Annals of PDE (2018) 4:18
https://doi.org/10.1007/s40818-018-0056-x

MANUSCRIPT i
@CrossMark

Non-uniqueness for the Transport Equation with Sobolev
Vector Fields

Stefano Modena’ - Laszl6 Székelyhidi Jr.!

Received: 25 April 2018 / Accepted: 2 December 2018 / Published online: 7 December 2018
© The Author(s) 2018

Abstract

We construct a large class of examples of non-uniqueness for the linear transport
equation and the transport-diffusion equation with divergence-free vector fields in
Sobolev spaces W7,
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1 Introduction

This paper concerns the problem of (non)uniqueness of solutions to the transport
equation in the periodic setting

dp+u-Vp=0, (D
Plt=0 = PO 2

where p : [0, T] x T4 — R is a scalar density, u : [0, T] x T > R%isa given
vector field and T¢ = R?/Z is the d-dimensional flat torus.
Unless otherwise specified, we assume in the following that u € L' is incompress-
ible, i.e.
divu =0 3)

in the sense of distributions. Under this condition, (1) is formally equivalent to the
continuity equation
3 p + div (pu) = 0. 4)

< Laszlé Székelyhidi Jr.
laszlo.szekelyhidi @math.uni-leipzig.de

Stefano Modena
stefano.modena @math.uni-leipzig.de

Institut fiir Mathematik, Universitit Leipzig, 04109 Leipzig, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40818-018-0056-x&domain=pdf
http://orcid.org/0000-0002-6307-9225

18 Page2o0f38 S. Modena, L. Székelyhidi Jr.

It is well known that the theory of classical solutions to (1)—(2) is closely connected
to the ordinary differential equation

O X(t,x) =u(r, X(t, x)), 5)
X0, x) = x,
via the formula p(t, X(t, x)) = p°(x). In particular, for Lipschitz vector fields u
the well-posedness theory for (1)—(2) follows from the Cauchy—Lipschitz theory for
ordinary differential equations applied to (5); on the other side, the inverse flow map
@ (1) := X(t)~! solves the transport equation

9 . =
D+ (u. V)o =0, ©)
Dl = id.

There are several PDE models, related, for instance, to fluid dynamics or to the
theory of conservation laws (see for instance [19,25,33,35,36]), where one has to deal
with vector fields which are not necessarily Lipschitz, but have lower regularity and
therefore it is important to investigate the well-posedness of (1)—(2) in the case of
non-smooth vector fields.

Starting with the groundbreaking work of DiPerna-Lions [26] there is a wealth
of well-posedness results for vector fields which are Sobolev or BV (we refer to the
recent survey [6], see also below) and in particular in recent years a lot of effort has
been devoted to understanding how far the regularity assumptions can be relaxed. The
main goal of this paper is to provide a lower bound on the regularity assumptions
by showing, to our knowledge for the first time, that well-posedness can fail quite
spectacularly even in the Sobolev setting, with u € C; le P .= ([0, T]; WhP(T9))
(see Theorem 1.2 for the precise statement). The mechanism we exploit to produce
such “failure of uniqueness” is so strong that it can be applied also to the transport-
diffusion equation

3o +div (pu) = Ap @)

thus producing Sobolev vector fields u € C; le P for which uniqueness of solutions
to (7)—(2) fails in the class of densities p € C;L? (see Theorem 1.9).

Both theorems can be generalized as follows: we can construct vector fields with
arbitrary large regularity u € W2 7 e N, for which uniqueness of solutions to (1)—
(2) or (7)—(2) fails, in the class of densities p € W7, with arbitrary large m € N;
moreover, we can do that even when on the r.h.s. of (7) there is a higher order diffusion
operator (see Theorems 1.6 and 1.10).

Before stating the precise statements of these results, we present a brief (and far
from complete) overview of the main well-posedness achievements present in the
literature. We start with the analysis of the well-posedness for the transport equation
in class of bounded densities, then we pass to the analysis of well-posedness for the
transport equation in the class of L”-integrable densities, with the statement of our
Theorems 1.2 and 1.6 and finally we discuss the transport-diffusion equation, with the
statements of our Theorems 1.9 and 1.10. The last part of this introduction is devoted
to a brief overview of the main techniques used in our proofs.
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1.1 The Case of Bounded Densities

The literature about rough vector fields mainly concerns the well-posedness of (1)—(2)
in the class of bounded densities, p € L. The reason for that can be found in the
fact that the scientific community has been mainly interested in the well-posedness
of ODE (5) and has used the PDE as a tool to attack the ODE problem: the general
strategy is that a well-posedness result for the transport equation in the class of bounded
densities yields a unique solution to the PDE (6) and thus one tries to prove that the flow
X(t) := ®(r)~! is the unique meaningful solution, in the sense of regular Lagrangian
flow, to the ODE (5). We refer to [6] for a precise definition of the notion of regular
Lagrangian flow and for a detailed discussion about the link between the Eulerian and
the Lagrangian approach.

Let us observe that for p € L the quantity pu € L' and thus one can consider
solutions to (1) (or, equivalently, to (4), since we are assuming incompressibility of
the vector field) in distributional sense: p is a distributional or weak solution if

T
/ / plorp +u - Voldxdt = 0, )
0 Td

forevery ¢ € C°((0, T) x T9). It is usually not difficult to prove existence of weak
solutions, even if the vector field is very rough, taking advantage of the linearity of
the equation. A much bigger issue is the uniqueness problem.

The first result in this direction dates back to DiPerna and Lions [26], when they
proved uniqueness, in the class of bounded densities, for vector fields u € L,1 W; I with
bounded divergence. This result was extended in 2004 by Ambrosio [5] to vector fields
u e L}BVX N L and with bounded divergence (see also [16,17]) and very recently
by Bianchini and Bonicatto [8] for vector fields u e L,l BV, which are merely nearly
incompressible (see, for instance, [6] for a definition of nearly incompressibility).

The proofs of these results are very subtle and involves several deep ideas and
sophisticated techniques. We could however try to summarize the heuristic behind
all of them as follows: (very) roughly speaking, a Sobolev or BV vector field u is
Lipschitz-like (i.e. Du is bounded) on a large set and there is just a small “bad”
set, where Du is very large. On the big set where u is “Lipschitz-like”, the classical
uniqueness theory applies. Non-uniqueness phenomena could thus occur only on the
small “bad” set. Uniqueness of solutions in the class of bounded densities is then a
consequence of the fact that a bounded density p can not “see” this bad set, or, in other
words, cannot concentrate on this bad set.

With this rough heuristic in mind it is also perhaps not surprising that the theory cited
above is heavily measure-theoretic. Nevertheless, the well-posedness for the ODE (5)
fundamentally relies on the analysis and well-posedness theory of the associated PDE
(1). More precisely in DiPerna and Lions [26], introduced the notion of renormalized
solution. One calls a density p € Ltlx renormalized for (1) (for given u), if for any
B € L®(R) N CY(R) it holds

aB(p) +u-VB(p) =0 ©)
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in the sense of distributions. Analogously to entropy-conditions for hyperbolic con-
servation laws, (9) provides additional stability under weak convergence. Key to the
well-posedness theory is then showing that any bounded distributional solution p of
(1) is renormalized—this is done by showing convergence of the commutator

(w-Vp)e—ue-Vp, — 0 (10)

arising from suitable regularizations.

As we mentioned, uniqueness at the PDE level in the class of bounded densities
implies, in all the cases considered above, uniqueness at the ODE level (again in the
sense of the regular Lagrangian flow). On the other hand, based on a self-similar
mixing example of Aizenmann [1], Depauw [24] constructed an example of non-
uniqueness for weak solutions with p € L>((0, T) x T¢) and u € L' (¢, 1; BV (T¢))
for any ¢ > O but u ¢ LY(0, 1; BV(T9)). This example has been revisited in [3,
4,17,37]. It should be observed, though, that the phenomenon of non-uniqueness in
such “mixing” examples is Lagrangian in the sense that it is a consequence of the
degeneration of the flow map X (¢, x) as t+ — O0; in particular, once again, the link
between (1) and (5) is crucial.

