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Abstract
This contribution gives a detailed account of the element predictions Dmitri Ivanovich Mendeleev made after setting up the 
periodic table of the elements in 1869, with a special focus on those that turned out to be unsuccessful. It is argued that most 
of these instances are connected to a general inability to place the rare earth metals correctly into the system. Furthermore, 
details of conceiving the ideas for two lighter-than-hydrogen elements, newtonium and coronium, are discussed. An attempt 
is made to retro-engineer the sequence of thought that led Mendeleev to extrapolate atomic masses for these elements.
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Introduction

2019 is the international year of the periodic table of chemi-
cal elements, which provides a good occasion to popularize 
chemistry through recalling both the scientific principles 
and the human stories behind the periodic table. Needless 
to say, the historical aspects are centered mostly on Dmi-
tri Ivanovich Mendeleev (1834–1907), who is remembered 
both as the uncontested champion of discovering the natural 
system of chemical elements and the tireless communicator 
who made the ideas known to the widest possible audience 
[1–12].

Taking into account the scientific information known in 
the middle of the 19th century, it is probably fair to say 
that chemistry was ready for the discovery of the periodic 
table: there were numerous independent attempts at organ-
izing the elements known at that time, atomic masses were 
mostly (correctly) determined, and the introduction of the 
spectroscopic method in 1860 [13, 14] reduced the incidence 
of false element identifications (although did not eliminate 
them entirely), which was a major problem hindering any 
element-systematization work in the first half of the 19th 
century.

One of the major reasons why Mendeleev is given most 
of the credit for developing the periodic table is that he made 
regular attempts to extract the scientific logic of the system 
and make verifiable (or falsifiable) predictions based on it 
[1, 4, 6, 10, 12]. Some of the early predictions were verified 
within 20 years of the first publication. This bit of science 
history is often recalled in textbooks; even Wikipedia has a 
page on the significance of these success stories [15]. Need-
less to say, being able to predict unknown phenomena or 
the existence of unknown substances is one of the strongest 
arguments in favor of the validity of a scientific theory. Yet 
the author of this article would like to focus on Mendeleev’s 
less successful lines of arguments [1, 10, 16] in the hope that 
they will help the reader to understand the logic behind the 
work of the great Russian scientist, and also to give some 
insights into some general questions of scientific thinking.

Successful early predictions

The exact date on which Mendeleev was enlightened with 
the thought of the periodic law [1] is February 17, 1869 
on his local timekeeping, but March 1 in most of Europe 
because of a difference between the Julian and Gregorian 
calendars. Mendeleev was working on a book entitled 
“Ocнoвы xимии” (Osnovy Khimii, Foundations of chemis-
try) [17]. However, his sudden insight must have given him 
a strong feeling of major achievement, which is indicated by 
the fact that he published the periodic table in at least three 
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different articles (once in Russian, twice in German) in the 
year of 1869 [18–20]. Table 1 shows one of the primordial 
forms [19]. Today, it is known as the short form of the peri-
odic table [1, 21].

The basic idea of the system is that the elements should 
be arranged in the order of their atomic masses, which 
were determined by diligent but probably also quite bor-
ing scientific work in the preceding half century. With this 
arrangement, the chemical (and also some of the physical) 
properties return periodically so that elements with simi-
lar characteristics occupy a single column. There was only 
one point where this logic seemed to fail: iodine, which is 
certainly the chemical analog of bromine and not selenium, 
had a lower atomic mass than tellurium, whose resem-
blance to selenium was beyond any doubt. Incidentally, tel-
lurium was already displayed before iodine by Julius Lothar 
Meyer (1830–1895) in his system of elements in 1864 [22]. 
Mendeleev did not accept the experimentally determined 
atomic mass for tellurium, but assumed a relatively small 
error and included 125, as shown in Table 1. However, this 
did not solve the problem for a long time; the issue of the 
anomalous atomic mass of tellurium kept returning in his 
later years as well. His most inventive solution was that 
tellurium has a larger than expected atomic mass because 
it was not prepared in an entirely pure form but contained 
some of its heavier analog dvi-tellurium [23], which was the 
name given to the unknown element that should appear after 
bismuth in the periodic table. The prefix “dvi” in this name 
comes from the Sanskrit word for “two” and was used by 
Mendeleev for the second higher element analog. The pre-
fixes “eka” (“one” in Sanskrit) and “tri” (three in Sanskrit) 
were used in a similar manner.

