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Humidity-responsive nanocomposite of gold
nanoparticles and polyacrylamide brushes grafted on
Ag film: synthesis and application as plasmonic
nanosensor
Huaxiang Chen, Tingting You, Geng Xu, Yukun Gao, Chenmeng Zhang, Nan Yang and
Penggang Yin*

ABSTRACT A general stepwise strategy for the preparation
of new humidity-responsive plasmonic nanosensor was de-
scribed for the first time, based on Ag film functionalization
by polyacrylamide (PAAM) brushes via surface-initiated atom
transfer radical polymerization (SI-ATRP) method and then
assembled with gold nanoparticles (Au NPs). We designed by
this way a new plasmonic device made of Au NPs embedded in
a humid vapor responsive polymer layer on Ag film and ex-
tensively characterized by surface-enhanced Raman scattering
(SERS). When the relative humidity (RH) is above 50%, the
number of plasmonic hotspots decreases, causing SERS signal
reduced noticeably, for the volume expansion of PAAM bru-
shes varied the nano-gap between closely spaced Au NPs, and
between Au NPs and Ag film. The reversible optical properties
of the prepared nanocomposite tuned by RH were probed
through SERS using 4-mercaptopyridine (4-Mpy) as a mole-
cular probe, and the decrease of the RH reversibly induces a
significant enhancement of the 4-Mpy SERS signal. By means
of the high reversibility, the RH responsive nanocomposite
developed in this paper provides a dynamic SERS platform
and can be applied as plasmonic nanosensor which is proved
to be stable for at least two months.
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INTRODUCTION
Metallic nanoparticles (NPs) are one of the most im-
portant and extensive family of materials in sensors,
catalysis, semiconductors and medicine [1,2]. Surface-
enhanced Raman scattering (SERS), known as one of the
most powerful and sensitive tools for detection of mole-

cules adsorbed onto metallic NPs, especially gold and
silver [3–5], has been widely applied in the area of biol-
ogy, optics and analytical chemistry [6–8]. In SERS, it is
now well established that the signal enhancement is
predominantly based on the plasmonic hotspots localized
in the gaps (<10 nm) between closely spaced nano-
particles [9–11] or between a nanoparticle and a metal
film [12–14]. Various approaches to create plenty of
hotspots to raise high enhancement factors from SERS
substrates have been reported recently [15,16]; however,
due to the complex processes and high cost, it remains a
challenge to fabricate uniform and stable SERS substrates
with vast hotspots. Based on the previous studies, devel-
oping a simple method to assemble metallic NPs on metal
surface with precise construction of plasmonic hotspots is
of pivotal importance in fabricating efficient SERS sub-
strates [17].
Recently, several strategies to stabilize metallic NPs on

metal surfaces have been reported [18,19]. Furthermore,
brushes of stimuli-responsive polymer, with unique
structure and high diversity in functionalities, have been
applied for the assembly of metal NPs on macroscopic
surfaces with efficient control [20,21]. Sophisticated sys-
tems made of stimuli-responsive brushes assembled with
gold or silver-NPs were proposed for SERS applications,
with vast plasmonic hotspots formed under external sti-
mulus [22–26]. For instance, Gehan et al. [27] reported
that the SERS signals can be tuned by temperature sti-
mulus, and the SERS substrate was prepared by using a
thermo-responsive poly(N-isopropylacrylamide) (PNI-
PAM) brushes as linker between the gold NPs and a gold
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film.
Inspired by humidity-responsive behaviors in nature,

moisture responsive materials have awoken great interest
for the applications in the area of nanosensors [28,29],
actuators, or construction of soft robots [30]. However, to
the best of our knowledge, fabrication of moisture re-
sponsive SERS substrates through the use of humidity-
responsive polymer brushes grafted on a metal film to
assemble Au NPs has barely been reported so far.
In this work, a general stepwise strategy to fabricate