1.2 The Case of Unbounded Densities

There are important mathematical models, related, for instance, to the Boltzmann
equation (see [25]), incompressible 2D Euler [19], or to the compressible Euler equa-
tions, in which the density under consideration is not bounded, but it belongs just to
some Lf"’L,’C7 space. It is thus an important question to understand the well-posedness
of the Cauchy problem (1)—(2) in such larger functional spaces.

As a first step, we observe that for a density p € L®LY and afieldu € L!L!, the
product pu is not well defined in L' and thus the notion of weak solution as in (8) has
to be modified. There are several possibilities to overcome this issue. We mention two

of them: either we require that u € Lt1 LY /, where p’ is the dual Holder exponent to p,
or we consider a notion of solution which cut off the regions where p is unbounded.
Indeed, this second possibility is encoded in the notion of renormalized solution (9).

The well-posedness theory provided by (9) for bounded densities is sufficient for
the existence of a regular Lagrangian flow, which in turn leads to existence also
for unbounded densities. For the uniqueness, an additional integrability condition
is required:

Theorem 1.1 (DiPerna—Lions [26]) Let p, p € [1, oolandletu € L'(0, T; WP (T4))
be a vector field with divu = 0. For any p° € LP(T?) there exists a unique renor-
malized solution of (1)—(2), satisfying p € C([0, T]; L”(Td)). Moreover, if

+=-<1 (11)

< |-
| =

then this solution is unique among all weak solutions with p € L*°(0, T, LP(T%Y).
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As we have already observed for the case of bounded densities, also in this more
general setting existence of weak and renormalized solutions is not a difficult problem.
It is as well not hard to show uniqueness in the class of renormalized solutions, using
the fact that renormalized solutions in L° L P have constant in time L? norm (it suffices
to choose 8 as a bounded smooth approximation of t > |7|”).

The crucial point in Theorem 1.1 concerns the uniqueness of the renormalized
solution among all the weak solutions in L> LY, provided (11) is satisfied. The reason
why such uniqueness holds can be explained by the same heuristic as in the case of
bounded densities: a vector field in W17 is “Lipschitz-like” except on a small bad
set, which can not “be seen” by a density in L?, if (11) holds, i.e. if p, although it is
less than oo, is sufficiently large w.r.t. p. On the more technical side, the integrability
condition (11) is necessary in the proof in [26] to show convergence of the commutator
(10)in L},
The following question is therefore left open: does uniqueness of weak solutions

hold in the class of densities p € L?OL;'Z for a vector field in L,1 L;';/ N L,l le"", when
(11) fails?

In a recent note Caravenna and Crippa [15], addressed this issue for the case p = 1
and p > 1, announcing the result that uniqueness holds under the additional assump-
tion that u is continuous.

In this paper we show that if

Loty (12)
— 4= > —_—
p D d—1

then, in general, uniqueness fails. We remark that the Sobolev regularity of the vector

field u € L,1 W;’p implies the existence of a unique regular Lagrangian flow (see in
particular [7]). Nevertheless, quite surprisingly, our result shows that such Lagrangian
uniqueness is of no help to get uniqueness on the Eulerian side.

Previously, examples of such Eulerian non-uniqueness have been constructed, for
instance, in [18], based on the method of convex integration from [21], yielding merely
bounded velocity # and density p. However, such examples do not satisfy the differen-
tiability condition u € W' for any p > 1 and therefore do not possess an associated
Lagrangian flow.

Here is the statement of our first and main result.

Theorem 1.2 Let e > 0, p € C®([0, T] x T¢), with
/ 00, x)dx = / po(t,x)dx forevery t € [0, T].
Td Td

Let p € (1, 00), p € [1, 00) suchthat (12) holds. Then there exist p : [0, T]X']Td — R,
u:[0,T] x T¢ — RY such that

(a) p e C([0, T1; LP(T9), u € C([0, TT; WP (T?) N LY (T%));
(b) (p, u) is a weak solution to (1) and (3);
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(c) at initial and final time p coincides with p, i.e.

p0,-) =p(0,-), po(T,)=p(T,");
(d) pise-closetopi.e.

A

Our theorem has the following immediate consequences.

Corollary 1.3 (Non-uniqueness) Assume (12). Let p € C®(T?) with de pdx = 0.
Then there exist

p € C(10, T1; LP(T%)), u e C([0,T]; WP (T9) N LP (T9)))

such that (p, u) is a weak solution to (1), 3), and p =0att =0, p=patt =T.

Proof Let x : [0, T] — Rsuchthat x =0on [0,T/4], x = 1 on [3T /4, T]. Apply
Theorem 1.2 with p(z, x) := x(t)p(x). ]

Corollary 1.4 (Non-renormalized solution) Assume (12). Then there exist
p € C(10. T LP(T9), u e C([0, T]; W"P(T) N L7 (T7)))

such that (p, u) is a weak solution to (1), (3), and || p(¢) || . (pay is not constant in time.
Proof Take a smooth map p(¢, x) such that its spatial mean value is constant in time,

but its L? norm is not constant in time. Apply Theorem 1.2 with such p and

€ 1= 7 max lo@ Il cray — o) Lr(ray]|-

FN-

Remark 1.5 We list some remarks about the statement of the theorem.

1. Condition (12) implies that d > 3. In fact it is not clear if a similar statement could
hold for d = 2 - see for instance [2] for the case of autonomous vector fields.

2. Our theorem shows the optimality of the condition of DiPerna—Lions in (11), at
least for sufficiently high dimension d > 3.

3. The requirement that p has constant (in time) spatial mean value is necessary
because weak solutions to (1), (3) preserve the spatial mean.

4. The condition (12) implies that the L”,-integrability of the velocity u does not
follow from the Sobolev embedding theorem.

5. We expect that the statement of Theorem 1.2 remains valid if (12) is replaced by

1 1 1
— = > 14— (13)
p D d
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It would be interesting to see if this condition is sharp in the sense that uniqueness
holds provided
1 1 1
—+-=<1+-.
p P d
In this regard we note that (13) implies p < d. Conversely, if u € W7 with
p > d, the Sobolev embedding implies that u is continuous so that the uniqueness
statement in [15] applies.
6. The given function p could be less regular than C°°, but we are not interested in
following this direction here.
7. It can be shown that the dependence of p, u on time is actually C>, not just
continuous, since we treat time just as a parameter.

Inspired by the heuristic described above, the proof of our theorem is based on the
construction of densities p and vector fields u so that p is, in some sense, concentrated
on the “bad” set of u, provided (12) holds. To construct such densities and fields, we
treat the linear transport equation (1) as a non-linear PDE, whose unknowns are both p
and u: this allows us to control the interplay between density and field. More precisely,
we must deal with two opposite needs: on one side, to produce “anomalous” solutions,
we need to highly concentrate p and u; on the other side, too highly concentrated
functions fail to be Sobolev or even L”-integrable. The balance between these two
needs is expressed by (12).

It is therefore possible to guess that, under a more restrictive assumption than
(12), one could produce anomalous solutions enjoying much more regularity than just
p € LPandu € W'P . Indeed, we can produce anomalous solutions as regular as we
like, as shown in the next theorem, where (12) is replaced by (14).

Theorem 1.6 Lete > 0, p € C®([0, T] x T¢), with
/ p0, x)dx = / po(t,x)dx forevery t € [0, T].
Td Td

Let p, p € [1,00) and m, m € N such that

1 1 m-+m
—+=->1+

S+ T (14)

Then there exist p : [0, T] x T > R u:[0,T] x T¢ — R? such that

(a) p € C([0, T, W™P(T9), u € C([0, TT; W™ (T?)), pu € C([0, 1]; L' (T9));
(b) (p, u) is a weak solution to (1), (3);

(c) at initial and final time p coincides with p, i.e.

(d) pise-closeto p i.e.

tes[l(;,pT] ”,O(t, )=, )” wm.p(Td) =&
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Remark 1.7 The analogues of Corollaries 1.3 and 1.4 continue to hold in Theorems 1.6.
Observe also that (14) reduces to (12) if we choose m = 0 and m = 1.

Remark 1.8 Contrary to Theorem 1.2, here we do not show thatu € C ([0, T], LY (T9Y).
Here we prove that pu € C ([0, T], L' (T%)) by showing that p € C([0, T]; L*(T%))
andu € C([0,T]; Ls/(Td)) for some suitably chosen s, s" € (1, 00). This is also the
reason why in Theorem 1.6 we allow the case p = 1. Indeed, Theorem 1.2, for any

given p, produces a vector fieldu € C;L¥ ; on the contrary, Theorem 1.6 just produces
afieldu € C,LS, for some s’ < p'.