Before judging this practice (“bending” reality to match 
theory) too harshly, one should also consider the fact that 

Mendeleev changed the accepted atomic masses of some 
other elements as well and turned out to be correct [1]. For 
example, beryllium was commonly assigned an atomic mass 
of 14 at that time, which is the same as that of nitrogen. 
Based on property similarity, Mendeleev proposed that the 
valence of beryllium was erroneously assigned and that 
its actual atomic mass should be the non-integer value of 
9.4, which placed it right above magnesium. Uranium was 
another success story: its accepted atomic mass was 120, 
which would have placed it between tin and antimony, where 
there was certainly no column of similar elements. So again, 
revising the valence led to an atomic mass of 240, which was 
larger than any other known atomic masses at that time, but 
at least placed uranium into a position that could be reason-
ably described as the one below tungsten, which was fully 
supported by chemical intuition.

Quite a number of elements were discovered in the dec-
ades before 1869, and no scientist could have any doubt 
about one fundamental thing: more elements were going 
to be found. Competent handling of this “missing knowl-
edge” is probably the most important reason why Mend-
eleev became the dominant scientist in this field. Even in the 
early forms of the table, he left empty positions for elements 
that were undiscovered at that time. In Table 1, there are 29 
such empty spaces marked with a “–” sign with the clear 
intention that an element is expected in that place (Lothar 
Meyer did the same in his earlier work [22]). Four of these 
positions come with extra information: a predicted atomic 
mass. These are “– = 44”, “– = 68”, “– = 72”, “– = 100”. 
In later years, Mendeleev had the habit of making further 
predictions and named the missing elements after the ele-
ment above it in the periodic table using the prefix “eka”, 
as mentioned before, which is a bit weird given the fact that 
in Mendeleev’s favorite short form of the periodic table, all 

Table 1   Mendeleev’s periodic table in 1869 [20]

String Group I 
–
R2O

Group II 
–
RO

Group III 
–
R2O3

Group IV 
RH4
RO2

Group V 
RH3
R2O5

Group VI 
RH2
RO3

Group VII 
RH
R2O7

Group VIII 
–
RO4

1 H = 1
2 Li = 7 Be = 9.4 B = 11 C = 12 N = 14 O = 16 F = 19
3 Na = 23 Mg = 24 Al = 27.3 Si = 28 P = 31 S = 32 Cl = 35.5
4 K = 39 Ca = 40 – = 44 Ti = 48 V = 51 Cr = 52 Mn = 55 Fe = 56, Co = 59, Ni = 59, Cu = 63
5 (Cu = 63) Zn = 65 – = 68 – = 72 As = 75 Se = 78 Br = 80
6 Rb = 85 Sr = 87 ?Yt = 88 Zr = 90 Nb = 94 Mo = 96 – = 100 Ru = 104, Rh = 104, Pd = 106, Ag = 108
7 (Ag = 108) Cd = 112 In = 113 Sn = 118 Sb = 122 Te = 125 J = 127
8 Cs = 133 Ba = 137 ?Di = 138 ?Ce = 140 – – – – – – –
9 (–) – – – – – –
10 ?Er = 178 ?La = 180 Ta = 182 W = 184 – Os = 195, Ir = 197, Pt = 198, Au = 199
11 (Au = 199) Hg = 200 Tl = 204 Pb = 207 Bi = 208 – –
12 – – – Th = 231 – U = 240 – – – – –
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the eka-names come from the element two rows above the 
missing one. This might indicate that Mendeleev must have 
thought of two lines as one unit; this is further emphasized 
by the alternating alignments of the symbols in odd and even 
rows. Therefore, “– = 44” was called eka-boron, “– = 68” 
is eka-aluminum, and “– = 72” is eka-silicon, whereas 
“– = 100” was referred to as eka-manganese. Using various 
interpolation methods, Mendeleev even made predictions 
about the physical and chemical properties of the elements. 
Experimental discoveries in the next two decades confirmed 
some of Mendeleev’s most detailed predictions. The French 
chemist Emile Lecoq De Boisbaudran (1838–1912) discov-
ered gallium in 1875 [24], which was soon understood to 
be identical to the predicted eka-aluminum. Lars Fredrik 
Nilson (1840–1899) from Sweden found scandium in 1879 
[25], which matched the predictions for eka-boron. Ger-
man scientist Clemens Winkler also (1838–1904) identified 
a new element in 1886 and, following the example of the 
previous discoverers in a flurry of patriotic feeling, named 
it germanium [26]. Others recognized that germanium is 
actually the same as eka-silicon. Finally, eka-manganese had 
to be prepared artificially in a less patriotic age, hence the 
name technetium, this achievement was reached in 1937 by 
Carlo Perrier (1886–1948) and Emilio Segrè (1905–1989) 
[27, 28]. The striking accuracy of Mendeleev’s predictions 
is often discussed today in introductory textbooks, and cer-
tainly contributed both to the general acceptance of the peri-
odic law and Mendeleev’s personal reputation as well.