humid vapor responsive plasmonic nanosensor was de-
scribed. Firstly, Ag-film was modified with binary self-
assembled monolayers (SAMs) of an initiator and bis[2-
(2-bromoisobutyryloxy)-undecyl] disulphide (DTBU) as
an “inert” thiol to initiate the atom transfer radical
polymerization (ATRP) of acrylamide (AAm), following
which the Au NPs were assembled. Swelling of poly-
acrylamide (PAAM) brushes tuned by humid vapor is
able to alter the distance not only between Au NPs and
Ag film, but also among Au NPs, causing change of
molecular probe’s SERS signal. Most significantly, the
SERS efficiency of the prepared SERS substrates could be
remarkably modulated by relative humidity (RH) chan-
ging from 10% to 90%, using 4-mercaptopyridine (4-
Mpy) as the model probe. When the RH was below 50%,
the sensor was insensitiveness, with RH changing from
50% to 95%, the sensor has good sensitiveness. The pre-
pared RH-responsive plasmonic nanosensor with good
stability and homogeneity has attractive potential appli-
cation in humidity probing mobile SERS micro sensors
for their high moisture-responsive sensitivity and simple
preparation process.

EXPERIMENTAL SECTION

Reagents
High-purity silver (99.99%, 10×10×0.25 mm3) was pur-
chased from Zhong Nuo Advanced Material (Beijing)
Technology Co., Limited. Cu(I)Br, 1,1,4,7,7-penta-
methyldiethylenetriamine (PMDETA), AAm (99.9%) and
the initiator bis-DTBU was purchased from Sigma-Al-
drich and used as received. 4-Mpy (99%), methanol
(99.8%), ethanol (99.5%) and tetrahydrofuran (99.9%)
were purchased from J&K Scientific. Deionized water was
used throughout and obtained using a Millipore Direct-Q
system.
Scheme 1 shows the fabrication of Ag film-PAAM-Au

NPs nanocomposite, including a three-step procedure
that consists of the following: (i) firstly, silver surface was

modified with PAAM brushes via surface initiated-ATRP
(SI-ATRP) method, and the chemical structure of Ag
film-PAAM was confirmed by FT-IR spectrum, XPS and
the contact angle, (ii) then, Au NPs were embedded into
PAAM brushes grafted on Ag film, (iii) and lastly, after
washed with water and dried in vacuum, the Ag-PAAM-
Au NPs substrates were kept under nitrogen atmosphere.

Surface-initiated polymerization of acrylamide on Ag film
The Ag film was modified by DTBU initiator (H-NMR
spectra of DTBU can be seen in Fig. S1). The silver
substrate was rinsed by tetrahydrofuran, ethanol and
water, and then dried in a nitrogen gas stream. After-
wards, the cleaned silver substrate was directly transferred
into 1 mmol L−1 ethanol solution of ATRP initiator
DTBU, kept immersed 12 h at 20°C. The initiator-mod-
ified silver surface was washed sequentially with THF and
ethanol and dried in a stream of nitrogen before use.
PAAM brushes grafted on initiator-modified silver

surface (Ag film-PAAM) were synthesized via the re-
ported SI-ATRP method [31], and a reaction mixture of
PMDETA (0.28 mL, 1.34 mmol), Milli-Q water, and
methanol (3:7), AAm (2.00 g, 28.15 mmol), and CuBr
(64 mg, 0.45 mmol) were used. In the beginning, the
mixture of water and methanol was degassed and the
chelating agent (PMDETA) was added. Under continuous
stirring the monomer as well as the CuBr was added si-
multaneously to the solution under nitrogen gas flow. A
three-necked flask was flushed with nitrogen, and the
initiator-functionalized silver substrate was placed inside.
Then the reaction mixture was transferred via a syringe to
the three-necked flask which contained initiator-func-
tionalized silver substrate, and the syringe was purged
with nitrogen before used. After 6 h of reaction at 25°C,
the substrate was rinsed and washed with Milli-Q water

Scheme 1 Schematic illustration of the fabrication of PAAM brushes by
ATRP on Ag film and immobilization of Au NPs.
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and ethanol, and then dried with a nitrogen gas stream.