1.3 Extension to the Transport-Diffusion Equation

The mechanism of concentrating the density in the same set where the field is concen-
trated, used to construct anomalous solutions to the transport equation, can be used as
well to prove non-uniqueness for the transport-diffusion equation (7).

The diffusion term Ap “dissipates the energy” and therefore, heuristically, it
helps for uniqueness. Non-uniqueness can thus be caused only by the transport term
div (pu) = u - Vp. Therefore, as a general principle, whenever a uniqueness result is
available for the transport equation, the same result applies to the transport-diffusion
equation (see, for instance, [19,32,34]). Moreover, the diffusion term Ap is so strong
that minimal assumptions on u are enough to have uniqueness: this is the case, for
instance, if u is just bounded, or even u € L,’Lz, with 2/r +d/q < 1 (see [31]
and also [9], where this relation between r, g, d is proven to be sharp). Essentially, in
this regime the transport term can be treated as a lower order perturbation of the heat
equation.

On the other hand, the technique we use to prove non-uniqueness for the transport
equation allows us to construct densities and fields, whose concentrations are so high
that the transport term “wins” over the diffusion one and produces anomalous solutions
to (7) as well. Roughly speaking, we have to compare div (pu) with Ap = div (Vp),
or, equivalently, pu with Vp, for instance in the L' norm. The way we construct
concentration of p and u can be arranged, under a more restrictive assumption than
(12), so that

lpull i ~ 1, Vol < 1

[see the last inequality in (37) and (51)] and thus the transport term is “much larger”
than the diffusion one. The precise statement is as follows.

Theorem 1.9 Lete > 0, p € C®([0, T] x T¢), with
/ p0, x)dx = / po(t, x)dx forevery t € [0, T].
Td Td

Let p € (1,00), p € [1, 00) such that

1 1 1
—4+=>14+—, p<d-1. (15)
p b d—1
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Then there exist p : [0, T] x T > R u:[0,T] x T — R? such that

(a) p € C([0, T]; LP(T9), u € C([0, T]; WhP(T) 0 LP(T4));
(b) (p,u) is a weak solution to (7) and (3);
(c) at initial and final time p coincides with p, i.e.

(d) pise-closeto p i.e.
sup | p(t,-) —p(t, ) <e.
o | e

As for the transport equation, also for (7) we can generalize Theorem 1.9, to get
densities and fields with arbitrary large regularity. Moreover, we can cover also the
case of diffusion operators of arbitrary large order:

9 p +div (pu) = Lp, (16)

where L is a constant coefficient differential operator of order k € N, k > 2, not
necessarily elliptic.

Theorem 1.10 Let ¢ > 0, p € C®([0, T] x T¢), with
/ p0, x)dx = / po(t,x)dx forevery t € [0, T].
Td Td

Let p, p € [1,00) and m, m € N such that

1+1 l_}_m+n~1 - d—1 (17)
— — > s < 7.
p P d—1 p m+k—1

Then there exist p : [0, T] x T4 > R u:[0,T] x T — R? such that

(@) p € C([0, TT; WP (Th), u € C([0, T1; W™P(T?), pu € C([0, 1]; L' (T?));
(b) (p,u) is a weak solution to (16) and (3);
(c) atinitial and final time p coincides with p, i.e.

(d) pise-closeto p i.e.
sup p(t7)_15(t7 ) m, ay = €.
s | lymoco

Remark 1.11 The analogues of Corollaries 1.3 and 1.4 continue to hold in Theorems 1.9
and 1.10. Remark 1.8 applies also to the statement of Theorem 1.10.

Observe also that, if we choose m = 0, m = 1, k = 2, the first condition in (15)
reduces to the first condition in (17), nevertheless (15) is not equivalent to (17). Indeed,
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(15) implies (17), but the viceversa is not true, in general. This can be explained by

the fact that Theorem 1.9, for any given p, produces a vector field u € C,Lf,, while
Theorem 1.10 just produces a field u € C,L$. for some s’ < p'.

1.4 Strategy of the Proof

Our strategy is based on the technique of convex integration that has been developed
in the past years for the incompressible Euler equations in connection with Onsager’s
conjecture, see [10-13,22,23,29] and in particular inspired by the recent extension
of the techniques to weak solutions of the Navier—Stokes equations in [14]. Whilst
the techniques that led to progress and eventual resolution of Onsager’s conjecture in
[29] are suitable for producing examples with Holder continuous velocity (with small
exponent) [30], being able to ensure that the velocity is in a Sobolev space W7,
i.e. with one full derivative, requires new ideas.

A similar issue appears when one wants to control the dissipative term —Au
in the Navier—Stokes equations. Inspired by the theory of intermittency in hydro-
dynamic turbulence, Buckmaster and Vicol [14] introduced “intermittent Beltrami
flows”, which are spatially inhomogeneous versions of the classical Beltrami flows
used in [10-12,22,23]. In contrast to the homogeneous case, these have different scal-
ing for different L9 norms at the expense of a diffuse Fourier support. In particular,
one can ensure small L7 norm for small ¢ > 1, which in turn leads to control of the
dissipative term.

In this paper we introduce concentrations to the convex integration scheme in a
different way, closer in spirit to the B-model, introduced by Frisch et al. [27,28] as
a simple model for intermittency in turbulent flows. In addition to a large parameter
A that controls the frequency of oscillations, we introduce a second large parameter
n aimed at controlling concentrations. Rather than working in Fourier space, we
work entirely in x-space and use ‘“Mikado flows”, introduced in [20] and used in
[13,29] as the basic building blocks. These building blocks consist of pairwise disjoint
(periodic) pipes in which the divergence-free velocity and, in our case, the density
are supported. In particular, our construction only works for dimensions d > 3. The
oscillation parameter A controls the frequency of the periodic arrangement - the pipes
are arranged periodically with period 1/A. The concentration parameter p controls the
relative (to 1/X) radius of the pipes and the size of the velocity and density. Thus, for
large w1 our building blocks consist of a 1/A-periodic arrangement of very thin pipes
of total volume fraction 1/~ where the velocity and density are concentrated—see
Proposition 4.1 and Remark 4.2 below.

We prove in details only Theorem 1.2, in Sects. 2-6. The proofs of Theorems
1.6, 1.9, 1.10 can be obtained from the one of Theorem 1.2 with minor changes. A
sketch is provided in Sect. 7.

2 Technical Tools

We start by fixing some notation:
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e T¢ = R?/74 is the d-dimensional flat torus.
e For p € [1, co] we will always denote by p’ its dual exponent.
e If f(¢, x) is a smooth function of r € [0, T] and x € T4, we denote by

— || fllcx the sup norm of f together with the sup norm of all its derivatives in
time and space up to order k;

= [1f(#, )llck(ray the sup norm of f together with the sup norm of all its spatial
derivatives up to order k at fixed time ¢;

= If @, )l p(raey the LP norm of f in the spatial derivatives, at fixed time 7.
Since we will take always L” norms in the spatial variable (and never in the
time variable), we will also use the shorter notation || f (¢, -)|lzr = || f ()|l Lr
to denote the L? norm of f in the spatial variable.

° Cgo (T9) is the set of smooth functions on the torus with zero mean value.

e N={0,1,2,...}.

e We will use the notation C(Ay, ..., A,) to denote a constant which depends only
on the numbers Ay, ..., A,.

We now introduce three technical tools, namely an improved Holder inequality, an
antidivergence operator and a lemma about the mean value of fast oscillating functions.

These tools will be frequently used in the following. For a function g € C*°(T¢) and
% € N, we denote by g, : T¢ — R the 1/ periodic function defined by

g (x) == g(hx). (18)

Notice that for every k € N and p € [1, oo]

1D gl o cray = AXUD* gl Lo (pay-
2.1 Improved Holder Inequality

We start with the statement of the improved Holder inequality, inspired by Lemma 3.7
in [14].

