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Abstract
We construct a large class of examples of non-uniqueness for the linear transport
equation and the transport-diffusion equation with divergence-free vector fields in
Sobolev spaces W 1,p.

Keywords Transport equation · Renormalized solutions · Convex integration ·
Non-uniqueness · h-principle

1 Introduction

This paper concerns the problem of (non)uniqueness of solutions to the transport
equation in the periodic setting

∂tρ + u · ∇ρ = 0, (1)

ρ|t=0 = ρ0 (2)

where ρ : [0, T ] × T
d → R is a scalar density, u : [0, T ] × T

d → R
d is a given

vector field and T
d = R

d/Zd is the d-dimensional flat torus.
Unless otherwise specified, we assume in the following that u ∈ L1 is incompress-

ible, i.e.
div u = 0 (3)

in the sense of distributions. Under this condition, (1) is formally equivalent to the
continuity equation

∂tρ + div (ρu) = 0. (4)
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It is well known that the theory of classical solutions to (1)–(2) is closely connected
to the ordinary differential equation

∂t X(t, x) = u(t, X(t, x)),

X(0, x) = x,
(5)

via the formula ρ(t, X(t, x)) = ρ0(x). In particular, for Lipschitz vector fields u
the well-posedness theory for (1)–(2) follows from the Cauchy–Lipschitz theory for
ordinary differential equations applied to (5); on the other side, the inverse flow map
�(t) := X(t)−1 solves the transport equation

∂t� + (u · ∇)� = 0,

�|t=0 = id.
(6)

There are several PDE models, related, for instance, to fluid dynamics or to the
theory of conservation laws (see for instance [19,25,33,35,36]), where one has to deal
with vector fields which are not necessarily Lipschitz, but have lower regularity and
therefore it is important to investigate the well-posedness of (1)–(2) in the case of
non-smooth vector fields.

Starting with the groundbreaking work of DiPerna-Lions [26] there is a wealth
of well-posedness results for vector fields which are Sobolev or BV (we refer to the
recent survey [6], see also below) and in particular in recent years a lot of effort has
been devoted to understanding how far the regularity assumptions can be relaxed. The
main goal of this paper is to provide a lower bound on the regularity assumptions
by showing, to our knowledge for the first time, that well-posedness can fail quite
spectacularly even in the Sobolev setting, with u ∈ CtW

1, p̃
x := C([0, T ];W 1, p̃(Td))

(see Theorem 1.2 for the precise statement). The mechanism we exploit to produce
such “failure of uniqueness” is so strong that it can be applied also to the transport-
diffusion equation

∂tρ + div (ρu) = �ρ (7)

thus producing Sobolev vector fields u ∈ CtW
1, p̃
x for which uniqueness of solutions

to (7)–(2) fails in the class of densities ρ ∈ Ct L p (see Theorem 1.9).
Both theorems can be generalized as follows: we can construct vector fields with

arbitrary large regularity u ∈ Wm̃, p̃, m̃ ∈ N, for which uniqueness of solutions to (1)–
(2) or (7)–(2) fails, in the class of densities ρ ∈ Wm,p, with arbitrary large m ∈ N;
moreover, we can do that even when on the r.h.s. of (7) there is a higher order diffusion
operator (see Theorems 1.6 and 1.10).

Before stating the precise statements of these results, we present a brief (and far
from complete) overview of the main well-posedness achievements present in the
literature. We start with the analysis of the well-posedness for the transport equation
in class of bounded densities, then we pass to the analysis of well-posedness for the
transport equation in the class of L p-integrable densities, with the statement of our
Theorems 1.2 and 1.6 and finally we discuss the transport-diffusion equation, with the
statements of our Theorems 1.9 and 1.10. The last part of this introduction is devoted
to a brief overview of the main techniques used in our proofs.
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1.1 The Case of Bounded Densities

The literature about rough vector fields mainly concerns the well-posedness of (1)–(2)
in the class of bounded densities, ρ ∈ L∞. The reason for that can be found in the
fact that the scientific community has been mainly interested in the well-posedness
of ODE (5) and has used the PDE as a tool to attack the ODE problem: the general
strategy is that awell-posedness result for the transport equation in the class of bounded
densities yields a unique solution to the PDE (6) and thus one tries to prove that the flow
X(t) := �(t)−1 is the unique meaningful solution, in the sense of regular Lagrangian
flow, to the ODE (5). We refer to [6] for a precise definition of the notion of regular
Lagrangian flow and for a detailed discussion about the link between the Eulerian and
the Lagrangian approach.

Let us observe that for ρ ∈ L∞ the quantity ρu ∈ L1 and thus one can consider
solutions to (1) (or, equivalently, to (4), since we are assuming incompressibility of
the vector field) in distributional sense: ρ is a distributional or weak solution if

ˆ T

0

ˆ
Td

ρ[∂tϕ + u · ∇ϕ]dxdt = 0, (8)

for every ϕ ∈ C∞
c ((0, T ) × T

d). It is usually not difficult to prove existence of weak
solutions, even if the vector field is very rough, taking advantage of the linearity of
the equation. A much bigger issue is the uniqueness problem.

The first result in this direction dates back to DiPerna and Lions [26], when they
proved uniqueness, in the class of bounded densities, for vector fields u ∈ L1

t W
1,1
x with

bounded divergence. This result was extended in 2004 byAmbrosio [5] to vector fields
u ∈ L1

t BVx ∩ L∞ and with bounded divergence (see also [16,17]) and very recently
by Bianchini and Bonicatto [8] for vector fields u ∈ L1

t BVx which are merely nearly
incompressible (see, for instance, [6] for a definition of nearly incompressibility).

The proofs of these results are very subtle and involves several deep ideas and
sophisticated techniques. We could however try to summarize the heuristic behind
all of them as follows: (very) roughly speaking, a Sobolev or BV vector field u is
Lipschitz-like (i.e. Du is bounded) on a large set and there is just a small “bad”
set, where Du is very large. On the big set where u is “Lipschitz-like”, the classical
uniqueness theory applies. Non-uniqueness phenomena could thus occur only on the
small “bad” set. Uniqueness of solutions in the class of bounded densities is then a
consequence of the fact that a bounded density ρ can not “see” this bad set, or, in other
words, cannot concentrate on this bad set.

With this rough heuristic inmind it is also perhaps not surprising that the theory cited
above is heavily measure-theoretic. Nevertheless, the well-posedness for the ODE (5)
fundamentally relies on the analysis and well-posedness theory of the associated PDE
(1). More precisely in DiPerna and Lions [26], introduced the notion of renormalized
solution. One calls a density ρ ∈ L1

t x renormalized for (1) (for given u), if for any
β ∈ L∞(R) ∩ C1(R) it holds

∂tβ(ρ) + u · ∇β(ρ) = 0 (9)
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in the sense of distributions. Analogously to entropy-conditions for hyperbolic con-
servation laws, (9) provides additional stability under weak convergence. Key to the
well-posedness theory is then showing that any bounded distributional solution ρ of
(1) is renormalized—this is done by showing convergence of the commutator

(u · ∇ρ)ε − uε · ∇ρε → 0 (10)

arising from suitable regularizations.
As we mentioned, uniqueness at the PDE level in the class of bounded densities

implies, in all the cases considered above, uniqueness at the ODE level (again in the
sense of the regular Lagrangian flow). On the other hand, based on a self-similar
mixing example of Aizenmann [1], Depauw [24] constructed an example of non-
uniqueness for weak solutions with ρ ∈ L∞((0, T )×T

d) and u ∈ L1(ε, 1; BV (Td))

for any ε > 0 but u /∈ L1(0, 1; BV (Td)). This example has been revisited in [3,
4,17,37]. It should be observed, though, that the phenomenon of non-uniqueness in
such “mixing” examples is Lagrangian in the sense that it is a consequence of the
degeneration of the flow map X(t, x) as t → 0; in particular, once again, the link
between (1) and (5) is crucial.

1.2 The Case of Unbounded Densities

There are important mathematical models, related, for instance, to the Boltzmann
equation (see [25]), incompressible 2D Euler [19], or to the compressible Euler equa-
tions, in which the density under consideration is not bounded, but it belongs just to
some L∞

t L p
x space. It is thus an important question to understand the well-posedness

of the Cauchy problem (1)–(2) in such larger functional spaces.
As a first step, we observe that for a density ρ ∈ L∞

t L p
x and a field u ∈ L1

t L
1
x , the

product ρu is not well defined in L1 and thus the notion of weak solution as in (8) has
to be modified. There are several possibilities to overcome this issue. We mention two

of them: either we require that u ∈ L1
t L

p′
x , where p′ is the dual Hölder exponent to p,

or we consider a notion of solution which cut off the regions where ρ is unbounded.
Indeed, this second possibility is encoded in the notion of renormalized solution (9).

The well-posedness theory provided by (9) for bounded densities is sufficient for
the existence of a regular Lagrangian flow, which in turn leads to existence also
for unbounded densities. For the uniqueness, an additional integrability condition
is required:

Theorem 1.1 (DiPerna–Lions [26])Let p, p̃ ∈ [1,∞]and let u ∈ L1(0, T ;W 1, p̃(Td))

be a vector field with div u = 0. For any ρ0 ∈ L p(Td) there exists a unique renor-
malized solution of (1)–(2), satisfying ρ ∈ C([0, T ]; L p(Td)). Moreover, if

1

p
+ 1

p̃
≤ 1 (11)

then this solution is unique among all weak solutions with ρ ∈ L∞(0, T ; L p(Td)).
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As we have already observed for the case of bounded densities, also in this more
general setting existence of weak and renormalized solutions is not a difficult problem.
It is as well not hard to show uniqueness in the class of renormalized solutions, using
the fact that renormalized solutions in L∞

t L p
x have constant in time L p norm (it suffices

to choose β as a bounded smooth approximation of τ 	→ |τ |p).
The crucial point in Theorem 1.1 concerns the uniqueness of the renormalized

solution among all the weak solutions in L∞
t L p

x , provided (11) is satisfied. The reason
why such uniqueness holds can be explained by the same heuristic as in the case of
bounded densities: a vector field in W 1, p̃ is “Lipschitz-like” except on a small bad
set, which can not “be seen” by a density in L p, if (11) holds, i.e. if p, although it is
less than ∞, is sufficiently large w.r.t. p̃. On the more technical side, the integrability
condition (11) is necessary in the proof in [26] to show convergence of the commutator
(10) in L1

loc.
The following question is therefore left open: does uniqueness of weak solutions

hold in the class of densities ρ ∈ L∞
t L p

x for a vector field in L1
t L

p′
x ∩ L1

t W
1, p̃
x , when

(11) fails?
In a recent note Caravenna and Crippa [15], addressed this issue for the case p = 1

and p̃ > 1, announcing the result that uniqueness holds under the additional assump-
tion that u is continuous.

