
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2021) 7:1207–1222
https://doi.org/10.1007/s40747-021-00288-y

ORIGINAL ARTICLE

Solving two‑stage stochastic route‑planning problem in milliseconds
via end‑to‑end deep learning

Jie Zheng1  · Ling Wang1  · Shengyao Wang2 · Yile Liang2 · Jize Pan2

Received: 8 December 2020 / Accepted: 25 January 2021 / Published online: 14 February 2021
© The Author(s) 2021

Abstract
With the rapid development of e-economy, ordering via online food delivery platforms has become prevalent in recent years.
Nevertheless, the platforms are facing lots of challenges such as time-limitation and uncertainty. This paper addresses a
complex stochastic online route-planning problem (SORPP) which is mathematically formulated as a two-stage stochastic
programming model. To meet the immediacy requirement of online fashion, an end-to-end deep learning model is designed
which is composed of an encoder and a decoder. To embed different problem-specific features, different network layers are
adopted in the encoder; to extract the implicit relationship, the probability mass functions of stochastic food preparation
time is processed by a convolution neural network layer; to provide global information, the location map and rider features
are handled by the factorization-machine (FM) and deep FM layers, respectively; to screen out valuable information, the
order features are embedded by attention layers. In the decoder, the permutation sequence is predicted by long-short term
memory cells with attention and masking mechanism. To learn the policy for finding optimal permutation under complex
constraints of the SORPP, the model is trained in a supervised learning way with the labels obtained by iterated greedy
search algorithm. Extensive experiments are conducted based on real-world data sets. The comparative results show that
the proposed model is more efficient than meta-heuristics and is able to yield higher quality solutions than heuristics. This
work provides an intelligent optimization technique for complex online food delivery system.

Keywords  Stochastic online route planning · Intelligent optimization · End-to-end deep learning · Supervised learning ·
Iterated greedy search

Introduction

With the prevalence of mobile Internet, online food delivery
(OFD) APPs have become more and more popular for the
convenience in daily life. Millions and billions of transac-
tions are completed via these APPs every day. In 2016, the
worldwide market of food delivery reached up to €83 bil-
lion [39]. In China, one of the best-known OFD platforms,
Meituan, obtained a total revenue of ¥24.7 billion for the
second quarter of 2020. Over 457 million customers order
food on Meituan platform with more than 6.3 million active
restaurants to choose [23]. In the United States, the total
food sales of OFD were expected to grow by 16% from 2017
to 2022 according to Morgan Stanley Research [24]. With
huge market opportunities and strong user demand, the OFD
will continue to develop quickly and steadily in the future.

The major mode of the Meituan is shown in Fig. 1. When
a customer orders food, the order will be pushed to the cor-
responding restaurant and then assigned to a rider instantly

 *	 Ling Wang
	 wangling@tsinghua.edu.cn

	 Jie Zheng
	 j‑zheng18@mails.tsinghua.edu.cn

	 Shengyao Wang
	 wangshengyao@meituan.com

	 Yile Liang
	 liangyile@meituan.com

	 Jize Pan
	 panjize@meituan.com

1	 Department of Automation, Tsinghua University,
Beijing 100084, China

2	 Meituan, Beijing 100102, China

http://orcid.org/0000-0002-9640-1604
http://orcid.org/0000-0001-8964-6454
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00288-y&domain=pdf

1208	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

with a well-planned route by the platform. The whole mode
can be abstracted as an order dispatching problem and an
online route-planning problem (ORPP), where the latter is
the key problem of the system. The quality of the planned
routes can directly influence the assignment of orders to rid-
ers where improper assignments will cause great waste of
transportation resources. Besides, low-quality routes will
make riders to take a detour or deliver food later than the
estimated time of arrival (ETA) promised to customers, and
therefore affect the efficiency of riders and experience of
customers. Since there are massive orders every day and
each order needs to be delivered in a short period of time
(usually less than 40 min), the platform should make deci-
sions very fast even within 1 min. The computational time
left for route planning will be limited to millisecond level. In
consequence, it is absolutely necessary for the platforms to
put forward intelligent techniques to deal with the complex
problems efficiently and robustly.