Discrepancies in the early periodic table

It is even more instructive to think about the cases where 
later discoveries did not support Mendeleev’s predictions 
or some other preferences he expressed in his publications. 
First and foremost, the 63 elements in the primordial peri-
odic table shown in Table 1 do not include terbium (Tb), 
whose discovery—along with erbium (Er), which is present 
in Table 1—today is credited to the work of Carl Gustav 
Mosander (1797–1858) in 1843 [29]. Even more interesting 
is the fact that Table 1 includes fluorine, for which the dis-
covery is typically dated to 1886 and credited to Henri Mois-
san (1852–1907) [30]. This contradiction can be explained 
by the fact that fluorine was recognized to be an element 
and named long before it was successfully isolated in its 
elemental from. The elements erbium and lanthanum (La) 
are included with atomic masses that are nowhere near their 
current values. Finally, there is a symbol Di in row 8.

These mistakes and apparent contradictions are almost 
natural consequences of the limitations of scientific knowl-
edge at that time. The original definition of an element 
was “a substance that cannot be decomposed to anything 
simpler”. When only chemical methods of analysis were 

available, there was a lot of room for error in identifying 
elements. The history of science lists many more mistakes 
than the actual number of chemical elements. One of the 
significant divides in the history of chemistry is the intro-
duction of atomic spectroscopy in Heidelberg, which was 
published in 1860 by chemist Robert Wilhelm Eberhard 
Bunsen (1811–1899) and physicist Gustav Robert Kirchoff 
(1824–1887) [13, 14]. This method is based on creating 
atoms (usually in the plasma of a chemical flame) and then 
analyzing the light they emit. Spectral lines, i.e. components 
with very strictly monochromatic wavelengths, appear in this 
light, and the lines are understood to indicate the presence 
of an element. The experiment is reasonably simple and can 
be carried out with most samples. After the introduction 
of spectroscopy, mixtures of already known elements were 
very unlikely to be mistaken for a new element. It is by no 
means accidental that Mendeleev was a guest researcher in 
Heidelberg in 1860; he was interested in this method and 
this interest is probably the major reason that no element 
identification error appears in Table 1 except the case of Di, 
which stands for the supposed element didymium.

This mistake can be traced back to Mosander, whose 
name was already mentioned as the discoverer of terbium 
and erbium (and, by the way, also lanthanum). It seems 
that Mendeleev did not trust the existence if terbium, but 
believed in didymium, which was first described in 1842 fol-
lowing an analysis of the trace elements in the mineral cerite 
[31]. The name came from the Greek word διδυμο (didymo), 
which means twin. However, the “discovery” was the source 
of further discrepancies: cerium, lanthanum and didymium 
were still only 95% of the rare earth content of cerite. The 
first experiments to determine the atomic mass of didymium 
gave quite controversial results between 73 and 95, which 
were not even in the correct range (138 is shown in Table 1). 
After the discovery of spectroscopy, it was recognized that 
didymium samples prepared from different mineral sources 
showed very different spectra, so Di could not be a single 
element. Finally, Carl Auer von Welsbach (1858–1929) man-
aged to separate didymium into two elements [32]. The first 
was called green didymium, praseo-didymium in Greek, the 
second was called new didymium, neo-didymium. These 
became somewhat shortened to give the modern element 
names praseodymium and neodymium. They are not only 
twins in their names, they are immediate neighbors in the 
periodic system.