In this paper we show that if

1

p
+ 1

p̃
> 1 + 1

d − 1
. (12)

then, in general, uniqueness fails. We remark that the Sobolev regularity of the vector
field u ∈ L1

t W
1, p̃
x implies the existence of a unique regular Lagrangian flow (see in

particular [7]). Nevertheless, quite surprisingly, our result shows that such Lagrangian
uniqueness is of no help to get uniqueness on the Eulerian side.

Previously, examples of such Eulerian non-uniqueness have been constructed, for
instance, in [18], based on themethod of convex integration from [21], yieldingmerely
bounded velocity u and density ρ. However, such examples do not satisfy the differen-
tiability condition u ∈ W 1, p̃ for any p̃ ≥ 1 and therefore do not possess an associated
Lagrangian flow.

Here is the statement of our first and main result.

Theorem 1.2 Let ε > 0, ρ̄ ∈ C∞([0, T ] × T
d), with

ˆ
Td

ρ̄(0, x)dx =
ˆ
Td

ρ̄(t, x)dx for every t ∈ [0, T ].

Let p ∈ (1,∞), p̃ ∈ [1,∞) such that (12)holds. Then there existρ : [0, T ]×T
d → R,

u : [0, T ] × T
d → R

d such that

(a) ρ ∈ C
([0, T ]; L p(Td)

)
, u ∈ C

([0, T ];W 1, p̃(Td) ∩ L p′
(Td)

)
;

(b) (ρ, u) is a weak solution to (1) and (3);

123



18 Page 6 of 38 S. Modena, L. Székelyhidi Jr.

(c) at initial and final time ρ coincides with ρ̄, i.e.

ρ(0, ·) = ρ̄(0, ·), ρ(T , ·) = ρ̄(T , ·);

(d) ρ is ε-close to ρ̄ i.e.

sup
t∈[0,T ]

∥∥ρ(t, ·) − ρ̄(t, ·)∥∥L p(Td )
≤ ε.

Our theorem has the following immediate consequences.

Corollary 1.3 (Non-uniqueness) Assume (12). Let ρ̄ ∈ C∞(Td) with
´
Td ρ̄ dx = 0.

Then there exist

ρ ∈ C
([0, T ]; L p(Td)

)
, u ∈ C

([0, T ];W 1, p̃(Td) ∩ L p′
(Td))

)

such that (ρ, u) is a weak solution to (1), (3), and ρ ≡ 0 at t = 0, ρ ≡ ρ̄ at t = T .

Proof Let χ : [0, T ] → R such that χ ≡ 0 on [0, T /4], χ ≡ 1 on [3T /4, T ]. Apply
Theorem 1.2 with ρ̄(t, x) := χ(t)ρ̄(x). �

Corollary 1.4 (Non-renormalized solution) Assume (12). Then there exist

ρ ∈ C
([0, T ]; L p(Td)

)
, u ∈ C

([0, T ];W 1, p̃(Td) ∩ L p′
(Td))

)

such that (ρ, u) is a weak solution to (1), (3), and ‖ρ(t)‖L p(Td ) is not constant in time.

Proof Take a smooth map ρ̄(t, x) such that its spatial mean value is constant in time,
but its L p norm is not constant in time. Apply Theorem 1.2 with such ρ̄ and

ε := 1

4
max
t,s

∣
∣∣∣‖ρ(t)‖L p(Td ) − ‖ρ(s)‖L p(Td )

∣
∣∣∣.

�

Remark 1.5 We list some remarks about the statement of the theorem.

1. Condition (12) implies that d ≥ 3. In fact it is not clear if a similar statement could
hold for d = 2 - see for instance [2] for the case of autonomous vector fields.

2. Our theorem shows the optimality of the condition of DiPerna–Lions in (11), at
least for sufficiently high dimension d ≥ 3.

3. The requirement that ρ̄ has constant (in time) spatial mean value is necessary
because weak solutions to (1), (3) preserve the spatial mean.

4. The condition (12) implies that the L p′
-integrability of the velocity u does not

follow from the Sobolev embedding theorem.
5. We expect that the statement of Theorem 1.2 remains valid if (12) is replaced by

1

p
+ 1

p̃
> 1 + 1

d
. (13)
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It would be interesting to see if this condition is sharp in the sense that uniqueness
holds provided

1

p
+ 1

p̃
≤ 1 + 1

d
.

In this regard we note that (13) implies p̃ < d. Conversely, if u ∈ W 1, p̃ with
p̃ > d, the Sobolev embedding implies that u is continuous so that the uniqueness
statement in [15] applies.

6. The given function ρ̄ could be less regular than C∞, but we are not interested in
following this direction here.

7. It can be shown that the dependence of ρ, u on time is actually C∞
t , not just

continuous, since we treat time just as a parameter.

Inspired by the heuristic described above, the proof of our theorem is based on the
construction of densities ρ and vector fields u so that ρ is, in some sense, concentrated
on the “bad” set of u, provided (12) holds. To construct such densities and fields, we
treat the linear transport equation (1) as a non-linear PDE, whose unknowns are both ρ

and u: this allows us to control the interplay between density and field. More precisely,
we must deal with two opposite needs: on one side, to produce “anomalous” solutions,
we need to highly concentrate ρ and u; on the other side, too highly concentrated
functions fail to be Sobolev or even L p-integrable. The balance between these two
needs is expressed by (12).

It is therefore possible to guess that, under a more restrictive assumption than
(12), one could produce anomalous solutions enjoying much more regularity than just
ρ ∈ L p and u ∈ W 1, p̃. Indeed, we can produce anomalous solutions as regular as we
like, as shown in the next theorem, where (12) is replaced by (14).

Theorem 1.6 Let ε > 0, ρ̄ ∈ C∞([0, T ] × T
d), with

ˆ
Td

ρ̄(0, x)dx =
ˆ
Td

ρ̄(t, x)dx for every t ∈ [0, T ].

Let p, p̃ ∈ [1,∞) and m, m̃ ∈ N such that

1

p
+ 1

p̃
> 1 + m + m̃

d − 1
. (14)

Then there exist ρ : [0, T ] × T
d → R, u : [0, T ] × T

d → R
d such that

(a) ρ ∈ C([0, T ],Wm,p(Td)), u ∈ C([0, T ];Wm̃, p̃(Td)), ρu ∈ C([0, 1]; L1(Td));
(b) (ρ, u) is a weak solution to (1), (3);
(c) at initial and final time ρ coincides with ρ̄, i.e.

ρ(0, ·) = ρ̄(0, ·), ρ(T , ·) = ρ̄(T , ·);

(d) ρ is ε-close to ρ̄ i.e.

sup
t∈[0,T ]

∥∥ρ(t, ·) − ρ̄(t, ·)∥∥Wm,p(Td )
≤ ε.
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Remark 1.7 The analogues of Corollaries 1.3 and 1.4 continue to hold in Theorems 1.6.
Observe also that (14) reduces to (12) if we choose m = 0 and m̃ = 1.

Remark 1.8 Contrary toTheorem1.2, herewedonot show thatu ∈ C([0, T ], L p′
(Td)).

Here we prove that ρu ∈ C([0, T ], L1(Td)) by showing that ρ ∈ C([0, T ]; Ls(Td))

and u ∈ C([0, T ]; Ls′(Td)) for some suitably chosen s, s′ ∈ (1,∞). This is also the
reason why in Theorem 1.6 we allow the case p = 1. Indeed, Theorem 1.2, for any

given p, produces a vector field u ∈ Ct L
p′
x ; on the contrary, Theorem 1.6 just produces

a field u ∈ Ct Ls′
x , for some s′ < p′.

1.3 Extension to the Transport-Diffusion Equation

The mechanism of concentrating the density in the same set where the field is concen-
trated, used to construct anomalous solutions to the transport equation, can be used as
well to prove non-uniqueness for the transport-diffusion equation (7).

The diffusion term �ρ “dissipates the energy” and therefore, heuristically, it
helps for uniqueness. Non-uniqueness can thus be caused only by the transport term
div (ρu) = u · ∇ρ. Therefore, as a general principle, whenever a uniqueness result is
available for the transport equation, the same result applies to the transport-diffusion
equation (see, for instance, [19,32,34]). Moreover, the diffusion term �ρ is so strong
that minimal assumptions on u are enough to have uniqueness: this is the case, for
instance, if u is just bounded, or even u ∈ Lr

t L
q
x , with 2/r + d/q ≤ 1 (see [31]

and also [9], where this relation between r , q, d is proven to be sharp). Essentially, in
this regime the transport term can be treated as a lower order perturbation of the heat
equation.

On the other hand, the technique we use to prove non-uniqueness for the transport
equation allows us to construct densities and fields, whose concentrations are so high
that the transport term “wins” over the diffusion one and produces anomalous solutions
to (7) as well. Roughly speaking, we have to compare div (ρu) with �ρ = div (∇ρ),
or, equivalently, ρu with ∇ρ, for instance in the L1 norm. The way we construct
concentration of ρ and u can be arranged, under a more restrictive assumption than
(12), so that

‖ρu‖L1 ≈ 1, ‖∇ρ‖L1 � 1

[see the last inequality in (37) and (51)] and thus the transport term is “much larger”
than the diffusion one. The precise statement is as follows.

Theorem 1.9 Let ε > 0, ρ̄ ∈ C∞([0, T ] × T
d), with

ˆ
Td

ρ̄(0, x)dx =
ˆ
Td

ρ̄(t, x)dx for every t ∈ [0, T ].

Let p ∈ (1,∞), p̃ ∈ [1,∞) such that

1

p
+ 1

p̃
> 1 + 1

d − 1
, p′ < d − 1 . (15)
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Then there exist ρ : [0, T ] × T
d → R, u : [0, T ] × T

d → R
d such that

(a) ρ ∈ C
([0, T ]; L p(Td)

)
, u ∈ C

([0, T ];W 1, p̃(Td) ∩ L p′
(Td)

)
;

(b) (ρ, u) is a weak solution to (7) and (3);
(c) at initial and final time ρ coincides with ρ̄, i.e.