Lemma2.1 Let » € Nand f,g : T¢ — R be smooth functions. Then for every
p €[l 0],

C
Ifgnliee = I flerligher| < =21 fllcrliglee, (19)
A/p

where all the norms are taken on T¢. In particular

C
= flicrlgllze- (20)

I fgller < IF Iz ligler + 57
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Proof Let us divide T¢ into A¢ small cubes {Q j}j of edge 1/A. On each Q; we have

/ [f )17 ]85 ()P
Qj

=/ (If(X)I”f][ If(y)\”dy>\gx(x)|”dx+][ If(y)l”dy/ lgx(x)|Pdx
0; [ Qj Q;

(since g, (x) = g(Ax))

. ‘ o .
=/ (|f(x>|"—f If(y)\”dY>\g,\(X)|”dx+A7f If(y)l”dy/ lg(0)[Pdx
Q; Q; Q; Td

(since |Q ;| = 1/2%)

= [ (eor—f 1rora)mwra [ o [ s

J

Summing over j we get
”fg)\.”Lp(Td) ”f” P(']I'd)”g”f,p(']rd)

+Z/ . (If(X)I” —][ . If(y)l”dy>|gx(X)|de-
j Qj Ql

Let us now estimate the second term in the r.h.s. For x, y € Q; it holds

LGOI = 1F O] = 21 W I9 Fcacasy = 20 Wy

Therefore

Z/ <|f(X)|”—][ |f<y)|de)|gA(x>|de
j 0Q; 0Q;
<Seyppr o lard
Y cl(T4) —~ /o Er (X X
J J

p
ANy 1817
P
)\’ ”f”gl(’]rd) ”g”Lp(Td)’

from which we get

I feally, = AN gl | < /\"Ilfll gh? .

Inequality (19) is now obtained by taking the 1/p power in the last formula and using
that for A, B > 0, |A — B|? < ||A|” — | B|?|. Finally, the improved Holder inequality
(20) is an immediate consequence of (19). O
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2.2 Antidivergence Operators

For f e C{° (T?) there exists a unique u € Cy° (T?) such that Au = f. The
operator A~ 1 C§°(T?) — C§°(T?) is thus well defined. We define the standard
antidivergence operator as VA™! : C3°(T?) — C*®(T?; R?). It clearly satisfies
div (VAL f) = f.

Lemma 2.2 For every k € N and p € [1, 0o], the standard antidivergence operator
satisfies the bounds
ID*(va~'e)|,, < CrplD*gliLr. 1)

Moreover for every A € N it holds
ID*(VA g |, = Crph* M ID g Lo (22)
Proof For p € (1, oo) from the Calderon-Zygmund inequality we get
IDE (VAT @) llyip iy < Crpl D*gllocrays 23)
from which (21) follows. For p = 0o, we use Sobolev embeddings to get
IDX (VAT )l pooqray < CIDH (VAT @) Iyt e
(by 23) with p = d + 1) < Cr.a+111D*gll a1 (70
< Crool D*gll oo ray.-
For p = 1 we use the dual characterization of L' norm. For every f € L!,

I £l L1 (rey = max { /Td fo 1 pe L®(T), ol oo (ray = 1}

= sup{/w fo @ e C®(TY, ol Loo(ray = l}.

Moreover, if {34 f = 0, it also holds

(A P =SUP{/W fo tpe C8°(T"), @l o (ray = 1}-
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Therefore (in the following formula 3% denotes any partial derivative of order k):

19°(VAT ) lI1crey = sup /T [ VAT ) g dx
)

peCse(T?
llpllpoo=1
_ k -1
= sup /BgVA ¢ dx
peCge(Td) J T
llgllgoo=1
(by Holder) < sup  [[8*gll 1) IVA™ @l o 1)
PeC(T?)
llellpoo=1
(using (21) with p = 00) < Co.00ll*gll1¢7ay  sSUP [l Loo(ra)
peC (T
llgllpoo=1

< Co.00l3*gll 1 (ray.

from with (21) with p = 1 follows. To prove (22), observe that

1
VA gi(x) = X(VA”g)(xx).

Therefore
ID*(VA™ gl oepay < ATHIDR (VAT @) )l Lo ray
< NDF VAT ) Lo ey
(by 21)) < Ci pA* M ID¥ gl Lo ey,
thus proving (22). O

With the help of the standard antidivergence operator, we now define an improved
antidivergence operator, which lets us gain a factor A~ when applied to functions of
the form f(x)g(Ax).

Lemma2.3 Let» € Nand f, g : T¢ — R be smooth functions with

fgk=][ ¢ =0.
Td Td

Then there exists a smooth vector field u : T — R? such that divu = fg), and for
everyk € Nand p € [1, o0],

ID*ull e < Cr pA* U fllcrer gl i (24)

We will write

u="TR(fgr).

@ Springer



Non-uniqueness for the Transport Equation Page150f38 18

Remark 2.4 The same result holds if f, g are vector fields and we want to solve the
equation divu = f - g), where - denotes the scalar product.

Proof Set
wi= fYA~lg — VA~ (Vf : VA—lgA).

It is immediate from the definition that divu = fg,. We show that (24) holds for
k = 0, 1. The general case k € N can be easily proven by induction. It holds (the
constant Co, , can change its value from line to line)

lulle < I flcollVA gl + | VATH VS - VAT )| .,
(by 21) < [ flcoll VA gullr + CoplIV flicoIVA™ g llLr

Co,p
(by (22)) < T||f||c' lgler,
so that (24) holds for k = 0. For k = 1 we compute
dju=0;fVA g + f3, VA g, — VA~ (va,»f VA g + VS a,-VA—ng).

Therefore, using again (21) and (22), (the constant C1,,, can change its value from line
to line)

9;ullr < cl,p[uajfnco||VA—1gA||Lp + 1 Flcolld; VA gl
+1IV3; fllcoll VA gallr + ||Vf||c0||3jVA_lg/\||u’i|
1
= Cip| I lcrligher + 1 lcolldjglier
1
+ 1Sl lgler + 1 llerlldjgliee

1
< Cl,p[||f||cl 9;8llLr + XIIfIICZIIgIILp]
= Ciplfliczliglwe-
O

Remark 2.5 Assume f and g are smooth function of (¢, x),t € [0, T], x € T9. If at
each time ¢ they satisfy (in the space variable) the assumptions of Lemma 2.3, then
we can apply R at each time and define

u(t.) = R(F et ).

where g, (¢, x) = g(t, Ax). It follows from the definition of R that u is a smooth
function of (¢, x).
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2.3 Mean Value and Fast Oscillations

Lemma2.6 Let . € Nand f, g : T¢ — R be smooth functions with

][ gx)dx =0.
Td

Then
V| fllerliglp
T

=<

‘ ][ J(x)g(rx)dx
Td

Proof We divide T¢ into small cubes {Q j} of edge 1/A. For each Q;, choose a point
xj € Q;. We have

' / f(x)g(rx)dx
Td

= ‘ > / f(x)g(hx)dx
i e

= ‘ S [f@ = fxep]gOxdx
A

=y /Q [£@) = F))]180)ldx
j J

_ Yl fliciligl s
< - :

3 Statement of the Main Proposition and Proof of Theorem 1.2

We assume without loss of generality that 7 = 1 and T is the periodic extension of

the unit cube [0, 1]¢. The following proposition contains the key facts used to prove

Theorem 1.2. Let us first introduce the continuity-defect equation:

a;p + div (pu) = —div R,

o (ou) 25)
divu =0.

We will call R the defect field. For o > 0 set I, = (0,1 — o). Recall that we are
assuming p € (1, 00).

Proposition 3.1 There exists a constant M > 0 such that the following holds. Let
n, 8,0 > 0andlet (pg, ug, Ro) be a smooth solution of the continuity-defect equation
(25). Then there exists another smooth solution (p1, u1, R1) of (25) such that

l/p
MullRoOIVE 4, 1 € I,
o1 () — po ()l Lo (pay < LT (26a)
LD = o, t €10, 10\ Ls2.
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_ 1/p
16 = w0l eray < {01 R iy 1 € Lo (26b)
0, t €0, 1]\]0/2,
w1 () — uo(Olly1.5(pay <6, (26¢)
S, tel,,
IRV L1 vy = IR0 L1 (ray + 8, 1 € o2 \Lo, (26d)
[ Ro() Il 1Ty, t €10, 1\Is 2.

