PL
lifetime lengthening of short-lived energy acceptor by
long-lived donor through radiative reabsorption process,
which is very important in homogeneous luminescent
bioassays.
By employing biotinylated CaF2:Ce,Mn NPs and

TRITC-labelled avidin, we constructed the FRET pair in
an avidin/biotin model system, in which the excitation
energy was transferred from the NPs to nearby TRITC
through either radiative reabsorption or FRET as a result
of specific binding between avidin and biotin [38]. For
non-binding control, we used PAA-capped NPs as the
energy donor under otherwise identical conditions,
whereby the radiative reabsorption process was the only
energy transfer route (Fig. 3a). Because both the radiative
reabsorption and FRET processes can lengthen the PL
lifetime of TRITC (Fig. S10), the Mn2+ and TRITC
emissions were detected in the TRPL spectra for either
biotinylated or PAA-capped NPs incubated with TRITC-
labelled avidin, yielding nearly identical emission patterns
(Fig. 3b, c). As a result, the FRET signal was un-
distinguishable and submerged in the TRPL signal arising
from radiative reabsorption, which makes the TRPL
spectrum unreliable for homogeneous TR-FRET biode-
tection.
We measured the PL lifetime of the energy donor to

distinguish the FRET signal from that of the radiative
reabsorption process. Fig. 3d shows the concentration-
dependent PL lifetimes of Mn2+ in the mixture of bioti-
nylated NPs and TRITC-labelled avidin. It was found that

the PL lifetime of Mn2+ in biotinylated NPs decreased
from 54.1 to 26.4 ms as the avidin concentration in-
creased from 0 to 588 nmol L−1, as a result of FRET from
the NPs to TRITC. By contrast, in non-binding control,
the PL lifetime of Mn2+ in PAA-capped NPs showed only
a slight decrease at high avidin concentrations, attributed
to non-specific binding between PAA-capped NPs and
TRITC-labelled avidin, which can be avoided by blocking
the residual active binding site of PAA-capped NPs for
avidin through surface modification. This enables us to
quantify the avidin concentration by measuring the PL
lifetime of Mn2+ (Fig. 3f). The detection limit, defined as
the concentration that corresponds to 3 times the stan-
dard deviation below the signal measured in the blank
control, was determined to be 32 pmol L−1. This value is
approximately one order of magnitude improvement re-
lative to that in TR-FRET assays based on lanthanide-
doped nanoprobes ever reported [33]. These results show
that the PL lifetime of Mn2+ is sensitive to FRET and
barely affected by the radiative reabsorption process, thus
validating its reliability and advantages in TR-FRET
bioassay.
Utilizing biotinylated CaF2:Ce,Mn NPs, we also de-

monstrated biotin receptor-targeted cancer cell imaging.
Biotin is a growth promoter at the cellular level, and
biotin receptors are overexpressed in many cancer cells,
including colon (Colo-26), lung (M109), renal (RD0995),
ovarian (Ov2008) and cervical (HeLa) cancer cell lines
[41,42]. We selected HeLa cells with biotin receptors
overexpressed on the membrane as the target cancer cells
and human normal liver (L-02) cells with low-expressed
biotin receptors as the control. Owing to the high affinity
between biotin and biotin receptors, biotinylated NPs can
specifically target to HeLa cells, leading to bright green PL
(green channel) of Mn2+ surrounding HeLa cells (Fig. 4a).
By contrast, the green PL of Mn2+ was hardly observed on
L-02 cells under otherwise identical conditions due to the
lack of specific recognition between biotinylated NPs and
L-02 cells (Fig. 4b). MTT assay on L-02 cells incubated
with biotinylated NPs showed a cell viability larger than
95% even at a high NP concentration of 1 mg mL−1 (Fig.
S11), indicating that biotinylated CaF2:Ce,Mn NPs are
biocompatible and nontoxic to live cells. Our results show
that CaF2:Ce,Mn NPs modified with specific capture
molecules, like biotin for biotin receptor, can be used as
effective luminescent nano-bioprobes for targeted tumor
imaging.
Furthermore, by means of the camera burst mode on a

cell phone [43], we demonstrated in a proof-of-concept
experiment the application of CaF2:Ce,Mn nanoprobes
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for TRPL bioimaging. The fast burst mode on HUAWEI
P10 cell phone is able to continuously capture 10 photos
in 1 s with an exposure time of 0.1 s for each photo. Fig.
5a compares the PL photographs for the aqueous solution
of ligand-free NPs and TRITC, respectively. The NPs and
TRITC solution displayed bright green and orange PL,
respectively, under 304-nm UV lamp irradiation. When
the lamp was off, the TRITC PL vanished immediately in
the photos captured by the camera due to the short-lived
PL (~2.7 ns) of TRITC. By contrast, the green PL of Mn2+