Extensive research works about solution methods [1,
29] have been carried out on the traditional route-planning
problem (RPP) which is abstracted as traveling salesman
problem (TSP), such as branch and bound method [3], 2-opt
algorithm [34], genetic algorithm (GA) [12], and ant colony
optimization [13]. Compared to the traditional RPP or TSP,
the ORPP is much more complex. In addition to the imme-
diacy requirement of the online fashion, the ORPP is also
subject to time-window constraints, precedence constraints,
and so on. However, few research works have been carried
out on the ORPP. To minimize the total cost of the ORPP,
Wang et al. [37] proposed an iterated greedy algorithm (IG)
with several problem-specific heuristics. To speed up the
initialization process of the same problem, they employed
the extreme gradient boosting method to adaptively select
the appropriate constructive algorithms [36]. The problem
related to the ORPP is the single vehicle pickup and deliv-
ery problem with time windows (SVPDPTW), which is an
extension of TSP and a basic version of pickup and delivery
problem (PDP). Hosny and Mumford [17] presented a GA
with a duplicate gene encoding to deal with a large number

of constraints. To solve the SVPDPTW with capacity con-
straints, Edelkamp and Gath [9] designed a nested Monte
Carlo search with policy adaptation. However, these algo-
rithms cannot satisfy the immediacy requirement of online
optimization. On the contrary, machine learning (ML) turns
out to be promising for solving combinational optimization
(CO) problems effectively in short computational time. Ben-
gio et al. [5] have investigated the major methods of comb-
ing ML with traditional CO algorithms, and divided them
into three kinds: (a) end-to-end learning methods, which
use ML to directly solve the problem; (b) ML-first meth-
ods, which apply ML to provide meaningful properties of
optimization problems and guide the search direction for
CO algorithms; (c) ML-alongside methods, which utilize
ML during the iterative process of optimization algorithms.
The end-to-end learning methods are suitable for real-time
applications, while the latter two are still time-consuming
due to the CO algorithms.

Recently, end-to-end machine learning methods have
been explored on CO problems, especially on TSP. Vinyals
et al. [35] proposed a pointer network model to tackle the
Euclidean TSP with supervised learning based on sequence-
to-sequence framework. The encoder and decoder are both
constructed by recurrent neural networks, which make it
possible to solve different input graph sizes. Nevertheless,
this supervised learning model has the limitation of strong
dependence on high-quality labels. To overcome the draw-
back, Bello et al. [4] used a reinforcement learning method
to train the similar pointer network and set the tour length
as a reward signal. To avoid the influence of input sequence
on the model, Khalil et al. [18] employed a graph neural
network to process the input data, and combined the rein-
forcement learning to address the problem. By modifying
the pointer network with attention mechanism and reinforce-
ment learning method, the solutions gained by Kool et al.
[19] have been improved over recent heuristics for TSP.
Besides, Ma et al. [22] introduced the graph pointer network
trained by reinforcement learning which performed better
than the pointer network [35], but could not dominate the
attention model [19].

Most of the above literatures assumed all the parameters
as deterministic values. However, uncertainty is ubiquitous
and inevitable in real life. Powell [28] published a compre-
hensive review of the stochastic optimization. As mentioned,
the stochastic problems can be solved either exactly [15] or
approximately [40]. The former usually assumes the distri-
bution functions to be additive such as gamma distribution
and normal distribution, or can be decomposed into multi-
ple additive functions. The latter includes sampling methods
such as Monte Carlo sampling or direct online observations
(also called data driven approach). However, the conver-
gence of the Monte Carlo method is very slow: the ultimate
accuracy cannot be improved faster than O(1∕

√
N) , where N

Fig. 1   The major mode of Meituan platform

1209Complex & Intelligent Systems (2021) 7:1207–1222	

1 3

is the number of simulation samples or replications [20]. The
computational cost will be prohibitively high if the problem
is complex and requires high accuracy.

To speed up the stochastic optimization, some methods
have been developed. For ranking and selection problems,
Chen and Lee [8] proposed an optimal computing budget
allocation method, which allocates the samples sequentially
to optimize the selection quality under a simulation budget
constraint. Besides, Bengio et al. [7] proposed a supervised
learning method to find the representation scenario (RS) and
transformed the stochastic problem to a deterministic one,
which could obtain similar solution quality with much less
computing time than general algorithms. However, the RS
could not always exist and the generalization ability of the
model is unsatisfactory sometimes. Although this method
greatly reduces the computational time compared to sam-
pling methods, it sacrifices accuracy to a certain extent.

As for TSP and PDP, uncertainty mainly lies in travel
time, food preparation time, service time, and customer
demand. For the dynamic PDP with stochastic food prepa-
ration time, Ulmer et al. [33] assumed that the time was
gamma distributed and presented a cost function approxi-
mation with time buffers to solve the uncertainty. For the
stochastic TSP with pickups and deliveries, Elgesem et al.
[10] assumed that the travel time was independent normal
distributed, and employed several exact methods based on
Monte Carlo simulation to solve the problem. As for the
green vehicle routing problem with stochastic costumer
demands, Niu et al. [27] generated the mean demand
according to a discrete uniform distribution and proposed
a membrane-inspired multi-objective algorithm to solve the
problem. The above literatures all assumed that the random
variables obeyed independent and additive functions. How-
ever, this assumption may lose some information of real data
distributions. In this paper, we assume the food preparation
time as stochastic variables and propose the stochastic ORPP
(SORPP). The discrete distribution functions of the food
preparation time are predicted by an ML model trained by
historic data from Meituan. The functions are very complex
with long tail, multimodality, and without additivity. To our
best knowledge, there are no other research works that con-
sider stochastic variables with such kind of distributions.