Proof of Theorem 1.2 assuming Proposition 3.1 Let M be the constant in Proposi-
tion 3.1. Let & > 0 and n > O (their precise value will be fixed later, with n depending
oné). Letoy, =68, :=2"%and Iy := I,, = (04, 1 —0y).

We construct a sequence (oq, iy, R,) of solutions to (25) as follows. Let ¢, ¢, ¢1 :
[0, 1] — R three smooth functions such that

$o(t) + (1) + ¢1(1) =1 forevery 1 € [0, 1],

and
¢o(t) = 1on[0, ],
¢(t) = 1on[2¢8, 1 —2¢],
¢1(t)y =1on[l —¢,1].
Set

po(t) = Po(NH(0) + VA1) + 1 (D)A(D),
up(t) :=0, (27)
Ro(1) := = VA~ (3p0(1) + div (po(Duo (1)) = = VA~ (3,00(1)),

where the antidivergence is taken with respect to the spatial variable.

Assume now that (o4, 1y, Ry) is defined. Let (o441, g41, Ry4+1) be the solution
to the continuity-defect equation, which is obtained by applying Proposition 3.1 to
(:Oq’ Ug, Rq), 1,

8 =0442, 0 =0y41 (andthuso/2 = 0,442).

Lemma 3.2 The following inductive estimates are satisfied:

Ms,'”, el
Mn[|| Ry (¢ 8,17, re I \I,_,
”,Oq(t) _ ;Oq—l(t)”Ll’ < 77[” 0( )||1]/11) + q] q\ q—1 (28a)q
M’]”RO(I)”U ) t € l;n\ly,
0, t €0, 11\ g1,
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My~lsl", tel, ),
My~ [IRo ()l p1 + 8,17, 1 € I\I,-1,
g (1) —ug—1 @Dl <377 iy R (28b),
My~ [Ro@)," . t € I\,
0, t €10, 11\ Iy+1,
g (1) — ug—1 (D)5 < g41, (28¢),
8g+15 tely,
IRzt < { IR0t + 8g1. 1 € Igi\ Iy (28d),
IRo() 1, t €10, 1\ Iys1.

Proof For g = 0, (28a),—(28¢c), do not apply, whereas (28d), is trivially satisfied,
since Iy = . Assume now that (28a),—(28d), hold and let us prove (28a), |-
(28d)4+1. From (26a) we get

1/p
MRy, 1€ lgyo,
1) —psO|lLr < L
log+1() — pg@)|lLr = {07 { € [0, setminuslysa.

Therefore, using the inductive assumption (28d),, we get:

oifrel,, . !
log+1() = pg @iy < Ml RO\, < Mns [

o ifr el i\l

1 1/p
2410 = oy @) llr = MulR O < Mu[ 1RO +8441]

o ifr e Iq+2\1q+],

1 1
pg+1() — g lLr < My R} < Ml Ro)I1}/7,

and thus (28a),+1 holds. Estimate (28b),+1 can be proven similarly. Estimate (28¢)4+1
is an immediate consequence of (26¢). Finally, from (26d), we get

5q+2» t S Iq+1,
IRg41 NIt < VIR DIt + 8442, 1 € Iypa\yt1,
IRy ()11 te 0. 11\ y42.

Therefore, using the inductive assumption (28d),, we get:

o ift e Iq+2\1q+1,

[Rg+1 Lt = [Rg@) 1 + 8g+2 = IRo@) I L1 + g2
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o ift € [0, 11\/y42,
IRg+1(D gt = IRg (DNl = IRo @It

from which (28d),41 follows.

It is now an immediate consequence of the previous lemma that there exists
p € C((0,1); LP(T%),  ue C((0, 1); W' (T%) N C((0, 1); L (T?)  (29)
such that for every compact subset K < (0, 1)

maxsek ||pg () — p()llLr — 0

maxek [lug(t) —u()ll,, — 0

maxek [lug () —u@)llyrs — 0
maxek [[Rg (D)1 — 0,

as ¢ — oo, from which it follows that p, u solves (3)—(4) [or (1)—(3)] in the sense of
distributions. This proves part (b) of the statement.

We need now the following estimate. Letz € (0, 1) and let ¢* = ¢*(¢) € N so that
t € I;+\I +—1. By the inductive estimate (28a),

o) = poliLe <Y llpg(®) = pg—1(llLr
g=1
= llpgr—1(t) = pgr—a(O)llLr + g=(t) = pgs—1 (D) v

+ > leg®) = pg®lier

g=q"+1

1 oo
< MU[IIRO(I)IIIL/lp + (IR +8,) "+ Y 8(}/”}-
q=q"+1
(30)
Let us now prove that ||p(t) — p(0)||Lr — 0 ast — 0. Observe that, for t < &,
po(t) = p(0) and Ry(r) = 0. Hence, ift < &,

o) —pO)liLr = llp@) — po(®)llLr

r
(b}’(30))SMn[IIRo(t)IIIL/ler(IIRo(t)IILl+5q*) + > 85/”}
q=q*+1

00
1
— M)] Z (Sq/P’
q9=q

@ Springer



18 Page 20 0f 38 S.Modena, L. Székelyhidi Jr.

and the conclusion follows observing that ¢* = ¢*(t) — oo as t — 0. In a similar
way the limit ||p(t) — p(1)||L» — Oast — 1 can be shown. This completes the proof
of parts (a) and (c) of the statement.

Let us now prove part (d). We first observe that, for the ¢ given in the statement of
the theorem, we can choose & small enough, so that for every ¢ € [0, 1],

leo(t) —pMliLr < 3. (3D

NSNS

Indeed, if r € [22, 1 — 2¢], then pg(¢) = p(¢). If t € [0,2e] U [1 — 2¢, 1], then

’

| ™

leo(®) = pliLr = [¢oI£0) = o lLr + 11Dl p(1) = p @)Ly =

where the last inequality follows, by choosing £ sufficiently small. Therefore, for every
t €0, 1],

o) —pOliLr < llp(®) = pollLr + [lpo(t) — p(D)]ILr

(bY(30))SMn[llRo(t)II]L/lp+(|IR0(t)IIL'+5q*) Ly ””} .

2
q=q*+1
p 4 Ur | o 1/p
< My max 1RO + (IRo@ s +1) 7 4+ 3787 | +

<¢

— ©»

if 7 is chosen small enough (depending on Ry and thus on &). This proves part (d) of
the statement, thus concluding the proof of the theorem. O

4 The Perturbations

In this and the next two sections we prove Proposition 3.1. In particular in this section
we fix the constant M in the statement of the proposition, we define the functions p;
and u| and we prove some estimates on them. In Sect. 5 we define R; and we prove

some estimates on it. In Sect. 6 we conclude the proof of Proposition 3.1, by proving
estimates (26a)—(26d).

4.1 Mikado Fields and Mikado Densities
The first step towards the definition of pq, u#1 is the construction of Mikado fields and

Mikado densities.
We start by fixing a function ® € Cf"(Rd ~1) such that

supp @ € (0, H41, / o =0, / P’ =1.
Rd—l Rd—l
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Let &, (x) := ®(ux) for u > 0. Let a € R. For every k € N, it holds
1D (1 @)l a1y = w @D DED 1 a. (32)
Proposition 4.1 Let a, b € R with
a+b=d—1. (33)

Forevery u > 2d and j = 1, ...,d there exist a Mikado density ®{L : T — R and
a Mikado field W}, : T — R? with the following properties.