Preparation of Au NPs-embedded polyacrylamide brushes
grafted on Ag film
Au NPs with a diameter of 46 nm were synthesized suc-
cessfully (Fig. S2). Three Ag film-PAAM substrates were
separately soaked into the prepared Au NPs solution of
10 mL. Different loadings of Au NPs were embedded into
PAAM brushes grafted on Ag film by controlling soaking
time to 5 h, 10 h and 15 h. After reaction, the prepared Ag
film-PAAM-Au NPs were taken out and rinsed with
water, and then dried with a nitrogen gas stream.

RH adjustment
RH is achieved by adjusting the ratio of dry N2 to water
saturated N2 (Fig. S6). RH is measured by hygrometer,
and the ambient temperature is 20°C. Dry N2 flow range
is 0–5 mL min−1 and regulated by a nitrogen flow meter.
Water-saturated N2 is obtained by bubbling dry N2

through water, and the dry N2 flow range is 0–5
mL min−1, regulated by a nitrogen flow meter.

SERS property of Ag film-PAAM-Au NPs substrate
The SERS activity of Ag film-PAAM-Au NPs substrate
was studied using 4-Mpy as analyte. SERS samples were
prepared by immersing Ag-PAAM-Au NPs substrates
into 4-Mpy (1×10−5 mol L−1, 10 mL) for 2 h before being
rinsed with ethanol several times to remove the free
molecules. The surface-enhanced Raman spectra were
measured on an in Via-Reflex micro-Raman system
(Renishaw, UK) equipped with a multi-channel charge-
coupled device (CCD) detector and a confocal micro-

scope (DM2500 M, Leica) using excitation by a 785 nm
laser line.

Characterization
Fourier transform infrared (FTIR) spectra were collected
on a Nicolet iN10 infrared spectrophotometer. The sur-
face elemental compositions were obtained with an ESCA
spectrometer (S-Probe ESCA SSX-100S, Surface Science
Instruments, USA) with Al Kα X-ray radiation of 200 W.
All elements present were identified from survey spectra
(0−1,200 eV) with an energy resolution of 1.0 eV. The
water contact angles with 2 µL water droplet were mea-
sured at ambient conditions using an optical contact
angle meter (HARKE-CALS). Scanning electron micro-
scopy (SEM) images were recorded by a JEOL
JSM7500FA field emission microscope with an accel-
erating voltage of 5 kV. The acceleration voltage was in-
creased to 10 kV for energy-dispersive X-ray analysis
(EDX) measurements. Transmission electron microscopy
(TEM) images were carried out using a JEOL JEM-2100F
microscope with an accelerating voltage of 200 kV. The
ultraviolet-visible absorption spectra (UV-vis) were
measured on a Shimadzu UV-3150 spectrometer.

RESULTS AND DISCUSSION
In order to confirm the chemical structure of the pre-
pared PAAM brushes coated on Ag film, samples were
analyzed with FT-IR spectrum and X-ray photoelectron
spectroscopy (XPS).
As shown in Fig. 1a, the strong bands at 3,345 and

3,198 cm−1 are related to N–H asymmetric and symmetric
stretching of the NH2 repeat unit, respectively [32]. The

Figure 1 (a) FT-IR spectrum of the PAAM brushes coated on Ag-film; (b) XPS survey spectrum (b1) and C 1s core level spectrum of PAAM brushes
grafted on silver substrate by means of ATRP (b2) and labeling of the different carbon moieties in a PAAM molecule (b3).
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strong peaks originating from the amide I band after
Lorentz fitting were found at 1,681 cm−1, and the amide II
band was found at 1,612 cm−1. As can be seen in Fig. 1b,
the wide scan spectrum of PAAM brushes revealed the
peaks corresponding to carbon, oxygen, and nitrogen
atoms at characteristic binding energies. C 1s core level
spectrum of the same sample has been deconvoluted into
three component peaks. The intensity ratios of these de-
convoluted peaks are in good agreement with the stoi-
chiometric ratio of the corresponding carbon atoms in
chemical structure of PAAM as [1]:[2]:[3]= 1:1:1. These
results strongly confirm that the grafted polymer brush
layer on Ag film is composed of PAAM chains.
It can be seen in Fig. 2, Ag film-PAAM surfaces were