can last for ~400 ms and remained explicitly visualized in
the first four photos after the lamp was off. This suggests
that the cell phone can be explored as a convenient and
efficient detector to capture the long-lived PL of Mn2+ for
TRPL bioimaging. To demonstrate this concept, we car-

ried out steady-state and TRPL imaging of 5-day-old
zebrafish after feeding it with ligand-free CaF2:Ce,Mn
NPs through burst shot with the cell phone. In the steady-
state PL image when the lamp was on, the green PL was
observed in both the zebrafish and the background,
whereas in the TRPL image when the lamp was off, the
green PL was observed exclusively in the zebrafish (Fig.
5b), confirming that the PL signal in the zebrafish origi-
nated from the digested CaF2:Ce,Mn NPs. These results
verify that the TRPL technique based on the long-lived PL
of Mn2+ can effectively suppress the short-lived back-
ground noise and offer improved imaging sensitivity re-
lative to that of steady-state PL. Along with the large
longitudinal magnetic relaxivity of Mn2+ (Fig. S12), these
CaF2:Ce,Mn NPs may function as TRPL/MRI dual-mode

Figure 3 (a) Schematic illustration of the energy transfer processes between CaF2:Ce,Mn NPs and TRITC in cases of specific binding (left) and non-
specific binding (right). TRPL spectra of (b) biotinylated and (c) PAA-capped CaF2:Ce,Mn NPs incubated with TRITC-labeled avidin as a function of
the avidin concentration. PL decays from (d) biotinylated and (e) PAA-capped CaF2:Ce,Mn NPs at different avidin concentrations by monitoring the
Mn2+ emission at 520 nm. (f) Effective PL lifetime of 4T1g of Mn2+ as a function of the avidin concentration, as obtained from (d, e). Each PL lifetime
was measured independently for three times to yield the average value and standard deviation.
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nano-bioprobes. It is worthy of mentioning that, these
CaF2:Ce,Mn NPs are more suitable for in-vitro biodetec-
tion and bioimaging than in-vivo applications due to the
shallow tissue penetration depth of visible light.

CONCLUSIONS
In summary, we have demonstrated the advantages of
CaF2:Ce,Mn NPs as TRPL nano-bioprobes for sensitive
biodetection and high-resolution bioimaging based on
the long-lived PL of Mn2+. Our mechanistic investigation
on the energy transfer processes revealed that the FRET

signal can be distinguished from that of reabsorption
process by measuring the PL lifetime of Mn2+ instead of
the TRPL spectrum, thus establishing a reliable tool for
homogeneous TR-FRET bioassay. The proposed burst
shot with a cell phone can effectively capture the long-
lived PL of Mn2+, providing a convenient and versatile
approach for TRPL bioimaging without the need of a
sophisticated instrument. These findings offer new routes
to the development of ultrasensitive TRPL biosensing by
exploiting the forbidden d→d transitions of TM ions,
thereby opening up a new avenue for clinical applications,
such as in-vitro detection and targeted cancer imaging.
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基于Mn2+激活氟化钙纳米荧光探针的时间分辨荧光生物分析
委娇娇1,2, 郑伟1,2*, 商晓颖1, 李仁富1, 黄萍1, 刘䶮1, 宫仲亮1, 周山勇1, 陈卓1, 陈学元1,2*

摘要 时间分辨荧光探测技术在超灵敏生物检测和高分辨生物成像领域具有广泛的应用前景.目前报道的时间分辨荧光生物探针大都是
利用稀土离子4fN电子组态间的禁戒跃迁发光. 本文报道了基于过渡金属Mn2+离子d→d禁戒跃迁发光的时间分辨荧光生物分析. 我们证明
通过测试Mn2+的荧光寿命变化可以将荧光共振能量传递与辐射再吸收信号区分开来, 从而为Mn2+发光在时间分辨荧光共振能量传递均相
生物检测的应用提供了一种可靠的分析方法. 利用生物素化的CaF2:Ce,Mn纳米荧光探针, 我们还实现了对生物素受体过表达癌细胞的靶
向荧光成像. 通过概念性验证并利用手机连拍功能, 我们证明了Mn2+的长寿命发光可用于时间分辨荧光生物成像. 这些研究结果为过渡金
属长寿命发光在时间分辨荧光生物分析领域的应用提供了普适方法, 也为过渡金属离子的新型、多功能用途开辟了新的方向.
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