A long battle with the rare earths

It is quite fitting to discuss the rare earth metals in an article 
about Mendeleev’s erroneous predictions, as the inability 
to find a good placement for them was probably the single 
most important source of mis-predictions [2, 8]. Mendeleev 
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published his last update on the periodic table in 1904 
(Table 2) [33]. At this time, 12 of the 14 metals shown in the 
first row of the f block today were already known (lutetium 
was discovered in 1907, unstable promethium only in 1945). 
In this table, it is interesting to note that Mendeleev cor-
rectly dropped Di, but did not introduce Nd and Dy instead. 
Seventy-one elements are listed in this table, despite the fact 
that 84 were already known in 1904.

From this table, the place for the missing element tech-
netium is easy to see, as is the place for astatine. A less 
obvious, but still excellent insight is the prediction of a 
missing element between uranium and thorium. Although 
polonium (similarly to radium) was already known and Men-
deleev even predicted it with the name dvi-tellurium [23], 
this was not placed into the system. This may have to do 
with the disappointment of the Russian scientist with the 
still unresolved question of the atomic mass of tellurium, 
as the known properties of polonium certainly excluded the 
possibility of its presence as a constant impurity in tellurium 
samples. It can also be noted that lanthanum and ytterbium 
are shown with correct atomic masses in Table 2. Yet gen-
eral confusion about the rare earth elements is still clear in 
it. Thyssen and Koen Binnemans wrote an excellent essay on 
the problematic accommodation of the rare-earth elements 
in the periodic system, which they justifiably termed “the 
rare-earth crisis” [8].

In the 35 years following the initial discovery, Mendeleev 
actually predicted a lot of new elements, which are summa-
rized in Table 3 [1]. The predictions were scattered in the 
writings of the great Russian scientist as he continuously 
tried to improve them. Yet it is striking to see that more than 
half of his predictions were actually wrong: the correspond-
ing elements were never found.

Ether and the noble gases

With today’s knowledge, the two weirdest predictions of 
Mendeleev are found in Table 2 above helium: two elements 
that have smaller atomic masses than hydrogen [16, 34]. 
This story leads back to the discovery of noble gases, which 
occurred out of the blue within 5 years in the last decade of 
the 19th century in the laboratory of Sir William Ramsay 
(1852–1916). First came the obvious one: argon [35], which 
forms 1% of air. Mendeleev must have felt that the validity of 
the periodic law itself might be questioned by the existence 
of this new element [1]. First, argon did not have any place 
in his periodic system; it did not resemble any of the known 
elements. Second, its atomic mass was almost identical to 
that of calcium. Despite the clear spectroscopic evidence, 
Mendeleev first believed argon to be a triatomic form of 
nitrogen, which would have given 42 as the molecular mass 
and the inertness would have also not been unlike that of 

diatomic N2. In addition, O2 and O3 were both known at 
that time, so the analogy of a neighboring element was also 
a valid point. Mendeleev had to revise his opinion when fur-
ther inert gas discoveries followed, but he was probably quite 
happy to do so. A discovery that was originally potentially 
lethal to his idea of the periodic law became very strong evi-
dence supporting the correctness of his system. There was a 
place for an extra column in the periodic table between the 
halogens and the alkali metals, and helium, neon, krypton 
and xenon turned out to have atomic masses that matched 
exactly the values expected based on the placement of the 
new group. Argon was still an outlier in this sense. Mend-
eleev’s dislike of this fact is obvious from Table 2, where he 
assigned the atomic mass 38 to Ar.

The periodic table shown in Table 2 was published in a 
50-page article titled “An Attempt towards the Chemical 
Conception of the Ether” [33]. Ether here does not mean 
what is usually called ether today (the compound diethyl 
ether), but it is the physical abstraction of the medium that 
lets gravity and electromagnetic forces spread in space. In 
the very beginning of the 20th century, ether was thought 

Table 3   Mendeleev’s predicted elements and the actual ones found 
later [1]

Predicted element Predicted 
atomic mass

Actual element (year 
of discovery)