assembled with Au NPs effectively, and with the im-
mobilization time changing from 5 to 15 h, the loadings
of Au NPs increased obviously, and this result can also be
confirmed by elemental maps of Au elements on the
prepared three Ag film-PAAM-Au NPs substrates of
10×10 μm2 (Fig. S5). With immobilization time of 10 h,
uniformly dispersion of Au NPs on Ag film-PAAM was
obtained, which can provide plenty of plasmonic hot-
spots.
By reducing the contact angle, the humidity sensitivity

can be effectively increased. After modified by PAAM
brushes with good moisture absorption, the contact angle
of Ag film-PAAM surface changed from 65.2° to 21.7°
(Fig. S3), confirming that the Ag film surface has been
converted to hydrophilicity and good hygroscopicity by
PAAM brushes. After Ag film-PAAM surface assembled
with Au NPs, the surface roughness increased, causing
the contact angle of Ag film-PAAM-Au NPs increased, as
shown in Fig. 2. However, the surface of the prepared
nanocomposite was still hydrophilic.
The prepared Ag film-PAAM-Au NPs were used as

SERS substrates, on which 4-Mpy was adsorbed as target
with a concentration of 1×10−5 mol L−1 in aqueous solu-
tion at 25°C. According to the previously reported SERS
spectra of 4-Mpy on Ag and Au substrates [33], the two
prominent peaks at 1,080 and 1,590 cm−1 are assigned to
its aromatic ring breathing vibration.
As shown in Fig. 3a, the strongest SERS signal of 1×10−5

mol L−1 4-Mpy adsorbed on Ag film-PAAM-Au NPs with
immobilization time of 10 h was obtained, and in Fig. 3b,
the smallest error bars of 4-Mpy SERS signal at
1,080 cm−1 was obtained in this condition, indicating that
Ag film-PAAM with uniformly dispersion of Au NPs
provided plenty of plasmonic hotspots which can be se-
lected as SERS substrates with high sensitivity and good
uniformity. While with immobilization time of 15 h, ag-

glomeration of Au NPs on Ag film-PAAM was obtained,
the plasmonic hotspots which localized in the gaps be-
tween closely spaced nanoparticles were reduced, causing
and the SERS signal decreased. Furthermore, as shown in
Fig. 3a (line a), no peaks corresponding to PAAM brushes
(637, 764, 794, 1,105, 1,209, 1,328, 1,457, 1,625 cm−1) [34]
can be observed.
Homogeneity of spectral signal through an area is of

great importance when considering the practical appli-
cation using SERS substrates [35]. As shown in Fig. 4, we
performed a mapping measurement via spot to spot Ra-
man spectra on a 20 μm×20 μm Ag film-PAAM-Au NPs
area with a step size of 1 μm to evaluate the homogeneity
of SERS signals at RH of 10%. SERS spectra of 4-Mpy
obtained from different spots are with good stability. The
relative standard deviation (RSD) of the Raman intensity
was calculated to be 6.86% for 1,080 cm−1, indicating the
uniformity of SERS substrate in large area.
The prepared Ag film-PAAM-Au NPs can be used as

Figure 2 SEM images and the contact angle of Ag film-PAAM-Au NPs
with immobilization time of 5 h (a), 10 h (b) and 15 h (c).