ρ(0, ·) = ρ̄(0, ·), ρ(T , ·) = ρ̄(T , ·);

(d) ρ is ε-close to ρ̄ i.e.

sup
t∈[0,T ]

∥∥ρ(t, ·) − ρ̄(t, ·)∥∥L p(Td )
≤ ε.

As for the transport equation, also for (7) we can generalize Theorem 1.9, to get
densities and fields with arbitrary large regularity. Moreover, we can cover also the
case of diffusion operators of arbitrary large order:

∂tρ + div (ρu) = Lρ, (16)

where L is a constant coefficient differential operator of order k ∈ N, k ≥ 2, not
necessarily elliptic.

Theorem 1.10 Let ε > 0, ρ̄ ∈ C∞([0, T ] × T
d), with

ˆ
Td

ρ̄(0, x)dx =
ˆ
Td

ρ̄(t, x)dx for every t ∈ [0, T ].

Let p, p̃ ∈ [1,∞) and m, m̃ ∈ N such that

1

p
+ 1

p̃
> 1 + m + m̃

d − 1
, p̃ <

d − 1

m̃ + k − 1
. (17)

Then there exist ρ : [0, T ] × T
d → R, u : [0, T ] × T

d → R
d such that

(a) ρ ∈ C
([0, T ];Wm,p(Td)

)
, u ∈ C

([0, T ];Wm̃, p̃(Td)
)
, ρu ∈ C([0, 1]; L1(Td));

(b) (ρ, u) is a weak solution to (16) and (3);
(c) at initial and final time ρ coincides with ρ̄, i.e.

ρ(0, ·) = ρ̄(0, ·), ρ(T , ·) = ρ̄(T , ·);

(d) ρ is ε-close to ρ̄ i.e.

sup
t∈[0,T ]

∥∥ρ(t, ·) − ρ̄(t, ·)∥∥Wm,p(Td )
≤ ε.

Remark 1.11 Theanalogues ofCorollaries 1.3 and1.4 continue to hold inTheorems1.9
and 1.10. Remark 1.8 applies also to the statement of Theorem 1.10.

Observe also that, if we choose m = 0, m̃ = 1, k = 2, the first condition in (15)
reduces to the first condition in (17), nevertheless (15) is not equivalent to (17). Indeed,
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(15) implies (17), but the viceversa is not true, in general. This can be explained by

the fact that Theorem 1.9, for any given p, produces a vector field u ∈ Ct L
p′
x , while

Theorem 1.10 just produces a field u ∈ Ct Ls′
x for some s′ < p′.

1.4 Strategy of the Proof

Our strategy is based on the technique of convex integration that has been developed
in the past years for the incompressible Euler equations in connection with Onsager’s
conjecture, see [10–13,22,23,29] and in particular inspired by the recent extension
of the techniques to weak solutions of the Navier–Stokes equations in [14]. Whilst
the techniques that led to progress and eventual resolution of Onsager’s conjecture in
[29] are suitable for producing examples with Hölder continuous velocity (with small
exponent) [30], being able to ensure that the velocity is in a Sobolev space W 1, p̃,
i.e. with one full derivative, requires new ideas.

A similar issue appears when one wants to control the dissipative term −�u
in the Navier–Stokes equations. Inspired by the theory of intermittency in hydro-
dynamic turbulence, Buckmaster and Vicol [14] introduced “intermittent Beltrami
flows”, which are spatially inhomogeneous versions of the classical Beltrami flows
used in [10–12,22,23]. In contrast to the homogeneous case, these have different scal-
ing for different Lq norms at the expense of a diffuse Fourier support. In particular,
one can ensure small Lq norm for small q > 1, which in turn leads to control of the
dissipative term.

In this paper we introduce concentrations to the convex integration scheme in a
different way, closer in spirit to the β-model, introduced by Frisch et al. [27,28] as
a simple model for intermittency in turbulent flows. In addition to a large parameter
λ that controls the frequency of oscillations, we introduce a second large parameter
μ aimed at controlling concentrations. Rather than working in Fourier space, we
work entirely in x-space and use “Mikado flows”, introduced in [20] and used in
[13,29] as the basic building blocks. These building blocks consist of pairwise disjoint
(periodic) pipes in which the divergence-free velocity and, in our case, the density
are supported. In particular, our construction only works for dimensions d ≥ 3. The
oscillation parameter λ controls the frequency of the periodic arrangement - the pipes
are arranged periodically with period 1/λ. The concentration parameterμ controls the
relative (to 1/λ) radius of the pipes and the size of the velocity and density. Thus, for
large μ our building blocks consist of a 1/λ-periodic arrangement of very thin pipes
of total volume fraction 1/μd−1 where the velocity and density are concentrated—see
Proposition 4.1 and Remark 4.2 below.

We prove in details only Theorem 1.2, in Sects. 2–6. The proofs of Theorems
1.6, 1.9, 1.10 can be obtained from the one of Theorem 1.2 with minor changes. A
sketch is provided in Sect. 7.

2 Technical Tools

We start by fixing some notation:
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• T
d = R

d/Zd is the d-dimensional flat torus.
• For p ∈ [1,∞] we will always denote by p′ its dual exponent.
• If f (t, x) is a smooth function of t ∈ [0, T ] and x ∈ T

d , we denote by

– ‖ f ‖Ck the sup norm of f together with the sup norm of all its derivatives in
time and space up to order k;

– ‖ f (t, ·)‖Ck (Td ) the sup norm of f together with the sup norm of all its spatial
derivatives up to order k at fixed time t ;

– ‖ f (t, ·)‖L p(Td ) the L p norm of f in the spatial derivatives, at fixed time t .
Since we will take always L p norms in the spatial variable (and never in the
time variable), we will also use the shorter notation ‖ f (t, ·)‖L p = ‖ f (t)‖L p

to denote the L p norm of f in the spatial variable.

• C∞
0 (Td) is the set of smooth functions on the torus with zero mean value.

• N = {0, 1, 2, . . . }.
• We will use the notation C(A1, . . . , An) to denote a constant which depends only
on the numbers A1, . . . , An .

We now introduce three technical tools, namely an improved Hölder inequality, an
antidivergence operator and a lemma about themean value of fast oscillating functions.
These tools will be frequently used in the following. For a function g ∈ C∞(Td) and
λ ∈ N, we denote by gλ : Td → R the 1/λ periodic function defined by

gλ(x) := g(λx). (18)

Notice that for every k ∈ N and p ∈ [1,∞]

‖Dkgλ‖L p(Td ) = λk‖Dkg‖L p(Td ).

2.1 Improved Hölder Inequality

We start with the statement of the improved Hölder inequality, inspired by Lemma 3.7
in [14].

Lemma 2.1 Let λ ∈ N and f , g : T
d → R be smooth functions. Then for every

p ∈ [1,∞], ∣∣∣
∣‖ f gλ‖L p − ‖ f ‖L p‖g‖L p

∣∣∣
∣ ≤ Cp

λ1/p
‖ f ‖C1‖g‖L p , (19)

where all the norms are taken on T
d . In particular

‖ f gλ‖L p ≤ ‖ f ‖L p‖g‖L p + Cp

λ1/p
‖ f ‖C1‖g‖L p . (20)
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18 Page 12 of 38 S. Modena, L. Székelyhidi Jr.

Proof Let us divide Td into λd small cubes {Q j } j of edge 1/λ. On each Q j we have

ˆ
Q j

| f (x)|p|gλ(x)|p

=
ˆ
Q j

(
| f (x)|p −

 
Q j

| f (y)|pdy
)

|gλ(x)|pdx +
 
Q j

| f (y)|pdy
ˆ
Q j

|gλ(x)|pdx

(since gλ(x) = g(λx))

=
ˆ
Q j

(
| f (x)|p −

 
Q j

| f (y)|pdy
)

|gλ(x)|pdx + 1

λd

 
Q j

| f (y)|pdy
ˆ
Td

|g(x)|pdx

(since |Q j | = 1/λd )

=
ˆ
Q j

(
| f (x)|p −

 
Q j

| f (y)|pdy
)

|gλ(x)|pdx +
ˆ
Q j

| f (y)|pdy
ˆ
Td

|g(x)|pdx

Summing over j we get

‖ f gλ‖p
L p(Td )

= ‖ f ‖p
L p(Td )

‖g‖p
L p(Td )

+
∑

j

ˆ
Q j

(
| f (x)|p −

 
Q j

| f (y)|pdy
)

|gλ(x)|pdx .

Let us now estimate the second term in the r.h.s. For x, y ∈ Q j it holds

∣∣∣| f (x)|p − | f (y)|p
∣∣∣ ≤ Cp

λ
‖ f ‖p−1

C0(Td )
‖∇ f ‖C0(Td ) ≤ Cp

λ
‖ f ‖p

C1(Td )
.

Therefore ∑

j

ˆ
Q j

(
| f (x)|p −

 
Q j

| f (y)|pdy
)

|gλ(x)|pdx

≤ Cp

λ
‖ f ‖p

C1(Td )

∑

j

ˆ
Q j

|gλ(x)|pdx

= Cp

λ
‖ f ‖p

C1(Td )
‖gλ‖p

L p(Td )

= Cp

λ
‖ f ‖p

C1(Td )
‖g‖p

L p(Td )
,

from which we get

∣∣
∣∣‖ f gλ‖p

L p − ‖ f ‖p
L p‖g‖p

L p

∣∣
∣∣ ≤ Cp

λ
‖ f ‖p

C1‖g‖p
L p .

Inequality (19) is now obtained by taking the 1/p power in the last formula and using
that for A, B > 0, |A− B|p ≤ ||A|p −|B|p|. Finally, the improved Hölder inequality
(20) is an immediate consequence of (19). �
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2.2 Antidivergence Operators

For f ∈ C∞
0 (Td) there exists a unique u ∈ C∞

0 (Td) such that �u = f . The
operator �−1 : C∞

0 (Td) → C∞
0 (Td) is thus well defined. We define the standard

antidivergence operator as ∇�−1 : C∞
0 (Td) → C∞(Td;Rd). It clearly satisfies

div (∇�−1 f ) = f .

