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Synthesis of ultra-small mordenite zeolite
nanoparticles
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ABSTRACT The mordenite (MOR) nanoparticles (MNPs)
with ultra-small crystallites (~30 nm) were synthesized by
using tetraethylammonium bromide (TEAB) as structure di-
recting agent at low temperature (403 K). The formation of
MNPs was considered to be due to high concentration of
TEAB and occurrence of limiting Ostwald ripening at low
temperature. The MNPs exhibited not only higher catalytic
activity at low temperature for selective catalytic reduction of
NOx but also higher catalytic activity and longer lifetime for
disproportionation of toluene than conventional MOR (c-
MOR) bulk crystals.
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INTRODUCTION
Zeolites possessing crystalline frameworks and ordered
networks of microspores have been widely used as in-
dustrial catalysts, ion-exchange materials, and adsorbents
[1–4]. Nano-sized zeolites are crucial industrial catalysts
and adsorbent because of less diffusion limitations com-
pared to micrometer-sized ones [5]. Synthesis of nano-
particles of ZSM-5, EMT and FAU has been previously
reported [6–8]. Mordenite (MOR) is a zeolite with 12 MR
and 8 MR channels that have c direction elongation and
run one-dimensionally along the c-axis; therefore, MOR
crystals with ultrashort c-direction can decrease the dif-
fusion limitations [9]. Most of the reports on the synth-
esis of MOR focus on the increase of Si/Al ratio and the
reducing of crystal size [10–12]. A series of Ti-MOR
zeolites with different crystal morphologies from nano-
particle to nanorod owning different catalytic activities

have been synthesized by Wu’s group [13]. Ryoo and
coworkers [14] succeeded in synthesizing MOR nano-
particles with a prolinol derivative, trivalent surfactant.
However, it is rarely reported the synthesis of MOR
crystals with tetraethylammonium bromide (TEAB) as
structure directing agent (SDA) at 403 K.
The crystallization process at low temperature de-

creases the kinetic polymerization of silicate and alumi-
nate to obtain highly uniform precursor particles and
limits Ostwald ripening [8]. In addition, the high con-
centration of organic template or SDA could provide
abundant crystal nuclei, which lead to small crystallites
with a narrow particle size distribution. Here, we syn-
thesized MOR nanoparticles (MNPs) with a high con-
centration of TEAB and at a relatively lower temperature
(403 K) than common synthetic temperature (443 K)
[15]. The catalytic activity of MNPs for selective catalytic
reduction (SCR) of NOx with NH3 as reductant and dis-
proportionation of toluene were investigated.

EXPERIMENTAL SECTION

Chemicals
Colloidal silica (30 wt.%) as silicon source was purchased
from Alfa Aesar. Sodium hydroxide (NaOH, >96%) and
TEAB were purchased from Sinopharm Chemical Re-
agent Co., Ltd. Sodium aluminate (NaAlO2) was pur-
chased from Aladdin Reagent Co., Ltd.

Synthesis of zeolite materials
In a typical synthesis of MNPs, 0.24 g NaOH, 0.21 g
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TEAB, 0.087 g NaAlO2 and 6.88 g water were mixed to-
gether. Then 3.07 g of colloidal silica was added to obtain
an aluminosilicate gel by vigorous stirring for 3 h at
298 K. The gel was transferred to a stainless steel auto-
clave and the sealed autoclave was placed in an air oven
maintained at 403 K for four days. The crystalline white
solid was filtered, washed and dried at 353 K in air for
6 h, and subsequently calcined in air at 823 K.