Figure 3 (a) Raman spectra of Ag film-PAAM-Au NPs (1), SERS
spectrum of 1×10−5 mol L−1 4-Mpy adsorbed on Ag film-PAAM-Au NPs
with immobilization time of 5 h (2), 10 h (3) and 15 h (4). (b) The SERS
intensity at 1080 cm−1 of 1×10−5 mol L−1 4-Mpy adsorbed on Ag film-
PAAM-Au NPs with different immobilization time, and the error bar is
calculated with 5 repeats. The RH was 10%, and the acquisition time was
2 s.
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humidity-responsive plasmonic nanosensor, and the re-
lationship between humidity and SERS signal of 4-Mpy
adsorbed on Ag-PAAM-Au NPs was studied in detail.
The ambient RH around SERS substrates can be tuned
easily by regulating the gas ratio between dry N2 and
water saturated N2, and the SERS signal of 1×10−5 mol L−1

4-Mpy adsorbed on the SERS substrates under different
ambient RH can be detected efficiently (Fig. S6).
Fig. 5a illustrated the effect of RH changes from 10% to

95% on the strength of SERS signal. In Fig. 5a, in the
range from 10% to 50% RH, the SERS signal of 4-Mpy
adsorbed on Ag film-PAAM-Au NPs basically remained
unchanged, for that hygroscopic expansion of PAAM
brushes did not occur. The synergistic effect caused by
the SERS hotspots among closely spaced Au NPs, and
between Au NPs and Ag film, can enhance SERS intensity
obviously [36–37]. With the increase of RH from 50% to
90%, volume expansion occurs when the PAAM brush
absorbs moisture, increasing the nano-gap among Au
NPs, and the distance between Au NPs and Ag film. As a
result, the number of plasmonic hotspots reduced sharply
and the SERS signal strength decreased obviously. Good
repeatability can be obviously seen from Fig. 5b when

repeated regulation RH from 10% to 95% five times.
Furthermore, as shown in Fig. 6, it is remarkable that

the variations of the SERS intensities observed for Ag
film-PAAM-Au NPs are fully reversible when turning RH
from 10% to 90% and back to 10%, evidencing a strong
and reversible response of the Ag film-PAAM-Au NPs
system to the external RH. The number of plasmonic
hotspots located in the nano-gap among Au NPs, and
between Au NPs and Ag film can be reversible altered
efficiently by tuning external RH. These phenomena in-
dicate that the fabricated humidity-responsive plasmonic
nanosensor can response to the change of the sur-
rounding media from low RH to high RH state and vice
versa.
SERS signals caused by plasmonic hotspots can be

quantified by enhancement factors (EF). To compare the
enhancement more quantitatively, we have calculated the
EFs for the main Raman peaks of 4-Mpy adsorbed on Ag
film-PAAM-Au NPs, as shown in Fig. 7, based on the
reported method [38]: EF=(ISERS/Nads)/(Ibulk/Nbulk) (Equa-
tion (1)), where ISERS and Ibulk are the SERS intensities of
1×10−5 mol L−1 4-Mpy adsorbed on Ag-PAAM-Au NPs
and normal Raman spectra of 5 mol L−1 4-Mpy adsorbed
on Si wafer at the 1,080 cm−1 band, respectively; Nbulk and
Nads are the number of 4-Mpy molecules under the same
laser illumination conditions for the bulk and SERS ex-
periments, respectively. By substituting values into
Equation (1), EF for the SERS of 4-Mpy adsorbed on Ag
film-PAAM-Au NPs was estimated to be 2 ×108.
As can be seen from Fig. 8, the SERS signal of

1×10−5 mol L−1 4-Mpy did not change after two months at
RH of 10% or 90%, proving that the Ag film-PAAM-Au
NPs SERS substrate was stable for at least two months,
and the SERS intensities can be fully reversible with RH
varying from 10% to 90% after two months.

Figure 4 (a) Raman intensity mapping spectra at 1,080 cm−1 of 1×10−5

mol L−1 4-Mpy molecules on a 20×20 μm2 surface area of the Ag film-
PAAM-Au NPs substrate, detected at the RH of 10% state and the
acquisition time was 1 s. (b) The corresponding intensity distributions at
1,080 cm−1 of 4-Mpy molecules in (a).