Lemma 2.2 For every k ∈ N and p ∈ [1,∞], the standard antidivergence operator
satisfies the bounds ∥∥Dk(∇�−1g)

∥∥
L p ≤ Ck,p‖Dkg‖L p . (21)

Moreover for every λ ∈ N it holds

∥
∥Dk(∇�−1gλ)

∥
∥
L p ≤ Ck,pλ

k−1‖Dkg‖L p . (22)

Proof For p ∈ (1,∞) from the Calderon-Zygmund inequality we get

‖Dk(∇�−1g)‖W 1,p(Td ) ≤ Ck,p‖Dkg‖L p(Td ), (23)

from which (21) follows. For p = ∞, we use Sobolev embeddings to get

‖Dk(∇�−1g)‖L∞(Td ) ≤ C‖Dk(∇�−1g)‖W 1,d+1(Td )

(by (23)with p = d + 1) ≤ Ck,d+1‖Dkg‖Ld+1(Td )

≤ Ck,∞‖Dkg‖L∞(Td ).

For p = 1 we use the dual characterization of L1 norm. For every f ∈ L1,

‖ f ‖L1(Td ) = max

{ ˆ
Td

f ϕ : ϕ ∈ L∞(Td), ‖ϕ‖L∞(Td ) = 1

}

= sup

{ˆ
Td

f ϕ : ϕ ∈ C∞(Td), ‖ϕ‖L∞(Td ) = 1

}
.

Moreover, if
ffl
Td f = 0, it also holds

‖ f ‖L1(Td ) = sup

{ ˆ
Td

f ϕ : ϕ ∈ C∞
0 (Td), ‖ϕ‖L∞(Td ) = 1

}
.
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18 Page 14 of 38 S. Modena, L. Székelyhidi Jr.

Therefore (in the following formula ∂k denotes any partial derivative of order k):

‖∂k(∇�−1g)‖L1(Td ) = sup
ϕ∈C∞

0 (Td )

‖ϕ‖L∞=1

ˆ
Td

∂k(∇�−1g) ϕ dx

= sup
ϕ∈C∞

0 (Td )

‖ϕ‖L∞=1

ˆ
Td

∂kg ∇�−1ϕ dx

(by Hölder) ≤ sup
ϕ∈C∞

0 (Td )

‖ϕ‖L∞=1

‖∂kg‖L1(Td )‖∇�−1ϕ‖L∞(Td )

(using (21)with p = ∞) ≤ C0,∞‖∂kg‖L1(Td ) sup
ϕ∈C∞

0 (Td )

‖ϕ‖L∞=1

‖ϕ‖L∞(Td )

≤ C0,∞‖∂kg‖L1(Td ),

from with (21) with p = 1 follows. To prove (22), observe that

∇�−1gλ(x) = 1

λ
(∇�−1g)(λx).

Therefore

‖Dk(∇�−1gλ)‖L p(Td ) ≤ λk−1‖(Dk(∇�−1g))(λ ·)‖L p(Td )

≤ λk−1‖Dk(∇�−1g)‖L p(Td )

(by (21)) ≤ Ck,pλ
k−1‖Dkg‖L p(Td ),

thus proving (22). �

With the help of the standard antidivergence operator, we now define an improved

antidivergence operator, which lets us gain a factor λ−1 when applied to functions of
the form f (x)g(λx).

Lemma 2.3 Let λ ∈ N and f , g : Td → R be smooth functions with

 
Td

f gλ =
 
Td

g = 0.

Then there exists a smooth vector field u : Td → R
d such that div u = f gλ and for

every k ∈ N and p ∈ [1,∞],

‖Dku‖L p ≤ Ck,pλ
k−1‖ f ‖Ck+1‖g‖Wk,p . (24)

We will write
u = R( f gλ).
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Remark 2.4 The same result holds if f , g are vector fields and we want to solve the
equation div u = f · gλ, where · denotes the scalar product.
Proof Set

u := f ∇�−1gλ − ∇�−1
(
∇ f · ∇�−1gλ

)
.

It is immediate from the definition that div u = f gλ. We show that (24) holds for
k = 0, 1. The general case k ∈ N can be easily proven by induction. It holds (the
constant C0,p can change its value from line to line)

‖u‖L p ≤ ‖ f ‖C0‖∇�−1gλ‖L p + ∥∥∇�−1(∇ f · ∇�−1gλ

)∥∥
L p

(by (21)) ≤ ‖ f ‖C0‖∇�−1gλ‖L p + C0,p‖∇ f ‖C0‖∇�−1gλ‖L p

(by (22)) ≤ C0,p

λ
‖ f ‖C1‖g‖L p ,

so that (24) holds for k = 0. For k = 1 we compute

∂ j u = ∂ j f ∇�−1gλ + f ∂ j∇�−1gλ − ∇�−1
(
∇∂ j f · ∇�−1gλ + ∇ f · ∂ j∇�−1gλ

)
.

Therefore, using again (21) and (22), (the constantC1,p can change its value from line
to line)

‖∂ j u‖L p ≤ C1,p

[
‖∂ j f ‖C0‖∇�−1gλ‖L p + ‖ f ‖C0‖∂ j∇�−1gλ‖L p

+ ‖∇∂ j f ‖C0‖∇�−1gλ‖L p + ‖∇ f ‖C0‖∂ j∇�−1gλ‖L p

]

≤ C1,p

[
1

λ
‖ f ‖C1‖g‖L p + ‖ f ‖C0‖∂ j g‖L p

+ 1

λ
‖ f ‖C2‖g‖L p + ‖ f ‖C1‖∂ j g‖L p

]

≤ C1,p

[
‖ f ‖C1‖∂ j g‖L p + 1

λ
‖ f ‖C2‖g‖L p

]

≤ C1,p‖ f ‖C2‖g‖W 1,p .

�

Remark 2.5 Assume f and g are smooth function of (t, x), t ∈ [0, T ], x ∈ T

d . If at
each time t they satisfy (in the space variable) the assumptions of Lemma 2.3, then
we can apply R at each time and define

u(t, ·) := R
(
f (t, ·)gλ(t, ·)

)
,

where gλ(t, x) = g(t, λx). It follows from the definition of R that u is a smooth
function of (t, x).
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2.3 MeanValue and Fast Oscillations

Lemma 2.6 Let λ ∈ N and f , g : Td → R be smooth functions with

 
Td

g(x)dx = 0.

Then ∣∣∣∣

 
Td

f (x)g(λx)dx

∣∣∣∣ ≤
√
d‖ f ‖C1‖g‖L1

λ
.

Proof We divide Td into small cubes {Q j } of edge 1/λ. For each Q j , choose a point
x j ∈ Q j . We have

∣
∣∣∣

ˆ
Td

f (x)g(λx)dx

∣
∣∣∣ =

∣
∣∣∣
∑

j

ˆ
Q j

f (x)g(λx)dx

∣
∣∣∣

=
∣∣∣∣
∑

j

ˆ
Q j

[
f (x) − f (x j )

]
g(λx)dx

∣∣∣∣

≤
∑

j

ˆ
Q j

∣
∣ f (x) − f (x j )

∣
∣|g(λx)|dx

≤
√
d‖ f ‖C1‖g‖L1(Td )

λ
.

�


3 Statement of theMain Proposition and Proof of Theorem 1.2

We assume without loss of generality that T = 1 and T
d is the periodic extension of

the unit cube [0, 1]d . The following proposition contains the key facts used to prove
Theorem 1.2. Let us first introduce the continuity-defect equation:

{
∂tρ + div (ρu) = − div R,

div u = 0.
(25)

We will call R the defect field. For σ > 0 set Iσ = (σ, 1 − σ). Recall that we are
assuming p ∈ (1,∞).

Proposition 3.1 There exists a constant M > 0 such that the following holds. Let
η, δ, σ > 0 and let (ρ0, u0, R0) be a smooth solution of the continuity-defect equation
(25). Then there exists another smooth solution (ρ1, u1, R1) of (25) such that

‖ρ1(t) − ρ0(t)‖L p(Td ) ≤
{
Mη‖R0(t)‖1/pL1(Td )

, t ∈ Iσ/2,

0, t ∈ [0, 1]\Iσ/2,
(26a)
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‖u1(t) − u0(t)‖L p′ (Td )
≤

{
Mη−1‖R0(t)‖1/p

′
L1(Td )

, t ∈ Iσ/2,

0, t ∈ [0, 1]\Iσ/2,
(26b)

‖u1(t) − u0(t)‖W 1, p̃(Td ) ≤ δ, (26c)

‖R1(t)‖L1(Td ) ≤

⎧
⎪⎨

⎪⎩

δ, t ∈ Iσ ,

‖R0(t)‖L1(Td ) + δ, t ∈ Iσ/2\Iσ ,

‖R0(t)‖L1(Td ), t ∈ [0, 1]\Iσ/2.

(26d)

Proof of Theorem 1.2 assuming Proposition 3.1 Let M be the constant in Proposi-
tion 3.1. Let ε̃ > 0 and η > 0 (their precise value will be fixed later, with η depending
on ε̃). Let σq = δq := 2−q and Iq := Iσq = (σq , 1 − σq).

We construct a sequence (ρq , uq , Rq) of solutions to (25) as follows. Let φ0, φ, φ1 :
[0, 1] → R three smooth functions such that

φ0(t) + φ(t) + φ1(t) = 1 for every t ∈ [0, 1],

and
φ0(t) = 1 on [0, ε̃],
φ(t) = 1 on [2ε̃, 1 − 2ε̃],

φ1(t) = 1 on [1 − ε̃, 1].

Set

ρ0(t) := φ0(t)ρ̄(0) + φ(t)ρ̄(t) + φ1(t)ρ̄(1),

u0(t) := 0,

R0(t) := −∇�−1(∂tρ0(t) + div (ρ0(t)u0(t))
) = −∇�−1(∂tρ0(t)

)
,

(27)

where the antidivergence is taken with respect to the spatial variable.
Assume now that (ρq , uq , Rq) is defined. Let (ρq+1, uq+1, Rq+1) be the solution

to the continuity-defect equation, which is obtained by applying Proposition 3.1 to
(ρq , uq , Rq), η,

δ = δq+2, σ = σq+1 (and thus σ/2 = σq+2).

Lemma 3.2 The following inductive estimates are satisfied:

‖ρq(t) − ρq−1(t)‖L p ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Mηδ
1/p
q , t ∈ Iq−1,

Mη[‖R0(t)‖L1 + δq ]1/p, t ∈ Iq\Iq−1,

Mη‖R0(t)‖1/pL1 , t ∈ Iq+1\Iq ,
0, t ∈ [0, 1]\Iq+1,

(28a)q
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‖uq(t) − uq−1(t)‖L p′ ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mη−1δ
1/p′
q , t ∈ Iq−1,

Mη−1[‖R0(t)‖L1 + δq ]1/p′
, t ∈ Iq\Iq−1,

Mη−1‖R0(t)‖1/p
′

L1 , t ∈ Iq+1\Iq ,
0, t ∈ [0, 1]\Iq+1,

(28b)q

‖uq(t) − uq−1(t)‖W 1, p̃ ≤ δq+1, (28c)q

‖Rq(t)‖L1 ≤

⎧
⎪⎨

⎪⎩

δq+1, t ∈ Iq ,

‖R0(t)‖L1 + δq+1, t ∈ Iq+1\Iq ,
‖R0(t)‖L1, t ∈ [0, 1]\Iq+1.