Characterizations
Powder X-ray diffraction (XRD) patterns were recorded
on a Rigaku X-ray diffractometer D/max-IIIA equipped
with a Cu Kα radiation (40 kV, 30 mA). The scanning
electron microscopy (SEM) was conducted on a JEOL
JSM-7800F electron microscope. The Fourier transform
infrared spectroscopy (FT-IR) spectra were recorded
using a Perkin-Elmer Spectrum 100 FT-IR spectrometer.
Thermogravimetric analysis (TG) was performed with a
Perkin-Elmer TGA7. The ratios of Si/Al in the samples
were determined from the results of inductively coupled
plasma optical emission spectrometer (ICP-OES) (Ther-
mo Jarrell Ash IRIS Advange 1000). The nitrogen ad-
sorption-desorption isotherms were measured at 77 K
using an ASAP 2460 analyser. The specific surface area
was calculated by the Brunauer-Emmett-Teller (BET)
method.

Catalysis
The SCR of NO with NH3 as reductant was selected as the
model reaction after supported Cu active species. Cu/
MOR were prepared via traditional ion-exchange meth-
od. 1 g MOR zeolite, 10 g NH4NO3 and 30 g water were
mixed together and stirred at 353 K for 12 h (3 times).
Afterwards, the product was filtered, washed and dried at
353 K in air for 6 h, then the product was transferred to

0.01 mol L−1 Cu(NO3)2 solution and stirred at 353 K for
one day to get the evaporated product. The product was
calcined at 823 K for 6 h to obtain Cu/MOR (Cu content
4.97 wt.% for Cu/MNPs and 4.99 wt.% for Cu/c-MOR,
determined by ICP method). The catalytic condition of
Cu/MNPs and Cu/c-MOR for SCR of NO is: [NO]=
[NH3]=500 ppm, 5% O2, balance=Ar, weight hourly space
velocity (WHSV)=60,000 mL h−1 gcat.

−1.
Proton-type H/MOR catalysts were obtained by ion-

exchange with NH4NO3 solution for 3 times and then
calcined at 823 K for 6 h. The Si/Al and Si/Na ratios for
H/MNPs and H/c-MOR were determined by ICP analysis
as shown in Table S1. The reaction condition of dis-
proportionation of toluene is: catalyst, 0.2 g; temperature,
573 K; toluene feed, 1.44 g h−1; N2, 30 mL min−1; W/F
=2.2 g h mol−1.

RESULTS AND DISCUSSION
MOR zeolites with different morphology and particle size
were synthesized at different crystallization temperatures.
The smallest particle size of MNPs with size of ~30 nm
was synthesized at 403 K (Figs S1, S2 and Table S2). Fig.
1a shows the XRD patterns of the calcined MNPs and c-
MOR (Fig. S3). The XRD pattern of MNPs indicates the
formation of an MOR zeolite with broadened Bragg peaks
with weaker intensity compared to that of c-MOR, il-
lustrating the decreased size of its individual particles.
Fig. 1b shows the N2 adsorption-desorption isotherms of
MNPs and c-MOR. The c-MOR exhibits a typical I type
adsorption isotherm curve, while the MNPs prepared via
high concentration of TEAB have large hysteresis loops
formed by interparticular porosity occurring at relative
pressures (P/P0) between 0.4 and 1.0. The uptake steps
below P/P0=0.02 indicate the presence of micropores. The
BET surface area and pore volume of MNPs are

Figure 1 XRD patterns (a) and N2 adsorption-desorption isotherms (b) of calcined MNPs and c-MOR.
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408 m2 g−1 and 0.3 cm3 g−1, respectively, higher than that
of c-MOR (370 m2 g−1 and 0.2 cm3 g−1).
The SEM images show the MNPs assembled into a disk

