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Fabrication and photocatalysis of ZnO nanotubes on
transparent conductive graphene-based flexible
substrates
Qi Yu1,2*, Rui Lin2, Liyun Jiang3, Jiawei Wan2 and Chen Chen2*

Zinc oxide (ZnO) is one of the most widely used
benchmark standard photocatalysts in the field of en-
vironmental applications [1–3]. As a wide band-gap
semiconductor oxide (Eg=3.37 eV) with large excitation
binding energy (60 meV), zinc oxide becomes one of the
most important functional materials with unique prop-
erties of optical transparency, electric conductivity and
piezo electricity [4–10]. However, the large band gap and
the massive recombination of photogenerated charge
carriers, especially in its nanosize, limit the overall pho-
tocatalytic efficiency. Intensive studies have demonstrated
new applications such as piezoelectric nanogenerators,
self-powered piezotronic strain sensors and Schottky
contact-based nanosensors using 1D ZnO nanotubes
(NTs) [11–14]. Substantial effort has been devoted to the
development of novel synthetic methodologies for 1D
ZnO NTs [15–19]. Nevertheless, it is still a challenge to
realize ZnO NTs arrays with controllable sizes and di-
mensions. Currently, large-scale low-cost controllable
growth of well-aligned ZnO NTs on properly fitting
substrates is desirable for these novel applications [20,21].
As the widely used high-temperature vapor-phase pro-
cesses are expensive and energy-consuming, various so-
lution-phase approaches to ZnO NTs have recently
attracted extensive interest because of their low growth
temperatures and potential for scale up. Among these
reported approaches, the preparation methods remain
complex and hard to perform.

Graphene as an emerging carbon material, its two-di-
mensional conjugated chemical structure leads to attrac-
tive properties such as optical transparency [22], high
electro-conductivity [23], mechanical flexibility [24] and

high thermal/chemical stability [25]. Such a synergistic
combination of novel properties renders graphene a
promising component for next-generation flexible elec-
tronics and optoelectronics. In this letter, we report a
simple hydrothermal process for large-scale fabrication of
single-crystal ZnO NTs on transparent conductive flex-
ible graphene-coated polyethylene terephthalate (GPET)
substrates. The whole process of ZnO NTs fabrication can
be completed in an aqueous solution at low temperature.
The corresponding mechanism is discussed and the im-
proved photocatalytic efficiency of the ZnO NTs/GPET is
investigated.

Large-scale single-crystalline ZnO NTs on GPET sub-
strates were synthesized by the hydrothermal method.
Prior to the synthesis of ZnO, the GPET substrates were
cut and cleaned with acetone, methanol, and de-ionized
(DI) water under ultrasonication. The substrates were
purchased from Sigma-Aldrich Corporation. For the hy-
drothermal growth of ZnO, the aqueous solution of zinc
nitrate hexahydrate and hexamethylenetetramine
(C6H12N4) aqueous solution of equal concentration were
mixed together and kept under mild magnetic stirring for
30 min. The pH value of reaction solution was controlled
around 11 with ammonia. Subsequently, the autoclaves
were sealed and heated to a constant temperature of 90°C
for 5–15 h. The products were thoroughly washed with
distilled water to remove the residual salts before dried
naturally in air.

The morphologies and composition of the sample were
characterized by means of scanning electron microscopy
(SEM, by JEOL JXA-8200 electron probe micro-analyzer)
and X-ray diffraction (XRD, by Rigaku D/MAX-RA with
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Cu Kα radiation). The reactive yellow-15 (RY15) solution
was irradiated by Hg lamp at 500 W for the photocatalytic
characteristics.

The photograph of the GPET substrate is shown in Fig.
1a. The SEM image of ZnO fabricated on GPET flexible
substrate for 5 h is shown in Fig. 1b. The whole substrate
surface was successfully covered with uniform and dense
arrays of hexagonal ZnO nanorods (NRs). The micro-
graph demonstrates that the ZnO NRs are fine-grained
and contain, therefore, developed grain boundaries and
free surfaces [26]. After being etched in ammonia water
with the pH value of reaction solution controlled around
11, a shallow pit was formed in the center part of the tip

of the NRs. With increasing etching time, the depth of the
pit gradually increased. Furthermore, ZnO NTs (Fig. 1c)
were observed when the etching time increased to 15 h.
This illustrates that the ZnO NTs can be synthesized with
a simple one-step approach, and the formation of the
ZnO NTs is the result of the evolution of NRs under
hydrothermal reaction condition. Analyzed from the
XRD patterns (Fig. 1d), the peaks can be indexed to
wurtzite hexagonal ZnO. In addition, the weak peaks at
26.6o are assigned to the graphene.

Fig. 2 shows transmission electron microscopy (TEM)
images of a single ZnO NR (Fig. 2a, b) and ZnO NT (Fig.
2c, d) grown on flexible GPET substrates. The HRTEM in
Fig. 2d shows that the interplanar spacing of ZnO NTs is
about 0.26 nm, which corresponds to the ZnO (002)
crystal plane, and the growth direction for ZnO NTs is
the [0001] orientation [27].