(28d)q

Proof For q = 0, (28a)q–(28c)q do not apply, whereas (28d)q is trivially satisfied,
since I0 = ∅. Assume now that (28a)q–(28d)q hold and let us prove (28a)q+1–
(28d)q+1. From (26a) we get

‖ρq+1(t) − ρq(t)‖L p ≤
{
Mη‖Rq(t)‖1/pL1 , t ∈ Iq+2,

0, t ∈ [0, 1]setminus Iq+2.

Therefore, using the inductive assumption (28d)q , we get:

• if t ∈ Iq ,

‖ρq+1(t) − ρq(t)‖L p ≤ Mη‖Rq(t)‖1/pL1 ,≤ Mηδ
1/p
q+1;

• if t ∈ Iq+1\Iq ,

‖ρq+1(t) − ρq(t)‖L p ≤ Mη‖Rq(t)‖1/pL1 ≤ Mη
[
|R0(t)‖L1 + δq+1

]1/p;

• if t ∈ Iq+2\Iq+1,

‖ρq+1(t) − ρq(t)‖L p ≤ Mη‖Rq(t)‖1/pL1 ≤ Mη‖R0(t)‖1/pL1 ,

and thus (28a)q+1 holds. Estimate (28b)q+1 can be proven similarly. Estimate (28c)q+1
is an immediate consequence of (26c). Finally, from (26d), we get

‖Rq+1(t)‖L1 ≤

⎧
⎪⎨

⎪⎩

δq+2, t ∈ Iq+1,

‖Rq(t)‖L1 + δq+2, t ∈ Iq+2\Iq+1,

‖Rq(t)‖L1 , t ∈ [0, 1]\Iq+2.

Therefore, using the inductive assumption (28d)q , we get:

• if t ∈ Iq+2\Iq+1,

‖Rq+1(t)‖L1 ≤ ‖Rq(t)‖L1 + δq+2 ≤ ‖R0(t)‖L1 + δq+2;
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• if t ∈ [0, 1]\Iq+2,

‖Rq+1(t)‖L1 ≤ ‖Rq(t)‖L1 ≤ ‖R0(t)‖L1 ,

from which (28d)q+1 follows.

It is now an immediate consequence of the previous lemma that there exists

ρ ∈ C((0, 1); L p(Td)), u ∈ C((0, 1);W 1, p̃(Td)) ∩ C((0, 1); L p′
(Td)) (29)

such that for every compact subset K ⊆ (0, 1)

maxt∈K ‖ρq(t) − ρ(t)‖L p → 0

maxt∈K ‖uq(t) − u(t)‖L p′ → 0

maxt∈K ‖uq(t) − u(t)‖W 1, p̃ → 0

maxt∈K ‖Rq(t)‖L1 → 0,

as q → ∞, from which it follows that ρ, u solves (3)–(4) [or (1)–(3)] in the sense of
distributions. This proves part (b) of the statement.

We need now the following estimate. Let t ∈ (0, 1) and let q∗ = q∗(t) ∈ N so that
t ∈ Iq∗\Iq∗−1. By the inductive estimate (28a),

‖ρ(t) − ρ0(t)‖L p ≤
∞∑

q=1

‖ρq(t) − ρq−1(t)‖L p

= ‖ρq∗−1(t) − ρq∗−2(t)‖L p + ‖ρq∗(t) − ρq∗−1(t)‖L p

+
∞∑

q=q∗+1

‖ρq(t) − ρq−1(t)‖L p

≤ Mη

[
‖R0(t)‖1/pL1 +

(
‖R0(t)‖L1 + δq∗

)1/p +
∞∑

q=q∗+1

δ
1/p
q

]
.

(30)
Let us now prove that ‖ρ(t) − ρ̄(0)‖L p → 0 as t → 0. Observe that, for t < ε̃,

ρ0(t) = ρ̄(0) and R0(t) = 0. Hence, if t < ε̃,

‖ρ(t) − ρ̄(0)‖L p = ‖ρ(t) − ρ0(t)‖L p

(by (30)) ≤ Mη

[
‖R0(t)‖1/pL1 +

(
‖R0(t)‖L1 + δq∗

)1/p +
∞∑

q=q∗+1

δ
1/p
q

]

= Mη

∞∑

q=q∗
δ
1/p
q ,
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and the conclusion follows observing that q∗ = q∗(t) → ∞ as t → 0. In a similar
way the limit ‖ρ(t)− ρ̄(1)‖L p → 0 as t → 1 can be shown. This completes the proof
of parts (a) and (c) of the statement.

Let us now prove part (d). We first observe that, for the ε given in the statement of
the theorem, we can choose ε̃ small enough, so that for every t ∈ [0, 1],

‖ρ0(t) − ρ̄(t)‖L p ≤ ε

2
. (31)

Indeed, if t ∈ [2ε̃, 1 − 2ε̃], then ρ0(t) = ρ̄(t). If t ∈ [0, 2ε̃] ∪ [1 − 2ε̃, 1], then

‖ρ0(t) − ρ̄(t)‖L p ≤ |φ0(t)|‖ρ̄(0) − ρ̄(t)‖L p + |φ1(t)|‖ρ̄(1) − ρ̄(t)‖L p ≤ ε

2
,

where the last inequality follows, by choosing ε̃ sufficiently small. Therefore, for every
t ∈ [0, 1],

‖ρ(t) − ρ̄(t)‖L p ≤ ‖ρ(t) − ρ0(t)‖L p + ‖ρ0(t) − ρ̄(t)‖L p

(by (30)) ≤ Mη

[
‖R0(t)‖1/pL1 +

(
‖R0(t)‖L1 + δq∗

)1/p +
∞∑

q=q∗+1

δ
1/p
q

]
+ ε

2

≤ Mη max
t∈[0,1]

[
‖R0(t)‖1/pL1 +

(
‖R0(t)‖L1 + 1

)1/p +
∞∑

q=1

δ
1/p
q

]
+ ε

2

≤ ε,

if η is chosen small enough (depending on R0 and thus on ε̃). This proves part (d) of
the statement, thus concluding the proof of the theorem. �


4 The Perturbations

In this and the next two sections we prove Proposition 3.1. In particular in this section
we fix the constant M in the statement of the proposition, we define the functions ρ1
and u1 and we prove some estimates on them. In Sect. 5 we define R1 and we prove
some estimates on it. In Sect. 6 we conclude the proof of Proposition 3.1, by proving
estimates (26a)–(26d).

4.1 Mikado Fields andMikado Densities

The first step towards the definition of ρ1, u1 is the construction ofMikado fields and
Mikado densities.

We start by fixing a function � ∈ C∞
c (Rd−1) such that

supp � ⊆ (0, 1)d−1,

ˆ
Rd−1

� = 0,
ˆ
Rd−1

�2 = 1.
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Let �μ(x) := �(μx) for μ > 0. Let a ∈ R. For every k ∈ N, it holds

‖Dk(μa�μ)‖Lr (Rd−1) = μa+k−(d−1)/r‖Dk�‖Lr (Rd−1). (32)

Proposition 4.1 Let a, b ∈ R with

a + b = d − 1. (33)

For every μ > 2d and j = 1, . . . , d there exist a Mikado density �
j
μ : Td → R and

a Mikado field W j
μ : Td → R

d with the following properties.

(a) It holds ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div W j
μ = 0,

div (�
j
μW

j
μ) = 0,ffl

Td �
j
μ = ffl

Td W
j
μ = 0,ffl

Td �
j
μW

j
μ = e j ,

(34)

where {e j } j=1,...,d is the standard basis in Rd .
(b) For every k ∈ N and r ∈ [1,∞]

‖Dk� j
μ‖Lr (Td ) ≤ ‖�‖Lr (Rd−1)μ

a+k−(d−1)/r ,

‖DkW j
μ‖Lr (Td ) ≤ ‖�‖Lr (Rd−1)μ

b+k−(d−1)/r ,
(35)

(c) For j �= k, supp �
j
μ = supp W j

μ and supp �
j
μ ∩ supp Wk

μ = ∅.
Remark 4.2 In particular notice that if we choose

a = d − 1

p
, b = d − 1

p′

and we define the constant M in the statement of Proposition 3.1 as

M := 2d max
{
‖�‖L∞(Rd−1), ‖�‖2L∞(Rd−1)

, ‖∇�‖L∞(Rd−1)

}
, (36)

then the following estimates hold:

d∑

j=1

‖� j
μ‖L p(Td ),

d∑

j=1

‖W j
μ‖L p′ (Td )

,

d∑

j=1

‖� j
μW

j
μ‖L1(Td ) ≤ M

2
, (37)

and
‖� j

μ‖L1(Td ), ‖W j
μ‖L1(Td ), ‖W j

μ‖W 1, p̃ ≤ Mμ−γ , (38)

where

γ = min
{
γ1, γ2, γ3

}
> 0
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and

γ1 := (d − 1)

(
1 − 1

p

)
> 0,

γ2 := (d − 1)

(
1 − 1

p′

)
> 0,

γ3 := − 1 − (d − 1)

[
1

p′ − 1

p̃

]
= (d − 1)

[
1

p
+ 1

p̃
−

(
1 + 1

d − 1

)]
> 0.

Notice that γ3 > 0 by (12).