(Fig. 2a, b) with the diameter of ~800 nm and thickness of
~100 nm. Fig. 2c indicates that the diameter of irregular
MNPs is in the range of 20–40 nm. Transmission electron
microscopy (TEM) images (Fig. 2d–f) further confirm
that MNPs were self-assembled from ultra-small size of
MOR crystals. Fig. 2d shows the low-magnification TEM
image taken from two vertical crossed disks. High re-
solution TEM (HRTEM) images (Fig. 2e, f) show MNPs
with high crystallinity and ultra-small size self-assembly
into multilevel stacked structures, which is in good line
with its crystalline size calculated by Scherrer equation
(Table S2) [16].
The size of products decreased with decreasing tem-

perature from 443 to 403 K due to limited Ostwald ri-
pening (Figs S1, S2 and Table S2). The product was
amorphous when the temperature was lower than 403 K
because low temperatures cannot induce the growth of
crystal nuclei in four days. The growth of MNPs is limited
by the low synthesis temperature, with the main crystal-
lization route being through propagation in the gel. The
higher synthesis temperature favors Ostwald ripening,
which results in generating larger particles at the expense
of smaller ones. From the XRD patterns of the calcined
samples, it can be observed that the peak width at half
height decreased with increasing the crystallization tem-
perature from 403 to 443 K. The characterization results
of the samples synthesized with different Si/Al ratios (Fig.
S4) show that the pure MOR, mixture of MOR and MFI,
and pure MFI zeolites were synthesized with Si/Al ratio of

23, 46 and ∞, respectively.
In our synthesis system, for the low Si/Al ratio (23), it

has been found that the crystallization tends to direct the
formation of MOR rather than MFI [17]. In addition, the
secondary building units of the 4 MR in the MOR
structure prefer more Al atoms with a larger radius as
constructing tetrahedrons in comparison to Si atoms.
This is probably because the longer Si–O–Al bond would
relax the strain of the 4 MR and make the crystalline
structure more thermodynamically and energetically
stable [10]. Therefore, it is not conducive to formation of
MOR type zeolite with increasing the Si/Al ratio. On the
other hand, it is easy to form MFI zeolite under high Si/Al
ratio or without Al. Therefore, the mixture of MOR and
MFI and pure MFI zeolites were synthesized with Si/Al
ratio of 46 and ∞, respectively.
The particle size of the samples was decreased from

~100 to ~35 nm with increasing TEAB/Si molar ratio
from 0 to 0.2 (Fig. S5). However, higher concentrations of
TEAB (TEAB/Si > 0.2) could not decrease the size of the
product. The addition of TEAB is beneficial to synthesize
zeolites with small crystal size in the hydrothermal pro-
cess. TEAB, which easily reacts with the aluminosilicate
oligomers, was used as SDA. The high concentration of
TEAB would generate numerous nucleation centers. Due
to the amount of aluminosilicate was constant, zeolites
with small crystal size were generated. The particle size of
the samples was decreased with increasing the con-
centration of TEAB in our synthesis system [18,19].
In comparison to pure TEAB substance, the as-made

MNPs show relatively weaker vibration bands (2,990,
2,940, 1,490 and 1,390 cm−1) of the N+(CH2CH3)4 groups,

Figure 2 SEM images (a–c) and TEM images (d–f) of the calcined MNPs shown in Fig. 1.
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indicating that the N atom of TEAB is strongly bonded
with T(Si or Al) atom in MNPs (Fig. S6). Therefore,
TEAB works as a SDA that directs polymerization be-
tween aluminosilicate oligomers or between aluminosili-
cate and silicate oligomers during nucleation of zeolite.
MNPs have a composition of Na4TEAmAl5Si43O96·6H2O·(2
−m)TEAB (m≈1), with some TEA+ to balance the charge,
according to the Si/Al ratio of 9.2, weight loss of inter-
crystalline water (3.2%) and TEAB (8.8%) characterized
by ICP and TGA (Fig. S7), respectively.
The 12 MR large-pores along c-axis were occupied by