The formation mechanism of the ZnO NTs is shown
schematically in Fig. 3a–e. Initially, ZnO seed layer was
spin-coated on a bare flexible GPET substrate (Fig. 3b).
Subsequently, zinc nitrate hexahydrate and C6H12N4 were
used for the growth of ZnO NRs (Fig. 3c). The NRs were
completely converted into the NTs by the following
transition mechanisms. Generally, the growth habits of
ZnO always directly dictate the final shape of the crystal,
which in turn is greatly influenced by its growth condi-
tions.

The formation of ZnO NRs or NTs is suggested to be
closely associated with OH− ligands [28,29]. On the gentle
reaction condition, tiny ZnO particles are deposited on
the GPET substrate in the early stage. Then the particles
function as crystal nuclei for the subsequent growth of the
ZnO NRs. During the etching process, ZnO NTs may be
formed via the following procedure:

C H N + 6H O 6HCHO + 4NH H O, (1)6 12 4 2 3 2

Zn +NH H O Zn(NH ) (2)2+
3 2 3 4

2+

Zn(NH ) + OH ZnO + NH H O. (3)3 4
2+ –

3 2

Presumably the precursor Zn(NH3)4
2+ reacts with OH–

to form ZnO, which is deposited on GPET substrate.

Figure 1 (a) Original image of the GPET substrate, inset is the SEM
image of GPET. (b) SEM image of ZnO NRs grown on GPET for 5 h, (c)
ZnO NTs grown on GPET substrate, (d) XRD spectra of the ZnO NTs.

Figure 2 (a) TEM image of a single ZnO NR, (b) HRTEM image taken
from the single ZnO NR, (c) TEM image of a ZnO NT, (d) HRTEM
image taken from the ZnO NT.

Figure 3 Schematic diagram for the growth mechanism of ZnO NTs.
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Along with the extended reaction time, ZnO can dissolve
according to Equation 3 as the equilibrium moves to the
left due to the etching effect of ZnO in ammonia aqueous
solution to result in ZnO NTs (Fig. 3e). It is known that
the wurtzite ZnO crystal has two polar planes. The
nonpolar planes parallel to the c axis are the most stable
ones and have a lower surface energy. Furthermore, the
etching rate of the polar (001) plane (the top plane of
ZnO NRs) is faster than that of the nonpolar planes (the
lateral planes of NRs). The etching prefers to take place in
the metastable area of the defect-rich initial parts of the
NRs, and subsequently NTs are formed.

The I–V characteristic of ZnO NTs on GPET is illu-
strated in Fig. 4. Inset is the schematic diagram of the
diode. For generating electric charges by pushing and
separating processes, the electrodes were set apart from
each other by inserting the spacer, and the conductive
wires were contacted, as shown in Fig. 4. When the bias is
applied to 5 V, the current reaches 0.9 mA, while the
reverse leakage current is almost 0.1 mA at −5 V.

Fig. 5a shows the decrease in concentration of RY15
with time when the reaction is photocatalyzed, seen from
the time-dependent degradation ratio (C/C0) where C is
the concentration of RY15 solution at the irradiation time
t, C0 is the initial concentration. After 120 min illumi-
nation, the degradation of RY15 in a direct photolysis
process without any photocatalyst is about 93% for re-
ference. The C/C0 for the ZnO NTs/GPET is about 57%,
while the value for the ZnO NRs/GPET is 78%, indicating
the degradation ratio of the latter (~22%) is significantly
lower than that for ZnO NTs (~43%). The specific areas
of ZnO NTs are likely higher than that of ZnO NRs,

which might play a role in the increased photocatalytic
performance.

The stability of the ZnO NTs photocatalyst was also
tested by proposing the recycling test. Evidently, after
three cycles of photocatalytic degradation, no significant
loss of activity has been observed (Fig. 5b). The tubular
shape of the product with large specific area is favorable
for realizing high adsorption capacity to improve oxida-
tion (reduction) reaction. Thereby, the ZnO NTs/GPET
can promote the photocatalytic reaction.

In summary, oriented ZnO NTs have been fabricated
on GPET flexible substrates via the hydrothermal meth-
od. The NTs are formed by a selective etching of NRs on
the (001) planes with the fastest rate of etching along the
(001) direction. The ZnO/GPET has been realized with
good rectifying behaviour. The high photocatalytic per-
formance of ZnO NTs/GPET shows promising applica-
tions for photocatalytic devices.

Received 5 December 2017; accepted 6 January 2018;
published online 7 February 2018

Figure 4 I–V characteristics of ZnO NTs on GPET. Inset is the sche-
matic diagram of device structure.

Figure 5 (a) Photocatalytic decomposition of RY15 solution with ZnO
NRs, ZnO NTs and without photocatalyst for reference, (b) the principle
of photocatalytic process with ZnO NTs.
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透明导电石墨烯柔性衬底上ZnO纳米管的制备及其光催化性能研究
于琦1,2*, 林锐2, 姜立运3, 万家炜2, 陈晨2*

摘要 本论文以水热法在透明导电石墨烯柔性衬底(GPET)上生长氧化锌(ZnO)纳米管阵列, 发现其纳米管形成机理为选择性地沿(001)面
生长, ZnO/GPET异质结具有较好的整流特性. 光催化测试表明, ZnO/GPET复合结构可提高光催化性能, 并具有良好的循环性. 此方法可
在柔性衬底上稳定生长ZnO纳米管, 并可应用于相关光电器件及光催化领域中.
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