(a) It holds

div W}, =0,
div (Q{LW,{) =0, (34)
fqrd ®k/_A Z_de Wii =0,
f'ﬂ‘d © Wi =¢j,
where {e;} =1, .. a is the standard basis in RY.
(b) Foreveryk € Nandr € [1, 00]
ID* @Il rpay < @1 r a1y @07, )
IDXW | pay < 11| qa-1y 2 HE= @D,
(c) For j # k, supp e = supp W,{ and supp G){L N supp WZ; = 0.
Remark 4.2 In particular notice that if we choose
d—1 d—1
a=——, b=—
p p
and we define the constant M in the statement of Proposition 3.1 as
M := 2d max {||<I>||LDO(Rd_1), ||<I>||ioo(Rd,l), ||Vd>||LOO(Rd_|)}, (36)
then the following estimates hold:
d d d M
D N0 Lreray I Wiy D NOL Wil < = (37
j=1 j=1 j=1
and _ ‘ _
1O 1t (paye 1WA L1 eays IWhllwrs < M~ (38)
where

y :min{yl,yz, )/3} >0
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Y1 = (d—1)<1—1> > 0,
p

Y2 = (d—l)(l—l/) > 0,
p

1 1 1 1 1
y3:=—1—(d—1)[—,—7}=<d—1>[—+—~—(1+—)]>o.
p p p p d—1

Notice that 3 > 0 by (12).

and

Proof of Proposition 4.1 Step I For each j = 1, ..., d, we define the (non-periodic)
Mikado density (:),]L ‘R > R

(:)lji(xl, e Xp) = M“cbu(xl, e XL X g e Xd) (39a)
and the (non-periodic) Mikado field Wd ‘RY - R4
Wit xn) = P (X, X1 X Xa)ey (39b)

Notice that for the non-periodic Mikado densities

div W, =0,
div (&}, W} =0,
(O i 2 - (40)
f(o,l)d (?I_L ~:‘f(0,1)d Wi =0,
f(0,1)d ®/ji Wd =€,
where the last equality follows from (33). Moreover, from (32) we get
ko k—(d—1 k
1D O oyy = T PID @I L g (41)

ki j btk—(d—1 k
ID W 1r 0.1ty = w0 DR @ s g,

Step 2 We define @{L :T¢ — R and W,{ : T¢ — R? as the 1-periodic extension
of @,’L, VT/,{ respectively. Such periodic extensions are well defined, since supp ® C

0, D41 and @{L, W,{ do not depend on the j-th coordinate. Equations (34) and
estimates (35) come from the corresponding equations (40) and estimates (41) for the
non-periodic Mikado densities and fields.

Step 3 Finally notice that conditions (c) in the statement are not verified by @,ﬂ
and W,{ defined in Step 2. However we can achieve (c), using that © > 2d and

redefining @,]L, W,{ after a suitable translation of the independent variable x € T¢ for
eachj=1,...,d. O
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4.2 Definition of the Perturbations

We are now in a position to define p1, 1. The constant M has already been fixed in (36).
Let thus n, 8,0 > 0 and (po, ug, Rp) be a smooth solution to the continuity-defect
equation (25).
Let
A € N “oscillation”,

i > 2d “concentration”

be two constant, which will be fixed in Sect. 6. Let iy € C2°((0, 1)) such that ¢y = 0
on[0,0/2]U[l —0/2,1],% =1on[o,1 —0o]and [{y| < 1. We denote by Ry, ; the
components of Ry, i.e.

d
Ro(t,x) := > Ro(t, x)e;.
j=1

Forj=1,...,dletx; € C([0, 17 x ’]Td) be such that

0, if [Ro,;(t, x)| < 3/(4d),
X, x) = )
1, if |Ro,;(t, x)| = 8/(2d),
and |x;| < 1.
We set
pr:=p0+ 0+ 0, ur=u+w+w,
where 9, 9., w, w, are defined as follows. First of all, let @ﬂ, W,{, j=1,...,d,be

the Mikado densities and flows provided by Proposition 4.1, with a, b chosen as in
Remark 4.2. We set

d
9(t,x) =10 Y YOyt 1) sign (Ro j (1, ) |Ro j (1, 1) |7 O (1),

j=1
Be(t) = — ][ 9 (t, x)dx, (42)
'ﬂ‘d
d 1 / .
w(t,x) = n"" Y WO, 0)|Ro . 0P Wi ).
j=1

We will also use the shorter notation

d

D) =n Y Y(t)x;(t)sign(Ro,; (1) Ro j ()7 (©]),
Jj=1

d
w() =n""Y W @Ox;ORo; 17 (W]),.

j=1
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where, coherent with (18),
(07), () =0/,0x),  (W]),(x) = W] (rx).

Notice that # and w are smooth functions, thanks to the cutoffs x ;. Notice also that
¥ + 9, has zero mean value in T¢ at each time 7. To define w,., notice first that

d
. - 1 j
—divw(® =57 Y V(¥ 00| Ro ;077 - (W),
Jj=1
is sum of terms of the form f - g, each term has zero mean value (being a divergence)

and the fast oscillatory term W,{ has zero mean value as well. We can therefore apply
Lemma 2.3 and define

d
we(t) == —n"" ZR<V<¢(t)Xj(t)|Ro,j(t)ll/ ") (W,-ﬁ)k) (43)

Then div (w + w.) = 0 and thus
div u; = div ug + div (w + w,) = 0.

Moreover, by Remark 2.5, w, is smooth in (¢, x).

4.3 Estimates on the Perturbation
In this section we provide some estimates on ¥, ¥, w, we.
Lemma 4.3 (L?-norm of ©) For every time t € [0, 1],

Cm, 8, IRo() e w>)
Al/p

M 1/p
19O lrrsy < IR i) +

Proof The perturbation ¢ is the sum of functions of the form fg;. Therefore we can
apply the improved Holder inequality, Lemma 2.1, to get

d
13D lLr < TIZ Y (t) x;(t) sign (Ro,j(t))|R0’j(z)|l/p , ”®ZL”L”
j—l ’
452 w0 sienRo )| Ro 0] 7|, 1910,

Notice now that

= [Iros1],, < iroo1

mex j0sizn (Ro0) [ Ro, 0|7
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and, recalling the definition of the cutoff x; in Sect. 4.2,

[0 siencko )| Ro; 07|, = €O IR e o)

Therefore, using the bounds on || @le |lL» provided in (37), we get

C(nv 87 ”Ro(t)”Cl)
A/p ’

1
19 )y < —nIIRo(t)II "

Lemma 4.4 (Estimate on ) It holds

C, IR et (ray)
- .

[ ()] <

Proof We use Lemma 2.6:

z : Cl T Ll

1D ()] < A

j=1
COn. | Ro() 1 )
5 .

Lemma 4.5 (L” norm of w) For every time t € [0, 1],

€08, IRy®llctcrsy)
AP

10Ol ety < 2RI, +
Loy = 5, IR0 rcra)

Proof The proof is completely analogous to the proof of Lemma 4.3, with n~! instead
of nand |W;. |, instead of ||©/||.», and thus it is omitted. o

Lemma 4.6 (W'? norm of w) For every time t € [0, 1],

lw @y = € (1 IRoller )™

Proof We have

d
Dw(t.x) ="'y Y Wix)® D(Xj|Ro,,-|1/P’) + ax5 1 Roj |7 DW] (1),
j=1

from which we get the pointwise estimate

QU

IDw(t, )| = C(n, 8, 1Roller) Y <IW,{(M)| +A|Dwg(xx)|>.
j=1
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We can take now the L? norm of Dw(#) and use (38) to get

d
IDw®)l s < C(n. 8, [Rollcr) Y (HW,iuLﬁ - AnDW,ian-)
j=1
<C(n, 8, [Rollct)Ap™.

A similar (and even easier) computation holds for [|w(#) | 5, thus concluding the proof
of the lemma. O

Lemma4.7 (Lf’/ norm of w.) For every time t € [0, 1],

C(. 8, [ Rollc2)

”wC(I)HLI)’(Td) < Y
Proof The corrector w, is defined in (43) using the antidivergence operator of
Lemma 2.3. We can thus use the bounds given by that lemma, with k = 0, to get

AP

d
C ! /
, -1 0.p , ()P
lwe®lly <1 j§_l S|V on RO

d

C(1.5. |Rollc2) :

< ) IWly
j=1

C(n. 8, [ Rollc2)

(by 37)) -

IA

Lemma4.8 (Wl’ﬁ norm of w.) For every time t € [0, 1],

lwe@ s < € (0.8, I Rolles )u™.