Figure 5 (a) SERS spectra recorded at various RH of 1×10−5 mol L−1 4-
Mpy molecules adsorbed on Ag film-PAAM-Au NPs. (b) Integrated
SERS intensity at 1,080 cm−1 of 4-Mpy molecules adsorbed on Ag film-
PAAM-Au NPs under various RH, the error bar is calculated with 5
repeats.

Figure 6 SERS spectra of 1×10−5 mol L−1 4-Mpy adsorbed on Ag film-
PAAM-Au NPs, detected at various RH: from 10% to 90% and back to
10%. The acquisition time was 2 s.
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CONCLUSIONS
In summary, a novel humidity-responsive plasmonic
nanosensor was successfully fabricated by a two-step
strategy: PAAM-modified Ag film was firstly prepared by
SI-ATRP method, after which Au NPs were embedded
into PAAM brushes. The prepared PAAM brushes coated
on Ag film were confirmed by FTIR and XPS. With Au
NPs immobilization time of 10 h, Ag film-PAAM-Au
NPs nanocomposite with uniformly dispersion of Au NPs
was obtained, and at RH of 10%, the strongest SERS
signal of 1×10−5 mol L−1 4-Mpy adsorbed on the substrate
was observed, and moreover, the RSD for a mapping

SERS measurement of 4-Mpy was calculated to be 6.86%
on a 20 μm×20 μm area, indicating the uniformity of
SERS substrate in large area. Meanwhile, the nano-
composite with good moisture sensitivity was successfully
prepared, with the contact angle of 51.2°.
With the prepared nanocomposite as humidity-re-

sponsive plasmonic nanosensor, the relationship between
RH and SERS signal of 4-Mpy adsorbed on Ag-PAAM-
Au NPs was studied in detail. At the RH below 50%,
volume expansion of the PAAM brushes did not occurr,
and thus the prepared nanosensor was insensitive. When
the RH is above 50%, the number of plasmonic hotspots
decreases, because the volume expansion of the PAAM
brushes varied the nano-gap between closely spaced Au
NPs, and between Au NPs and Ag film, causing SERS
signal reduced obviously. Turning RH from 10% to 90%
and back to 10%, the variations of the SERS intensities are
fully reversible. Furthermore, at RH of 10%, EFs for the
SERS signal of 4-Mpy adsorbed on Ag film-PAAM-Au
NPs, caused by plasmonic hotspots, was estimated to be
2×108. The SERS intensities can be fully reversible with
RH varying from 10% to 90% for several months. The
fabricated humidity-responsive plasmonic nanosensors
can response to the change of the surrounding media
from low RH to high RH state and vice versa.
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湿度响应纳米复合材料的组装及其SERS传感器应用
陈华祥, 尤汀汀, 徐更, 高宇坤, 张晨萌, 杨楠, 殷鹏刚*

摘要 本文报道了一种湿度响应纳米SERS传感器. 通过原子转移自由基聚合技术在银片表面嫁接了具有湿度响应性能的聚丙烯酰胺分子
刷, 并组装金纳米颗粒形成复合结构. 该分子刷湿度响应灵敏, 而且可有效抓取金纳米颗粒, 构成均匀分布的SERS“热点”. 通过调节湿度,
实现了SERS“热点”的可逆调控, 并通过拉曼光谱快速捕捉探针分子特征峰的SERS信号强度变化, 实现湿度响应的SERS传感功能. 湿度低
于50%时, 分子刷收缩, 金纳米颗粒间距降至纳米级, 形成大量热点, 使得SERS增强因子达到2×108; 湿度高于50%时, 分子刷舒张, 金纳米颗
粒间距变大, 当湿度大于90%时, SERS“热点”最少, SERS信号最低. 可逆调控湿度变化, 得到可逆的SERS信号变化, 因此该复合材料实现了
高效灵敏的湿度响应SERS传感.
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