Actual 
atomic 
mass

Newtonium, ether 0.17 –
Coronium 0.4 –
Un-named 2 –
Un-named 8 –
Un-named 20 –
Un-named 22 –
Un-named 36 –
Eka-boron 44 Scandium (1879) 44.96
Eka-cerium 54 –
Eka-aluminum 68 Gallium (1875) 69.72
Eka-silicon 72 Germanium (1887) 72.61
Eka-manganese 100 Technetium (1937) 98
Eka-molybdenum 140 –
Eka-niobium 146 –
Eka-cadmium 155 –
Eka-iodine 170 –
Eka-cesium 175 –
Unnamed inert gas 

(eka-xenon)
137–180 –

Tri-manganese 190 Rhenium (1925) 186.2
Dvi-tellurium 212 Polonium (1898) (209)
Un-named Astatine (1940) (210)
Dvi-cesium 220 Francium (1939) (223)
Un-named Actinium (227)
Eka-tantalum 235 Protactinium (1913) 231.0
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to be an actual material that was difficult to detect in con-
ventional ways: its only easily noticeable property was the 
interactions for which it provided the medium. It is notable 
that the existence of ether was accepted by a significant 
number of scientists even in the very early 1900s, despite 
the fact that the Michelson-Morley experiment [36], which 
is now understood to disprove the concept, was carried 
out and published in 1887. In this experiment, the speed 
of light was measured by the same method in April and 
July. The velocity vector of Earth on its orbit relative to the 
putative ether changed by about 90° in this time interval, 
but the observations showed no difference in the speed of 
light at all.

In the mentioned long article [33], Mendeleev attempted 
to classify ether as a noble gas. This was a very logical 
thought in several ways [37]. First, noble gases are chemi-
cally inert and therefore difficult to detect. Argon is pre-
sent in air at 1%, yet it escaped scientific notice for a long 
time. So it did not seem inconceivable that other unreac-
tive elements might still exist in nature. Second, there is 
an increase in the number of elements as we go down in 
Table 2. It was not far off to think that there are some ear-
lier rows with even fewer spots. Series 1 had two elements 
in this prediction (hydrogen being the one with higher 
atomic mass) and a series 0 was introduced with a single 
element.

Mendeleev had at least one more serious, but appar-
ently highly personal reason for introducing these two 
lighter-than-hydrogen predictions. At that time, many 
scientists accepted a theory called Prout’s hypothesis 
[38–40], named after the English physician William Prout 
(1785–1850). This theory postulated that every element 
is eventually built up of the lightest one, hydrogen [38]. 
It is actually not far away from today’s scientific views, 
as in our current understanding, most of the mass of the 
atoms is in the two nucleons, proton and neutron, both of 
which have almost the same mass as a hydrogen atom. 
From Prout’s hypothesis, it clearly followed that no ele-
ment can be lighter than hydrogen and it also seemed natu-
ral that atomic masses are very close to integers if they are 
calculated relative to hydrogen. Mendeleev was ardently 
opposed to Prout’s hypothesis [1]. He was aware of the 
fact that atomic weights are not always whole number mul-
tiples of the atomic weight of hydrogen. Even in Table 1, 
the atomic masses shown with beryllium, aluminum and 
chlorine attest to this fact. As already mentioned, he actu-
ally revised the atomic mass of beryllium from an integer 
to a fractional number. His opposition to Prout’s hypoth-
esis was manifested by the fact that he insisted on the pre-
dictions of elements x and y, which he called newtonium 
and coronium.

Similarly to other explicit element predictions, Mend-
eleev tried to estimate atomic masses for elements x and y. 

As these preceded all known elements, he could not rely on 
interpolation here; he had to use the much more dangerous 
practice of extrapolation. Unfortunately, the exact procedure 
is not described [33]. On the atomic mass of element y (coro-
nium), it says:

As the atomic weight of chlorine is 35.45 and that of 
fluorine is 19.0, the ratio Cl:F = 35.4:19.0 = 1.86; so 
we also find:

This proves that the ratio in the given series distinctly 
and progressively increases in passing from higher 
to the lower groups; and, moreover, that it varies 
most rapidly between the first and zero groups. It fol-
lows therefore that the ratio He: y will be consider-
ably greater than the ratio Li:H which is 6.97, so that 
the ratio He: y will be at least 10 and probably even 
greater. Hence, the atomic weight of y will be not 
greater than 4.0/10 = 0.4 and probably less.