Proof of Proposition 4.1 Step 1 For each j = 1, . . . , d, we define the (non-periodic)
Mikado density �̃

j
μ : Rd → R

�̃ j
μ(x1, . . . , xn) := μa�μ(x1, . . . , x j−1, x j+1, . . . , xd) (39a)

and the (non-periodic) Mikado field W̃ j
μ : Rd → R

d

W̃ j
μ(x1, . . . , xn) := μb�μ(x1, . . . , x j−1, x j+1, . . . , xd)e j . (39b)

Notice that for the non-periodic Mikado densities

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

div W̃ j
μ = 0,

div (�̃
j
μW̃

j
μ) = 0,ffl

(0,1)d �̃
j
μ = ffl

(0,1)d W̃
j
μ = 0,ffl

(0,1)d �̃
j
μW̃

j
μ = e j ,

(40)

where the last equality follows from (33). Moreover, from (32) we get

‖Dk�̃ j
μ‖Lr ((0,1)d ) = μa+k−(d−1)/r‖Dk�‖Lr (Rd−1)

‖DkW̃ j
μ‖Lr ((0,1)d ) = μb+k−(d−1)/r‖Dk�‖Lr (Rd−1)

(41)

Step 2 We define �
j
μ : Td → R and W j

μ : Td → R
d as the 1-periodic extension

of �̃
j
μ, W̃

j
μ respectively. Such periodic extensions are well defined, since supp � ⊆

(0, 1)d−1 and �̃
j
μ, W̃

j
μ do not depend on the j-th coordinate. Equations (34) and

estimates (35) come from the corresponding equations (40) and estimates (41) for the
non-periodic Mikado densities and fields.

Step 3 Finally notice that conditions (c) in the statement are not verified by �
j
μ

and W j
μ defined in Step 2. However we can achieve (c), using that μ > 2d and

redefining �
j
μ,W j

μ after a suitable translation of the independent variable x ∈ T
d for

each j = 1, . . . , d. �
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4.2 Definition of the Perturbations

Weare now in a position to defineρ1, u1. The constantM has already beenfixed in (36).
Let thus η, δ, σ > 0 and (ρ0, u0, R0) be a smooth solution to the continuity-defect
equation (25).

Let
λ ∈ N “oscillation”,

μ > 2d “concentration”

be two constant, which will be fixed in Sect. 6. Let ψ ∈ C∞
c ((0, 1)) such that ψ ≡ 0

on [0, σ/2] ∪ [1 − σ/2, 1], ψ ≡ 1 on [σ, 1 − σ ] and |ψ | ≤ 1. We denote by R0, j the
components of R0, i.e.

R0(t, x) :=
d∑

j=1

R0, j (t, x)e j .

For j = 1, . . . , d, let χ j ∈ C∞([0, 1] × T
d) be such that

χ j (t, x) =
{
0, if |R0, j (t, x)| ≤ δ/(4d),

1, if |R0, j (t, x)| ≥ δ/(2d),

and |χ j | ≤ 1.
We set

ρ1 := ρ0 + ϑ + ϑc, u1 := u0 + w + wc,

where ϑ, ϑc, w,wc are defined as follows. First of all, let �
j
μ, W

j
μ, j = 1, . . . , d, be

the Mikado densities and flows provided by Proposition 4.1, with a, b chosen as in
Remark 4.2. We set

ϑ(t, x) := η

d∑

j=1

ψ(t)χ j (t, x) sign
(
R0, j (t, x)

)∣∣R0, j (t, x)
∣
∣1/p� j

μ(λx),

ϑc(t) := −
 
Td

ϑ(t, x)dx,

w(t, x) := η−1
d∑

j=1

ψ(t)χ j (t, x)
∣∣R0, j (t, x)

∣∣1/p′
W j

μ(λx).

(42)

We will also use the shorter notation

ϑ(t) = η

d∑

j=1

ψ(t)χ j (t) sign(R0, j (t))|R0, j (t)|1/p
(
� j

μ

)
λ
,

w(t) = η−1
d∑

j=1

ψ(t)χ j (t)|R0, j (t)|1/p′(
W j

μ

)
λ
,
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where, coherent with (18),

(
� j

μ

)
λ
(x) = � j

μ(λx),
(
W j

μ

)
λ
(x) = W j

μ(λx).

Notice that ϑ and w are smooth functions, thanks to the cutoffs χ j . Notice also that
ϑ + ϑc has zero mean value in T

d at each time t . To define wc, notice first that

−div w(t) = − η−1
d∑

j=1

∇
(
ψ(t)χ j (t)

∣∣R0, j (t)
∣∣1/p

)
· (
W j

μ

)
λ

is sum of terms of the form f · gλ, each term has zero mean value (being a divergence)
and the fast oscillatory term W j

μ has zero mean value as well. We can therefore apply
Lemma 2.3 and define

wc(t) := − η−1
d∑

j=1

R
(

∇
(
ψ(t)χ j (t)

∣∣R0, j (t)
∣∣1/p

)
· (
W j

μ

)
λ

)
. (43)

Then div (w + wc) = 0 and thus

div u1 = div u0 + div (w + wc) = 0.

Moreover, by Remark 2.5, wc is smooth in (t, x).

4.3 Estimates on the Perturbation

In this section we provide some estimates on ϑ , ϑc, w, wc.

Lemma 4.3 (L p-norm of ϑ) For every time t ∈ [0, 1],

‖ϑ(t)‖L p(Td ) ≤ M

2
η‖R0(t)‖1/pL1(Td )

+ C(η, δ, ‖R0(t)‖C1(Td ))

λ1/p
.

Proof The perturbation ϑ is the sum of functions of the form f gλ. Therefore we can
apply the improved Hölder inequality, Lemma 2.1, to get

‖ϑ(t)‖L p ≤ η

d∑

j=1

∥∥∥∥ψ(t)χ j (t) sign
(
R0, j (t)

)∣∣R0, j (t)
∣∣1/p

∥∥∥∥
L p

‖� j
μ‖L p

+ Cp

λ1/p

∥∥
∥ψ(t)χ j (t) sign(R0, j (t))

∣
∣R0, j (t)

∣
∣1/p

∥∥
∥
C1(Td )

‖� j
μ‖L p .

Notice now that
∥∥∥∥ψ(t)χ j (t) sign

(
R0, j (t)

)∣∣R0, j (t)
∣∣1/p

∥∥∥∥
L p

≤
∥∥∥
∣∣R0, j (t)

∣∣1/p
∥∥∥
L p

≤ ‖R0(t)‖1/pL1
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and, recalling the definition of the cutoff χ j in Sect. 4.2,

∥∥
∥ψ(t)χ j (t) sign(R0, j (t))

∣∣R0, j (t)
∣∣1/p

∥∥
∥
C1(Td )

≤ C
(
δ, ‖R0(t)‖C1(Td )

)
.

Therefore, using the bounds on ‖� j
μ‖L p provided in (37), we get

‖ϑ(t)‖L p ≤ M

2
η‖R0(t)‖1/pL1 + C(η, δ, ‖R0(t)‖C1)

λ1/p
.

�

Lemma 4.4 (Estimate on ϑc) It holds

|ϑc(t)| ≤ C(η, ‖R0(t)‖C1(Td ))

λ
.

Proof We use Lemma 2.6:

|ϑc(t)| ≤ η

d∑

j=1

√
d‖R0(t)‖C1(Td )‖� j

μ‖L1

λ

≤ C(η, ‖R0(t)‖C1(Td ))

λ
.

�

Lemma 4.5 (L p′

norm of w) For every time t ∈ [0, 1],

‖w(t)‖L p′ (Td )
≤ M

2η
‖R0(t)‖1/p

′
L1(Td )

+ C(η, δ, ‖R0(t)‖C1(Td ))

λ1/p
′ .

Proof The proof is completely analogous to the proof of Lemma 4.3, with η−1 instead
of η and ‖W j

μ‖L p′ instead of ‖� j
μ‖L p , and thus it is omitted. �


Lemma 4.6 (W 1, p̃ norm of w) For every time t ∈ [0, 1],

‖w(t)‖W 1, p̃(Td ) ≤ C
(
η, ‖R0‖C1

)
λμ−γ .

Proof We have

Dw(t, x) = η−1ψ(t)
d∑

j=1

W j
μ(λx) ⊗ D

(
χ j |R0, j |1/p′) + λχ j |R0, j |1/p′

DW j
μ(λx),

from which we get the pointwise estimate

|Dw(t, x)| ≤ C
(
η, δ, ‖R0‖C1

) d∑

j=1

(
|W j

μ(λx)| + λ|DW j
μ(λx)|

)
.
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We can take now the L p̃ norm of Dw(t) and use (38) to get

‖Dw(t)‖L p̃ ≤ C
(
η, δ, ‖R0‖C1

) d∑

j=1

(
‖W j

μ‖L p̃ + λ‖DW j
μ‖L p̃

)

≤ C
(
η, δ, ‖R0‖C1

)
λμ−γ .

A similar (and even easier) computation holds for ‖w(t)‖L p̃ , thus concluding the proof
of the lemma. �

Lemma 4.7 (L p′

norm of wc) For every time t ∈ [0, 1],

‖wc(t)‖L p′ (Td )
≤ C(η, δ, ‖R0‖C2)

λ
.

Proof The corrector wc is defined in (43) using the antidivergence operator of
Lemma 2.3. We can thus use the bounds given by that lemma, with k = 0, to get

‖wc(t)‖L p′ ≤ η−1
d∑

j=1

C0,p′

λ

∥∥∥∇(
ψ(t)χ j (t)|R0, j (t)|1/p′)∥∥∥

C1(Td )

∥∥W j
μ

∥∥
L p′

≤ C(η, δ, ‖R0‖C2)

λ

d∑

j=1

‖W j
μ‖L p′

(by (37)) ≤ C(η, δ, ‖R0‖C2)

λ
.

�

Lemma 4.8 (W 1, p̃ norm of wc) For every time t ∈ [0, 1],

‖wc(t)‖W 1, p̃(Td ) ≤ C
(
η, δ, ‖R0‖C3

)
μ−γ .

Proof We estimate only ‖Dwc(t)‖L p̃ , the estimate for ‖wc(t)‖L p̃ is analogous and
even easier. We use once again the bounds provided by Lemma 2.3 with k = 1:

‖Dwc(t)‖L p̃ ≤ η−1C1, p̃

d∑

j=1

∥
∥∥∇(

ψ(t)χ j (t)|R0, j (t)|1/p
)∥∥∥

C2(Td )

∥
∥W j

μ

∥
∥
W 1, p̃

(by (38)) ≤ C(η, δ, ‖R0‖C3)μ−γ .

�


5 The NewDefect Field

In this section we continue the proof of Proposition 3.1, defining the new defect field
R1 and proving some estimates on it.
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5.1 Definition of the New Defect Field

We want to define R1 so that

− div R1 = ∂tρ1 + div (ρ1u1).