TEAB molecules as simulated by Weckhuysen and co-
workers [20]. It can be deduced that the high con-
centration of TEAB could generate abundant crystal nu-
clei resulting in smaller crystals. The crystal nuclei
templated by TEAB block the growth of crystal along
c-axis, which results in the formation of small crystals. As
a result, the growth of MNPs is limited by the high
concentration of TEAB and low synthesis temperature.
As we all know that, for catalytic application, the dif-

fusion limitation of reactants and products is very serious
especially for MOR zeolite with 12 MR main channels. To
demonstrate the catalytic advantage of the ultra-small
MNPs, the SCR of NO with NH3 as reductant was se-
lected as the model reaction after supported Cu active
species. From the catalytic performances of Cu/MNPs
and Cu/c-MOR (Fig. 3a), it can be seen that Cu/MNPs
show higher catalytic activity and wider temperature
window than Cu/c-MOR, especially display higher ac-
tivity at low temperatures. For Cu/MNPs, the conversion
of NO at 150 and 200°C is ~50% and ~100% much higher
than ~15% and ~80% of Cu/c-MOR, respectively. Im-
proved NO catalytic performances of Cu/MNPs, espe-
cially at low temperature, would be due to well dispersion
of Cu2+ and without diffusional limitation for reactants

and products, resulting from shorter transmission path
and higher specific surface area of ultra-small crystals
[21]. Fig. 3b shows that N2O as by-product increases and
then turns to decrease with increasing temperature; in
addition, MNPs have better selectivity than c-MOR be-
cause of less of the by-product N2O. MNPs possess larger
specific surface area and almost no diffusional limitation
for reactants and products due to the small particle size,
which results in more NO transformed to N2 rather than
N2O.
Since H/MOR is widely used as an important com-

mercial catalyst in industrial processes of toluene dis-
proportionation, thus we have carried out the dispropor-
tionation of toluene. According to the catalytic perfor-
mance of H/MNPs and H/c-MOR (Table S4), the toluene
conversion over two MOR zeolites decreased with
prolonging reaction time but the nanosized MOR was still
more stable than c-MOR against deactivation. For H/
MNPs, the conversion of toluene at time on stream of 2 h
was 8.9%, much higher than 2.5% of H/c-MOR. MNPs
exhibited excellent performance for disproportionation of
toluene than c-MOR due to shorter transmission path
and higher specific surface area of ultra-small crystals.

CONCLUSIONS
A series of MOR with different particle sizes have been
prepared by controlling crystallization temperature and
concentration of TEAB. The variation of Si/Al ratios
would result in different type of zeolites. Highly crystal-
line MOR was successfully obtained with crystal size of
~30 nm by increasing the TEAB concentration to provide
more nucleation and lowering the temperature to limit
Ostwald ripening. This material exhibits higher conver-
sion and catalytic activity at low temperature than c-MOR
for SCR of NOx and also shows higher catalytic activity

Figure 3 (a) NOx conversion over Cu/MNPs (red) and Cu/c-MOR (blue). Reaction condition: [NO]=[NH3]=500 ppm, 5% O2, balance=Ar, WHSV=
60,000 mL h−1 gcat.

−1. (b) N2O yield over Cu/MNPs (red) and Cu/c-MOR (blue).
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and longer lifetime for disproportionation of toluene than
c-MOR due to the short transition path and high specific
surface area (408 m2 g−1). This finding would open up
new possibilities for the elaborate fabrication of nan-
ometer-sized zeolites.
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合成超小MOR型分子筛纳米颗粒
许义1, 申学峰1, 彭程2, 马跃3, 韩璐1,4, 吴鹏3, 彭洪根2*, 车顺爱1,4*

摘要 本文在一个较低的温度(403 K)下使用四乙基溴化铵(TEAB)为模板剂合成出超小的(30 nm)MOR型分子筛. 超小的产物粒径是由于
高浓度的TEAB可以提供更多的晶核以及低温限制了奥氏熟化. 产物在低温区域的NOx选择性催化还原活性远远高于传统MOR型分子筛.
此外, 超小的纳米颗粒减小了物质的传输限制以及较大的比表面积使得其在甲苯歧化反应中具有比传统MOR更高的催化活性和耐失活
性.
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