Proof We estimate only ||[Dw.(¢)|l;;, the estimate for [|w.(¢)||;; is analogous and
even easier. We use once again the bounds provided by Lemma 2.3 with k = 1:

d
IDwe®lls <0 Cup D [V @x 0RO (Wil
j=1

(by (38)) = C(n, 8, IRollc3)n ™"

C? (’ﬂ‘d)

5 The New Defect Field

In this section we continue the proof of Proposition 3.1, defining the new defect field
R and proving some estimates on it.
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5.1 Definition of the New Defect Field
We want to define R; so that

—div Ry = 9;p1 + div (p1uy).
Let us compute

drp1 +div (prug) = div (Fw — Ro)
+ 0: (P + I¢) + div (Fuo + pow)
+ div (powe + Veuo + Ywe + Few + Feowe)

= div [(z?w — Ro)

(44)
+ (VA3 (0 + 90) + Puo + pow)
+ (Powc + Deup + dwe + Few + ﬁcwc)]
= div Ii(ﬁw — Ry + Rlinear + Rcorr:l
where we put '
R . — v AT1H, (9 + 9.) + Pug + pow 45)

R := powe + Feug + Fwe + ew + Fewe.

Note that we can apply the antidivergence operator VA™! to 9, (1 + 9,), since it has
zero mean value. Let us now consider the term ¥ w — Ry. Recall from Proposition 4.1,

that, for j # k, supp @{1 N supp W,’j = {J. Coherent with (18), we use the notation
(O], Wi (x) = 6], (Ax) W] (Lx).

We have

d
F(Ow() — Ro(t) = YY) x; (VR0 j (1) (O] W) — Ro(t)

]7

U

Y20 X; (R0 j O[O, W) —e;]
=1

~

+v2 ) zd: [x7(®) = 1]Ro j (D)e;
=
[wzmj— 1]Ro(t)
f VA xF(OR0; O[O, W]), — ef]
: X(1) 4+ RV (1),
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where we put

d
RX(t) :=92(0) Y [x; (1) = 1]Ro j (D)e;,

j=1

RY (1) == [¥*(t) — 1]Ro(1).

(46)

Thus, using again Proposition 4.1, and in particular the fact that div (G),ﬂ W,‘ﬁ) =0, we
get

d
div (@ (Ow() = Ro(0) = Y- V(42 0x}OR0,; ) - [ ©LW — ¢

j=1
+div (RX + RY).

(47)

Each term in the summation over j has the form f - g, and it has zero mean value,
being a divergence. Moreover, again by Proposition 4.1,

]frd@,’;WL{)xdx = ]frd O/ Widx =e;.
Therefore we can apply Lemma 2.3 and define
d
RS (1) 1= ZR(V(W(r)x}(r)RQ O RICAZE e,-D. (48)
j=1
By Remark 2.5, R9“49" j5 smooth in (¢, x). Summarizing, from (44) and (47) we get
3p1 + div (pru) = div [unadf 4 RX 4 RV 4 Rlinear RC"”].
We thus define
— R, := unadr + RX + Rw + Rlinear + Reorr, (49)

Aim of the next section will be to get an estimate in L' for R;(¢), by estimating
separately each term in (49).

5.2 Estimates on the Defect Field
We now prove some estimates on the different terms which define R;.
Lemma 5.1 (Estimate on R4y For every t € [0, 1],

C@. lIRollc2)

IR ()| 1 pay < -
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Proof R4 js defined in (48) using Lemma 2.3. Observe first that

V(2?0 x; O R0,; )| ¢ ey < CG, IR0l c2)-
Applying the bounds provided by Lemma 2.3, with £k = 0, and (37) we get

||Rq“adf<r>||LW)

C
_Z VP OxF O R0 0) | e [04W] = e 1,

Xd: c, ||R0||c2)

=1

~.

Lemma 5.2 (Estimate on RX) Foreveryt € [0, 1]

IR L1 (pay < 5

Proof Notice that (¢, x) = Lif |Ro (¢, x)| = 8/(2d). Therefore R* (¢, x) # O only
when |Rg,j(t, x)| < §/(2d). We thus have the pointwise estimate

|

d
IRX (1001 < 3 [xj(t, 0% = 1|Ro j (0, x)] <

Jj=1
from which the conclusion easily follows. O

Lemma 5.3 (Estimate on RY) I holds

tely,

0,
IRV ()l 11 (pay <
HEDZ VRO gy 1€ 10, 11\

Proof The proof follows immediately from the definition of RY in (46) and the defi-
nition of the cutoff 1. m|

Lemma 5.4 (Estimate on R For every t € [0, 1]
IR ()| 1 pay < C (1,8, 0. ol co. ol co, 1 Rollco) ™ .
Proof Ateachtimer € [0, 1],

”Rlinear(t)”Ll(Td)
< VAT (@ (1) + D)l 1 pay + 19 Ouo@ 1 ray + 100wl 1 (70
< 139Ol L1 pay + 19O + 19 Ouo Ol 11 (pay + oo (Ow O | 11 74y,
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where the first term was estimated using Lemma 2.2. We now separately estimate each
term in the last sum.
1. Estimate on ||9;9(¢)|| ;1. We have

QU

00 (0) = 1Y 0, (¥ (1) 0. ) sign(Ro,j (1. ¥) [ Ro (1, )17 0 Gx)
j=1

from which we get the pointwise estimate
d
0,0 (1)] < C(1, 8,0, [Rollct) Y 1O, ().
j=1
Using (38), we deduce
192 )I1 < C(, 8,0, [Rollc)n™.
2. Estimate on |9/(t)|. We have
[0 < 18,911 < C(n, 8,0, [ Rollc)™ .
3. Estimate on |0 (t)ug(t)| 1. We now use the classical Holder inequality to estimate

19 @Duolir = lluollcoll? @)l 1
d

< nlluollco Y 1R 1P| coll O 111
j=1

(by (38)) < C(n, lluollco, I Rollco) ™7

4. Estimate on || po(t)w(t)| ;1. Similarly, again using the classical Holder inequality,

lpo w1 < loollcolw ()1
d
<0 Meollco Y |1Ro 1P coll Wil
j=1
(by (38)) < C (. lpollco. I Rollco) ™.

Lemma 5.5 (Estimate on R°™) Foreveryt € [0, 1],

C(. 38, llpollcos lluollcos I Rollc2)
) .

IR (@) 1 (pay <
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Proof We estimate separately each term in the definition (45) of R°™.
1. Estimate on pow,.. By the classical Holder inequality,

leo@we®)lLr < llpollcollwe @)l 1

=< lloollcollwe @l L

C,3, llpollco, 1 Rollc2)
; .

A

(by Lemma 4.7) <

2. Estimate on ¥.ug. We use Lemma 4.4:

C(. lluollco. I Rollc2)

[9c(@uollLr < [ @)lluollco < A

3. Estimate on 9 w.. We use Lemmas 4.3 and 4.7:

C®. 38, llRollc2)

19 @OweO e = 19O NzrllweOll < .

4. Estimate on ¥.w. We use Lemmas 4.4 and 4.5:

[P @wOl 1 < [Fe@[w@)] L1

[T Mw @y

C®, 38, IRollc2)
A

IA

5. Estimate on v.w.. We use Lemmas 4.4 and 4.7:

[9c@we@ Lt < [ Ofllwe ()]l 1
= PcONlwe O Ly
< C(n,&)\IIZRollcz)'

A

]

Remark 5.6 In estimating R°°™ the only term where we really need the fast oscilla-
tion A is the estimate on Yw,. All the other terms could be alternatively estimated
using the concentration parameter u, since, by (38), [9.(0)], |we(O) |1, lw@) |1 <

const. ©«~7. In this way we would obtained the less refined estimate

C

C
IR @)1 < ;
’uV

_x-i-

which is however enough to prove Proposition 3.1.
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6 Proof of Proposition 3.1

In this section we conclude the proof of Proposition 3.1, proving estimates (26a)—(26d).
We will choose

c

n=2>x

for a suitable ¢ > 1 and X sufficiently large.
1. Estimate (26a). We have

lo1() = pollLr < [IFo(DllLr + D)l

C, 3, [Ro(@®)lcr)
Al/p

A

M 1/p
(Lemmas 4.3 and 4.4) < 777||R0(l)||L| +

C(n, |Ro(t
L CO IR ler)
A
1
< M| Ro®)II}/Y.

if the constant A is chosen large enough. Notice also that, if ¢ € [0, 1]\I;,2, then
?(t) = 0 and v, (¢) = 0, thanks to the cutoff i in (42). Therefore (26a) is proven.