Let us compute

∂tρ1 + div (ρ1u1) = div (ϑw − R0)

+ ∂t (ϑ + ϑc) + div (ϑu0 + ρ0w)

+ div (ρ0wc + ϑcu0 + ϑwc + ϑcw + ϑcwc)

= div
[
(ϑw − R0)

+ (∇�−1∂t (ϑ + ϑc) + ϑu0 + ρ0w
)

+ (
ρ0wc + ϑcu0 + ϑwc + ϑcw + ϑcwc

)]

= div
[
(ϑw − R0) + Rlinear + Rcorr

]

(44)

where we put
Rlinear := ∇�−1∂t (ϑ + ϑc) + ϑu0 + ρ0w

Rcorr := ρ0wc + ϑcu0 + ϑwc + ϑcw + ϑcwc.
(45)

Note that we can apply the antidivergence operator ∇�−1 to ∂t (ϑ + ϑc), since it has
zero mean value. Let us now consider the term ϑw − R0. Recall from Proposition 4.1,
that, for j �= k, supp �

j
μ ∩ supp Wk

μ = ∅. Coherent with (18), we use the notation

(� j
μW

j
μ)λ(x) = � j

μ(λx)W j
μ(λx).

We have

ϑ(t)w(t) − R0(t) =
d∑

j=1

ψ2(t)χ2
j (t)R0, j (t)(�

j
μW

j
μ)λ − R0(t)

=
d∑

j=1

ψ2(t)χ2
j (t)R0, j (t)

[
(� j

μW
j
μ)λ − e j

]

+ ψ2(t)
d∑

j=1

[
χ2
j (t) − 1

]
R0, j (t)e j

+ [
ψ2(t) − 1

]
R0(t)

=
d∑

j=1

ψ2(t)χ2
j (t)R0, j (t)

[
(� j

μW
j
μ)λ − e j

]

+ Rχ (t) + Rψ(t),
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where we put

Rχ (t) := ψ2(t)
d∑

j=1

[
χ2
j (t) − 1

]
R0, j (t)e j ,

Rψ(t) := [
ψ2(t) − 1

]
R0(t).

(46)

Thus, using again Proposition 4.1, and in particular the fact that div (�
j
μW

j
μ) = 0, we

get

div (ϑ(t)w(t) − R0(t)) =
d∑

j=1

∇
(
ψ2(t)χ2

j (t)R0, j (t)
)

·
[
(� j

μW
j
μ)λ − e j

]

+ div (Rχ + Rψ).

(47)

Each term in the summation over j has the form f · gλ and it has zero mean value,
being a divergence. Moreover, again by Proposition 4.1,

 
Td

(� j
μW

j
μ)λdx =

 
Td

� j
μW

j
μdx = e j .

Therefore we can apply Lemma 2.3 and define

Rquadr(t) :=
d∑

j=1

R
(

∇
(
ψ2(t)χ2

j (t)R0, j (t)
)

·
[
(� j

μW
j
μ)λ − e j

])
. (48)

By Remark 2.5, Rquadr is smooth in (t, x). Summarizing, from (44) and (47) we get

∂tρ1 + div (ρ1u1) = div
[
Rquadr + Rχ + Rψ + Rlinear + Rcorr

]
.

We thus define

− R1 := Rquadr + Rχ + Rψ + Rlinear + Rcorr. (49)

Aim of the next section will be to get an estimate in L1 for R1(t), by estimating
separately each term in (49).

5.2 Estimates on the Defect Field

We now prove some estimates on the different terms which define R1.

Lemma 5.1 (Estimate on Rquadr) For every t ∈ [0, 1],

‖Rquadr(t)‖L1(Td ) ≤ C(δ, ‖R0‖C2)

λ
.
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Proof Rquadr is defined in (48) using Lemma 2.3. Observe first that

∥
∥∇(

ψ2(t)χ2
j (t)R0, j (t)

)∥∥
C1(Td )

≤ C(δ, ‖R0‖C2).

Applying the bounds provided by Lemma 2.3, with k = 0, and (37) we get

‖Rquadr(t)‖L1(Td )

≤
d∑

j=1

C0,1

λ

∥∥∇(
ψ2(t)χ2

j (t)R0, j (t)
)∥∥

C1

∥∥� j
μW

j
μ − e j

∥∥
L1(Td )

≤
d∑

j=1

C(δ, ‖R0‖C2)

λ
.

�

Lemma 5.2 (Estimate on Rχ ) For every t ∈ [0, 1]

‖Rχ (t)‖L1(Td ) ≤ δ

2

Proof Notice that χ j (t, x) = 1 if |R0, j (t, x)| ≥ δ/(2d). Therefore Rχ (t, x) �= 0 only
when |R0, j (t, x)| ≤ δ/(2d). We thus have the pointwise estimate

|Rχ (t, x)| ≤
d∑

j=1

|χ j (t, x)
2 − 1||R0, j (t, x)| ≤ δ

2
.

from which the conclusion easily follows. �

Lemma 5.3 (Estimate on Rψ ) It holds

‖Rψ(t)‖L1(Td ) ≤
{
0, t ∈ Iσ ,

‖R0(t)‖L1(Td ), t ∈ [0, 1]\Iσ .

Proof The proof follows immediately from the definition of Rψ in (46) and the defi-
nition of the cutoff ψ . �

Lemma 5.4 (Estimate on Rlinear) For every t ∈ [0, 1]

‖Rlinear(t)‖L1(Td ) ≤ C
(
η, δ, σ, ‖ρ0‖C0 , ‖u0‖C0 , ‖R0‖C0

)
μ−γ .

Proof At each time t ∈ [0, 1],

‖Rlinear(t)‖L1(Td )

≤ ‖∇�−1∂t (ϑ(t) + ϑc(t))‖L1(Td ) + ‖ϑ(t)u0(t)‖L1(Td ) + ‖ρ0(t)w(t)‖L1(Td )

≤ ‖∂tϑ(t)‖L1(Td ) + |ϑ ′
c(t)| + ‖ϑ(t)u0(t)‖L1(Td ) + ‖ρ0(t)w(t)‖L1(Td ),
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where the first termwas estimated using Lemma 2.2.We now separately estimate each
term in the last sum.
1. Estimate on ‖∂tϑ(t)‖L1 . We have

∂tϑ(t) = η

d∑

j=1

∂t

(
ψ(t)χ j (t, x) sign(R0, j (t, x))|R0, j (t, x)|1/p

)
� j

μ(λx)

from which we get the pointwise estimate

|∂tϑ(t)| ≤ C(η, δ, σ, ‖R0‖C1)

d∑

j=1

|� j
μ(λx)|.

Using (38), we deduce

‖∂tϑ(t)‖L1 ≤ C(η, δ, σ, ‖R0‖C1)μ−γ .

2. Estimate on |ϑ ′
c(t)|. We have

|ϑ ′
c(t)| ≤ ‖∂tϑ(t)‖L1 ≤ C(η, δ, σ, ‖R0‖C1)μ−γ .

3. Estimate on ‖ϑ(t)u0(t)‖L1 . We now use the classical Hölder inequality to estimate

‖ϑ(t)u0(t)‖L1 ≤ ‖u0‖C0‖ϑ(t)‖L1

≤ η‖u0‖C0

d∑

j=1

∥
∥|R0, j |1/p

∥
∥
C0‖� j

μ‖L1

(by (38)) ≤ C
(
η, ‖u0‖C0 , ‖R0‖C0

)
μ−γ .

4. Estimate on ‖ρ0(t)w(t)‖L1 . Similarly, again using the classical Hölder inequality,

‖ρ0(t)w(t)‖L1 ≤ ‖ρ0‖C0‖w(t)‖L1

≤ η−1‖ρ0‖C0

d∑

j=1

∥∥|R0, j |1/p′∥∥
C0‖W j

μ‖L1

(by (38)) ≤ C
(
η, ‖ρ0‖C0 , ‖R0‖C0

)
μ−γ .

�

Lemma 5.5 (Estimate on Rcorr) For every t ∈ [0, 1],

‖Rcorr(t)‖L1(Td ) ≤ C(η, δ, ‖ρ0‖C0 , ‖u0‖C0 , ‖R0‖C2)

λ
.
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Proof We estimate separately each term in the definition (45) of Rcorr.
1. Estimate on ρ0wc. By the classical Hölder inequality,

‖ρ0(t)wc(t)‖L1 ≤ ‖ρ0‖C0‖wc(t)‖L1

≤ ‖ρ0‖C0‖wc(t)‖L p′

(by Lemma 4.7) ≤ C(η, δ, ‖ρ0‖C0 , ‖R0‖C2)

λ
.

2. Estimate on ϑcu0. We use Lemma 4.4:

‖ϑc(t)u0(t)‖L1 ≤ |ϑc(t)|‖u0‖C0 ≤ C(η, ‖u0‖C0 , ‖R0‖C2)

λ
.

3. Estimate on ϑwc. We use Lemmas 4.3 and 4.7:

‖ϑ(t)wc(t)‖L1 ≤ ‖ϑ(t)‖L p‖wc(t)‖L p′ ≤ C(η, δ, ‖R0‖C2)

λ
.

4. Estimate on ϑcw. We use Lemmas 4.4 and 4.5:

‖ϑc(t)w(t)‖L1 ≤ |ϑc(t)|‖w(t)‖L1

≤ |ϑc(t)|‖w(t)‖L p′

≤ C(η, δ, ‖R0‖C2)

λ
.

5. Estimate on ϑcwc. We use Lemmas 4.4 and 4.7:

‖ϑc(t)wc(t)‖L1 ≤ |ϑc(t)|‖wc(t)‖L1

≤ |ϑc(t)|‖wc(t)‖L p′

≤ C(η, δ, ‖R0‖C2)

λ2
.