On the atomic mass of element x, the following is writ-
ten [33]:

Although it was possible to approximately determine 
the atomic weight of the element y on the basis of that 
of helium, this cannot be repeated for the element x, 
because it lies at the frontier or limit, about the zero 
point of the atomic weights. Moreover, the analogues 
of helium cannot serve as a basis owning to the uncer-
tainty of their numerical data. However, if the ratio of 
the atomic weights be Xe:Kr = 1.56:1; Kr:Ar = 2.15:1; 
and Ar:He = 9.5:1, we find that He:x = 23.6:1, or 
if He = 4.0, that the atomic weight of x = 0.17. This 
must be considered the maximum possible value. Most 
probably the atomic weight of x is far less…

Both these descriptions tell the reader the raw data on 
which the prediction is based, but the mathematical algo-
rithm is left in the dark and can only be guessed. In the next 
section, an attempt will be made to retro-engineer Mend-
eleev’s thinking, so a way of thought will be sought that 
leads to the known final results.

Group VII…Cl:F = 1.86

VI…S:O = 2.00

V…P:N = 2.21

IV…Si:C = 2.37

III…Al:B = 2.45

II…Mg:Be = 2.67

I…Na:Li = 3.28

0…Ne:He = 4.98
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For element y, it is relatively easy to notice that the ratio 
of the first few atomic mass ratios (6.97, 4.98, 3.28, 2.67) 
is close to constant at 1.4, so assuming a geometric series 
will probably be productive. This can easily be visualized 
graphically: the logarithms of the atomic mass ratios must be 
plotted with an equidistant scale on the x axis. This is shown 
in Fig. 1. The intercept of a straight line is 9.5, so this could 
have been easily picked up by Mendeleev and interpreted as 
a value of at least 10.

Finding the logic behind the estimate for element x based 
on this text is even less straightforward. There are only four 
points here for atomic mass ratios, and these already include 
the one Mendeleev determined by extrapolation. Figure 2 
shows a graph in which the ratios are given with an equi-
distant scaling on the x axis. It can be noticed that the four 
points fit perfectly to a parabola (second order polynomial), 
which is a three-parameter curve, so the perfect fit is most 
probably not accidental: this is how Mendeleev obtained 
the extrapolated value. The use of the parabola is not simply 
guesswork here: the text quoted above was translated into 
English from Russian, but there is a German translation of 
the same text as well, which is slightly different and gives 
an important clue [41, 42]:

Wenn wir aber beachten, dass das Verhältniss der 
Atomgewichte Xe:Kr = 1,56:1, Kr:Ar = 2,15:1 and 
Ar:He 9,50:1 ist, so finden wir aus einer Parabel 
zweiter Ordnung das Verhältniss von He:x = 23,6:1, 
d. h. wenn He = 4, die Grösse des Atomgewichtes von 
x = 0,17, was als die höchste mögliche Zahl angesehen 
werden muss.
(Translation: However, if the ratio of the atomic 
weights be Xe:Kr = 1.56:1; Kr:Ar = 2.15:1; and 
Ar:He = 9.5:1, with the use of a second order parabola 
we find that He: x = 23.6:1, or if He = 4.0, that the 

atomic weight of x = 0.17, which must be considered 
the maximum possible value.)

It is unlikely that Mendeleev had the means to fit a 
parabola to three points in a figure graphically. Even 
more conspicuous is the fact that the fitted parabola has a 
minimum between points three and four, which is within 
the studied range. Extrapolation of monotonic data with a 
non-monotonic curve is visually highly unappealing and 
would probably not be considered good science in gen-
eral. One possible solution to these riddles is presented in 
Table 4. In essence, this involves parabolic extrapolation 
in a tabular form. The numbers in the upmost row are 
the atomic mass ratios, one of which is unknown. Based 
on the known numbers, their differences are calculated 
in the lower cells of the table in a way that the value in 
a cell is always obtained by subtracting the number on 
the upper right from the number on the upper left. In 
this way, the numbers given in normal letters in the table 
can all be obtained. Then, it is assumed that the num-
ber in the bottom cell (shaded background) is 0, and the 
table is completed calculating in a reverse way (boldface 
numbers). This procedure gives exactly 23.6 in the upper 
left cell. What is more, the non-monotonic nature of the 
extrapolating function also stays hidden in the tabular 
method.