2. Estimate (26b). The estimate uses Lemmas 4.5 and 4.7 and it is completely similar
to what we just did for (26a).

4. Estimate (26c). By Lemma 4.6,

lw®llyrs < c(n, ||R0||C1>AM_V <.

if w is chosen of the form u = A“ with ¢ > 1/y and A is chosen large enough.
4. Estimate (26d). Recall the definition of R; in (49). Using Lemmas 5.1, 5.2,5.3,5.4,
5.5,fort € I,, we get

8 1 1
[RiOll 1 = 5+ C@, 8,0, lpolico, lluollco, IRollc2) | — + —
2 A ,LLy

1

IA

8 1
5T C(.8,0, llpollco, lluollco, ”ROHCQ)(X + ACV)

<$é
provided A is chosen large enough. Similarly, for # € 152\ 1, we have

Rl

8 1 1
< [RoMllpr + 5T C(, 6,0, llpollcos luolico, ”RO”Cz)(X + M_>

8 1
= [Ro@llzr + 5+ €. 8. 0 floolico- lluollco. IIRollcz)(X + w,)

= IRo()ll1 +6
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if A is chosen large enough. Finally, for ¢ € [0, 1]\ /52, the cutoff function ¥ (1) = 0,
and thus 9 () = ¥.(t) = w(t) = w.(¢t) = 0. Therefore R{(t) = Ry(?).

7 Sketch of the Proofs of Theorems 1.6, 1.9, 1.10

Theorems 1.6, 1.9, 1.10 can be proven in a very similar way to Theorem 1.2 and thus
we present just a sketch of their proofs.

The proof of Theorem 1.2 follows from Proposition 3.1: similarly, for each one of
Theorems 1.6, 1.9, 1.10 there is a corresponding main proposition, from which the
proof the theorem follows.

7.1 Sketch of the proof of Theorem 1.9

The proof of Theorem 1.9 follows from the next proposition, in a very similar way as
Theorem 1.2 follows from Proposition 3.1. Let us consider the equation

orp + div (pu) — Ap = —div R,

50
divu = 0. (50)

Proposition 7.1 Proposition 3.1 holds with (50) instead of (25).

Sketch of the proof of Proposition 7.1 Exactly as in the proof of Proposition 3.1, we
define the Mikado densities and fields as in Proposition 4.1 and we choose the expo-
nents a, b as in Remark 4.2. We observe that, in addition to (37), (38), it also holds

IVOL Il < Mp™ < Mu™" (51)

for
y =min {y1, 2,13, 74} > 0,
where y1, y2, 3 were defined in Remark 4.2 and

d—1
V43=7—1>0,

because of the second condition in (15). Then the perturbations ¥, w, ¥, w. can be
defined as in Sect. 4.2 and the estimates in Sect. 4.3 continue to hold. In the definition
of the new defect field in Sect. 5 we want to define R; so that

—div Ry = 9;p1 + div (p1u1) — Apy,
which leads to an additional term V¢ in the expression for R'"® in (45). As a conse-
quence the only estimate which changes is Lemma 5.4. From (51) and the expression

for ¥ in (42) we easily obtain

IVOIl L1 ey < C, 8, [IRoll AR
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Since we choose u = A€ with ¢ > 1/y in Sect. 6, the final estimates for || R (¢)| ;1
continue to hold. This concludes the proof of proposition (and thence also the proof
of Theorem 1.9). O

7.2 Sketch of the proof of Theorem 1.6

Also for Theorem 1.6 there is a main proposition, analog to Proposition 3.1.

Proposition 7.2 There exists a constant M > 0 and an exponent s € (1, 00) such that
the following holds. Let n, 6,0 > 0 and let (po, ug, Ro) be a smooth solution of the
continuity-defect equation (25). Then there exists another smooth solution (p1, u1, Ry)

of (25) such that

1/s
M’7||R0(t)|| 1mdy° re 10/2’
lo1(®) — po(®)|l s (ray < LT (52a)
HE = o, t €10, 1\ /o2,
My~ RO b€ Iy,
i (6) = ol ay < 1 1RO oy G (52b)
O’ t e [09 1]\10'/27
1) — po(®) || wm.
lo1() — po () lyym.p (e < s (520)
w1 (2) — uo(t) [lyyin. 5 (Tay
8, tel,,
IRV L1 ray = § IR0l L1 (pay + 8, t € o2 \o, (52d)
I Ro (Il 1 (Tdy, t € [0, 1\ o2

Theorem 1.6 can be deduced from Proposition 7.2 exactly in the same way as Theorem
1.2 was deduced from Proposition 3.1. The only difference here is the following. In
general, it is not true that p(¢) € LP(T?), u(t) € L”/(’]I‘d). Therefore the fact that
pu € C((0, T); L'(T¢)) is proven by showing that p € C((0, T); L*(T¢)) (thanks to
(52a))and u € C((0, T); LS/(Td)) (thanks to (52b)).

Sketch of the proof of Proposition 7.2 The proof is analog to the proof of Proposi-
tion 3.1 presented in Sects. 4-6. Here, however, we need modify the “rate of
concentration” of the Mikado fields defined in (39) to achieve better estimates on the
derivatives. In other words, we have to modify the choice of a, b in (39), as follows.
In order to get estimates (52a)—(52b), we want

1Ol s (rays WL (gays < const, (53)
to get (52¢) we want
1O/ llwmr < const - ™7, [|W]|lynp < const -7 (54)
we also require
||®£||L1(Td), < const - u77, ||W[;||L1(Td) <const -u” 7, (55)
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for some positive constant y > 0. Compare (53) with the first and the second estimates
in (37), compare (54) with the last estimate in (38) and compare (55) with the first and
the second estimates in (38).
We want to find
a,be0,d—-1), (56)

sothata + b = d — 1 and (54) is achieved. If we can do that, then condition (55) is
a consequence of (35) and (56). Similarly, condition (53) is automatically satisfied,
choosing

and observing that (56) implies s, s’ € (1, 00).
Using (35), we see that, to achieve (54), we need

d—1
at+m—— <0, (57a)
p

d—1
b+m———y <O (57b)

p

Notice that, since a + b = d — 1, (57b) is equivalent to
1 -
a > (d—l)(l ——N)—i—m.

p

It is then possible to find a, b satisfying (56) and (57), witha +d = d — 1, if and only
if

1 d—1
max{O, (d—1)<1—7)+n~1}<min{d—1, ——m} (58)
4 4
and this last condition is equivalent to (14).

Proposition 7.2 can now be proven exactly as we proved Proposition 3.1 in Sects. 4—
6, this time using (53)—(55) instead of (37)—(38). O

7.3 Sketch of the proof of Theorem 1.10

Once again, also for Theorem 1.10 there is a main proposition, from which the proof
of the theorem follows. Let us consider the equation

0;p +div (pu) — Lp = —div R,

59
divu = 0. 9

Recall that L is a constant coefficient differential operator of order k € N, k > 2.

Proposition 7.3 Proposition 7.2 holds with (59) instead of (25).
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Sketch of the proof of Proposition 7.3 Similarly to the proof of Proposition 7.2, we want
to choose the exponents a, b € (0,d — 1) in Proposition 4.1 so that (53)—(55) are
satisfied and, moreover,

| D" Ol 1 ey < const- 77, (60)

for some positive constant ¥ > 0. As in Proposition 7.2, to get (53)—(55) we need
(58). Moreover, condition (60) is satisfied, provided

a+k—-1)—(d—-1) <0,
or, equivalently,
a<d-—k. 61)
Putting together (58) and (61), we obtain the condition

1 d—1
max{O, (d—1)<1—7>+r71} <min{d—1, d—k, ——m}.
p 4

It is now not difficult to see that the last inequality is satisfied if and only if (17) holds.

Then the perturbations %, w, ¥, w, can be defined as in Sect. 4.2 and the estimates
on the perturbations can be proven as in Proposition 7.2. In the definition of the new
defect field we want to define R; so that

—div Ry = 9,01 + div (p1u1) — Lp1.

We can write L = div Z, where L is a constant coefficient differenti_al operator of
order k — 1. This leads to an additional term L1 in the expression for R (compare
with (45)), which can be estimated using (60):

1LYl L1 (pay < C(p, 8, [1Rolle)AF 7

Choosing u = A€ with ¢ > (k — 1)/y, we get the estimates for ||Ry(¢)||;1. This
concludes the proof of the proposition (and thence also the proof of Theorem 1.10). O
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