�


Remark 5.6 In estimating Rcorr the only term where we really need the fast oscilla-
tion λ is the estimate on ϑwc. All the other terms could be alternatively estimated
using the concentration parameter μ, since, by (38), |ϑc(t)|, ‖wc(t)‖L1 , ‖w(t)‖L1 ≤
const. μ−γ . In this way we would obtained the less refined estimate

‖Rcorr(t)‖L1 ≤ C

λ
+ C

μγ
,

which is however enough to prove Proposition 3.1.
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6 Proof of Proposition 3.1

In this sectionwe conclude the proof of Proposition 3.1, proving estimates (26a)–(26d).
We will choose

μ = λc

for a suitable c > 1 and λ sufficiently large.
1. Estimate (26a). We have

‖ρ1(t) − ρ0(t)‖L p ≤ ‖ϑ0(t)‖L p + |ϑc(t)|
(Lemmas 4.3 and 4.4) ≤ M

2
η‖R0(t)‖1/pL1 + C(η, δ, ‖R0(t)‖C1)

λ1/p

+ C(η, ‖R0(t)‖C1)

λ

≤ Mη‖R0(t)‖1/pL1 ,

if the constant λ is chosen large enough. Notice also that, if t ∈ [0, 1]\Iσ/2, then
ϑ(t) ≡ 0 and ϑc(t) = 0, thanks to the cutoff ψ in (42). Therefore (26a) is proven.
2. Estimate (26b). The estimate uses Lemmas 4.5 and 4.7 and it is completely similar
to what we just did for (26a).
4. Estimate (26c). By Lemma 4.6,

‖w(t)‖W 1, p̃ ≤ C
(
η, ‖R0‖C1

)
λμ−γ ≤ δ,

if μ is chosen of the form μ = λc with c > 1/γ and λ is chosen large enough.
4. Estimate (26d). Recall the definition of R1 in (49). Using Lemmas 5.1, 5.2, 5.3, 5.4,
5.5, for t ∈ Iσ , we get

‖R1(t)‖L1 ≤ δ

2
+ C(η, δ, σ, ‖ρ0‖C0 , ‖u0‖C0 , ‖R0‖C2)

(
1

λ
+ 1

μγ

)

≤ δ

2
+ C(η, δ, σ, ‖ρ0‖C0 , ‖u0‖C0 , ‖R0‖C2)

(
1

λ
+ 1

λcγ

)

≤ δ

provided λ is chosen large enough. Similarly, for t ∈ Iσ/2\Iσ , we have

‖R1(t)‖L1

≤ ‖R0(t)‖L1 + δ

2
+ C(η, δ, σ, ‖ρ0‖C0 , ‖u0‖C0 , ‖R0‖C2)

(
1

λ
+ 1

μγ

)

≤ ‖R0(t)‖L1 + δ

2
+ C(η, δ, σ, ‖ρ0‖C0 , ‖u0‖C0 , ‖R0‖C2)

(
1

λ
+ 1

λcγ

)

≤ ‖R0(t)‖L1 + δ
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if λ is chosen large enough. Finally, for t ∈ [0, 1]\Iσ/2, the cutoff function ψ(t) ≡ 0,
and thus ϑ(t) = ϑc(t) = w(t) = wc(t) = 0. Therefore R1(t) = R0(t).

7 Sketch of the Proofs of Theorems 1.6, 1.9, 1.10

Theorems 1.6, 1.9, 1.10 can be proven in a very similar way to Theorem 1.2 and thus
we present just a sketch of their proofs.

The proof of Theorem 1.2 follows from Proposition 3.1: similarly, for each one of
Theorems 1.6, 1.9, 1.10 there is a corresponding main proposition, from which the
proof the theorem follows.

7.1 Sketch of the proof of Theorem 1.9

The proof of Theorem 1.9 follows from the next proposition, in a very similar way as
Theorem 1.2 follows from Proposition 3.1. Let us consider the equation

{
∂tρ + div (ρu) − �ρ = − div R,

div u = 0.
(50)

Proposition 7.1 Proposition 3.1 holds with (50) instead of (25).

Sketch of the proof of Proposition 7.1 Exactly as in the proof of Proposition 3.1, we
define the Mikado densities and fields as in Proposition 4.1 and we choose the expo-
nents a, b as in Remark 4.2. We observe that, in addition to (37), (38), it also holds

‖∇� j
μ‖L1 ≤ Mμ−γ4 ≤ Mμ−γ (51)

for
γ = min

{
γ1, γ2, γ3, γ4

}
> 0,

where γ1, γ2, γ3 were defined in Remark 4.2 and

γ4 := d − 1

p′ − 1 > 0,

because of the second condition in (15). Then the perturbations ϑ,w, ϑc, wc can be
defined as in Sect. 4.2 and the estimates in Sect. 4.3 continue to hold. In the definition
of the new defect field in Sect. 5 we want to define R1 so that

−div R1 = ∂tρ1 + div (ρ1u1) − �ρ1,

which leads to an additional term ∇ϑ in the expression for Rlinear in (45). As a conse-
quence the only estimate which changes is Lemma 5.4. From (51) and the expression
for ϑ in (42) we easily obtain

‖∇θ‖L1(Td ) ≤ C(η, δ, ‖R0‖C1)λμ−γ .
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Since we choose μ = λc with c > 1/γ in Sect. 6, the final estimates for ‖R1(t)‖L1

continue to hold. This concludes the proof of proposition (and thence also the proof
of Theorem 1.9). �


7.2 Sketch of the proof of Theorem 1.6

Also for Theorem 1.6 there is a main proposition, analog to Proposition 3.1.

Proposition 7.2 There exists a constant M > 0 and an exponent s ∈ (1,∞) such that
the following holds. Let η, δ, σ > 0 and let (ρ0, u0, R0) be a smooth solution of the
continuity-defect equation (25). Then there exists another smooth solution (ρ1, u1, R1)

of (25) such that

‖ρ1(t) − ρ0(t)‖Ls (Td ) ≤
{
Mη‖R0(t)‖1/sL1(Td )

, t ∈ Iσ/2,

0, t ∈ [0, 1]\Iσ/2,
(52a)

‖u1(t) − u0(t)‖Ls′ (Td )
≤

{
Mη−1‖R0(t)‖1/s

′
L1(Td )

, t ∈ Iσ/2,

0, t ∈ [0, 1]\Iσ/2,
(52b)

‖ρ1(t) − ρ0(t)‖Wm,p(Td )

‖u1(t) − u0(t)‖Wm̃, p̃(Td )

}

≤ δ, (52c)

‖R1(t)‖L1(Td ) ≤

⎧
⎪⎨

⎪⎩

δ, t ∈ Iσ ,

‖R0(t)‖L1(Td ) + δ, t ∈ Iσ/2\Iσ ,

‖R0(t)‖L1(Td ), t ∈ [0, 1]\Iσ/2.

(52d)

Theorem 1.6 can be deduced from Proposition 7.2 exactly in the sameway as Theorem
1.2 was deduced from Proposition 3.1. The only difference here is the following. In
general, it is not true that ρ(t) ∈ L p(Td), u(t) ∈ L p′

(Td). Therefore the fact that
ρu ∈ C((0, T ); L1(Td)) is proven by showing that ρ ∈ C((0, T ); Ls(Td)) (thanks to
(52a)) and u ∈ C((0, T ); Ls′(Td)) (thanks to (52b)).

Sketch of the proof of Proposition 7.2 The proof is analog to the proof of Proposi-
tion 3.1 presented in Sects. 4–6. Here, however, we need modify the “rate of
concentration” of the Mikado fields defined in (39) to achieve better estimates on the
derivatives. In other words, we have to modify the choice of a, b in (39), as follows.
In order to get estimates (52a)–(52b), we want

‖� j
μ‖Ls (Td ), ‖W j

μ‖Ls′ (Td )
, ≤ const., (53)

to get (52c) we want

‖� j
μ‖Wm,p ≤ const · μ−γ , ‖W j

μ‖Wm̃, p̃ ≤ const · μ−γ ; (54)

we also require

‖� j
μ‖L1(Td ),≤ const · μ−γ , ‖W j

μ‖L1(Td ) ≤ const · μ−γ , (55)
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for some positive constant γ > 0. Compare (53) with the first and the second estimates
in (37), compare (54) with the last estimate in (38) and compare (55) with the first and
the second estimates in (38).

We want to find
a, b ∈ (0, d − 1), (56)

so that a + b = d − 1 and (54) is achieved. If we can do that, then condition (55) is
a consequence of (35) and (56). Similarly, condition (53) is automatically satisfied,
choosing

s = d − 1

a
, s′ = d − 1

b
.

and observing that (56) implies s, s′ ∈ (1,∞).
Using (35), we see that, to achieve (54), we need

⎧
⎪⎪⎨

⎪⎪⎩

a + m − d − 1

p
< 0, (57a)

b + m̃ − d − 1

p̃
< 0. (57b)

Notice that, since a + b = d − 1, (57b) is equivalent to

a > (d − 1)

(
1 − 1

p̃

)
+ m̃.

It is then possible to find a, b satisfying (56) and (57), with a+d = d −1, if and only
if

max

{
0, (d − 1)

(
1 − 1

p̃

)
+ m̃

}
< min

{
d − 1,

d − 1

p
− m

}
(58)

and this last condition is equivalent to (14).
Proposition 7.2 can now be proven exactly as we proved Proposition 3.1 in Sects. 4–

6, this time using (53)–(55) instead of (37)–(38). �


7.3 Sketch of the proof of Theorem 1.10

Once again, also for Theorem 1.10 there is a main proposition, from which the proof
of the theorem follows. Let us consider the equation

{
∂tρ + div (ρu) − Lρ = − div R,

div u = 0.
(59)

Recall that L is a constant coefficient differential operator of order k ∈ N, k ≥ 2.

Proposition 7.3 Proposition 7.2 holds with (59) instead of (25).
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Sketch of the proof of Proposition 7.3 Similarly to the proof of Proposition 7.2,wewant
to choose the exponents a, b ∈ (0, d − 1) in Proposition 4.1 so that (53)–(55) are
satisfied and, moreover,

‖Dk−1� j
μ‖L1(Td ) ≤ const · μ−γ , (60)

for some positive constant γ > 0. As in Proposition 7.2, to get (53)–(55) we need
(58). Moreover, condition (60) is satisfied, provided

a + (k − 1) − (d − 1) < 0,

or, equivalently,
a < d − k. (61)

Putting together (58) and (61), we obtain the condition

max

{
0, (d − 1)

(
1 − 1

p̃

)
+ m̃

}
< min

{
d − 1, d − k,

d − 1

p
− m

}
.

It is now not difficult to see that the last inequality is satisfied if and only if (17) holds.
Then the perturbations ϑ,w, ϑc, wc can be defined as in Sect. 4.2 and the estimates

on the perturbations can be proven as in Proposition 7.2. In the definition of the new
defect field we want to define R1 so that

−div R1 = ∂tρ1 + div (ρ1u1) − Lρ1.

We can write L = div L̃ , where L̃ is a constant coefficient differential operator of
order k−1. This leads to an additional term L̃ϑ in the expression for Rlinear (compare
with (45)), which can be estimated using (60):

‖L̃ϑ‖L1(Td ) ≤ C(η, δ, ‖R0‖C1)λk−1μ−γ .

Choosing μ = λc with c > (k − 1)/γ , we get the estimates for ‖R1(t)‖L1 . This
concludes the proof of the proposition (and thence also the proof of Theorem 1.10). �
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