Fig. 1   A graphical method for estimating the atomic mass of element 
y 

Fig. 2   A graphical demonstration of the method used for estimating 
the atomic mass of element x 

Table 4   A possible tabular method to estimate the atomic mass of 
element x 

MHe/Mx = 23.6 MAr/MHe = 9.5 MKr/MAr = 2.15 MXe/MKr = 1.56

14.11 7.35 0.59

6.76 6.76

0
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Disproof and verification in the early 20th 
century

Mendeleev’s idea of the chemical conception of ether was 
a short-lived one. In 1905, Albert Einstein (1879–1955) 
published one of his most famous papers on the theory of 
special relativity, which did not have any room for ether; 
it showed a convincingly logical way of physical thinking 
without this concept [43]. This theory did not mean that 
no lower analogs of the noble gases could exist, it simply 
removed the necessity arising from physics. Neither did 
physicists drop the idea of ether suddenly: in 1922, Ein-
stein himself noted that the relativity theory itself could be 
thought of as a sort of ether, as it implied that the empty 
space without any objects still had its own physical struc-
ture [44]. Even as late as 1951, one of the most significant 
physicists of the 20th century, Paul Dirac (1902–1984) 
wrote an article titled “Is there an Aether?” [45].

The problem of the placement of the rare earth met-
als was also resolved in 1905 when Swiss chemist Alfred 
Werner (1866–1919) published a notable article [46]. In 
effect, he gave up the idea of trying to place them in the 
conventional 18 groups but created 15 new groups instead, 
14 of which are customarily shown today as a separate 
part under the main table and the 15th is inserted below 
yttrium. In 1905, most of these groups contained a single 
element. Thorium was correctly placed below cerium, but 
uranium was shown below europium, which turned out to 
be a mistake; its correct position is below neodymium. 
Werner was awarded the Nobel Prize in Chemistry in 
1913, but not for his achievements on the periodic table.

The year 1913, 6 years after the death of Mendeleev, 
brought some sort of a closure for developing the scien-
tific background of the system of the elements. The English 
physicist Henry Gwyn Jeffreys Moseley (1887–1915) dis-
covered a striking regularity in the X-ray fluorescence spec-
tra of the elements [47, 48]. In such spectra, the most visu-
ally prominent or intense line is called the Kα line. Moseley 
found that the frequency of Kα lines for all elements can be 
given with a very simple formula, in which the identity of 
the element is represented by only a single integer number. 
This integer actually mostly coincided with the position of 
the element in the periodic table (i.e. hydrogen had num-
ber one, helium number two, carbon number six, sodium 
number 11, and so on). So he discovered the concept of 
atomic number and also showed that the order of elements 
in Mendeleev’s periodic table follows the order of atomic 
numbers rather than that of atomic masses. The formula 
is called Moseley’s law today and had immense predictive 
power for the discovery of unknown elements. It immedi-
ately resolved the issue of anomalous atomic masses (Ar–K, 
Te–I) and also made it obvious that most of Mendeleev’s 
element predictions were actually wrong.

In the same year, the Danish physicist Niels Henrik David 
Bohr (1885–1962) published four papers on the electron 
structure of atoms [49–52]. His theory made it clear that the 
chemical similarities of the elements are caused by the analo-
gous valence shell electron structures within one group. It is 
somewhat ironic that the discoveries of Moseley and Bohr 
made most of Mendeleev’s element predictions untenable, but 
also illuminated the hitherto unknown scientific logic behind 
the periodic table and removed all doubts as to its role as the 
natural order in the kingdom of chemical elements.

Conclusion

The history of science shows that major conclusions are almost 
never established in a straightforward way, and momentous new 
ideas are seldom reported to audiences in the manner they were 
conceived. This is nicely illustrated by the history of the first 
half century of the periodic table, between Mendeleev’s initial 
publications to the results of 1913. One of the strongest facts 
quoted in support of Mendeleev’s ingenuity today are the ele-
ment predictions he made. Strictly speaking, his success rate at 
the predictions was worse than 50%, which is not always seen 
as outstanding in science. However, it is arguable that some 
groups of erroneous predictions have the same origin and it may 
not be entirely fair to view them as separate from each other. 
Whilst most of the successful predictions were verified within 
the lifetime of Mendeleev, the mistakes only became apparent at 
a time when the evidence supporting the validity of the periodic 
law and the periodic table as the natural system of elements was 
already overwhelming.
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