From the literature review, it can be seen that the exist-
ing exact algorithms or meta-heuristics of related problems
are inappropriate to solve the SORPP due to their unaccepta-
ble computational time. Although some heuristics can solve
related problems quickly, they cannot guarantee the quality
of the obtained solutions. Therefore, the core challenge for
SORPP is how to obtain satisfactory solutions within a very
short period of time. Hence, we use an end-to-end machine
learning method to solve the proposed problem efficiently. As

mentioned before, the existing research works of end-to-end
learning can mainly be classified into two types: supervised
learning [35] and reinforcement learning [4, 18, 19, 22]. The
former is relatively easy to implement, but strongly depends
on the label quality. In the case of high-quality labels, super-
vised learning can well imitate the “expert experience” and
learn the optimization policy to generate satisfying solutions.
The latter does not require labeling and complex feature engi-
neering, but it is difficult to design appropriate reward/action/
state functions. With approximated policy, the reinforcement
learning model may fall into local optima easily. Besides, it
usually costs much longer training time than supervised learn-
ing. In real-life situation of Meituan platform, each rider can
only carry a small number of packages limited by the trunk
capacity. If the computational time is not limited, the optimal
(or approximate optimal) solutions of the problems on this
scale are easy to find. That is, we can obtain plenty of high-
quality labels of the problem. Therefore, we design an end-
to-end deep learning model trained by supervised learning to
solve the problem. The model is denoted as Meituan stochastic
delivery network (MSDN).

Overall, the major contributions of this paper can be sum-
marized as follows:

1.	 We propose the stochastic online route-planning prob-
lem for the first time which is formulated by a two-stage
stochastic programming mathematical model.

2.	 We design an end-to-end deep learning method to solve
the SORPP. In the encoder, the model produces the
embeddings of all input features by specially designed
network layers. In the decoder, the permutation sequence
is predicted by long-short term memory (LSTM) cells
with attention and masking mechanism.

3.	 We present problem-specific features to improve the per-
formance of the model.

4.	 We adopt the IG algorithm based on Monte Carlo sam-
pling to obtain high-quality labels for model training.

5.	 We conduct extensive experiments on the real-world
data sets from Meituan. The results show the effective-
ness and efficiency of the proposed model.

The remaining of the paper is organized as follows. The
next section provides the description and formulation of the
SORPP. The continuous section introduces the IG algorithm
for labeling. And the following section presents the details
of the proposed MSDN. Computational results and compari-
sons are reported in the consequent section. Finally, the paper
is ended with some conclusions and future work in the last
section.

1210	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

Problem description

A problem instance of the SORPP comprises one rider
and n orders, denoted as W = {w1, w2, …, wn}. Each order
specifies a pickup point (the corresponding restaurant)
and a delivery point (the corresponding customer). As
shown in Fig. 2, the rider will start from the current posi-
tion and pick up or deliver food according to the planned
route where the food preparation time of unpicked orders
is stochastic. At the scheduling time, some of the orders
have already been picked up, so we only consider their
delivery points. P = {1, …, n1} is the set of pickup points
and D = {n1 + 1, …, n1 + n} is the set of the delivery
points, where n1 is the number of pickup points. In addi-
tion, an order is represented as a point pair (i, n1 + i),
i ∈ [1, n1], or (− 1, n1 + i), i ∈ [n1 + 1, n], where − 1 is the
pickup point which has already been visited before.

In Meituan’s situation, some basic constraints are given
as follows.

1.	 Precedence constraints. The rider must pick up the food
before deliver it.

2.	 Time window constraints. The rider must pick up the
food after it has been prepared (hard time-window) and
should try to deliver it before the promised time, also
called ETA (soft time-window). Since the food prepa-
ration time is stochastic, all the values sampled from
the corresponding probability mass functions (PMFs)
should meet the time-window constraints.

The goal of the SORPP is to minimize the expected
time cost, denoted as ETC. The problem can be modeled
as a two-stage stochastic programming with the follow-
ing notations.

Parameters:

v	� The speed of the rider.
n	� The number of orders.
n1	� The number of pickup points.
W	� The set of all orders.
K	� The set of scenarios.
N	� The set of all points, N = {0, 1, …, n1 + n}, where 0 is

the starting point of the rider.
P	� The set of pickup points, P = {1, …, n1}.
D	� The set of delivery points, D = {n1 + 1, …, n1 + n}.
dij	� The distance between point i and j, i, j ∈ N.
tij	� The travel time between point i and j, i, j ∈ N.
ei	� The ETA of point i, i ∈ D.
ξri

k	� The preparation time of point i in scenario k, i ∈ P,
k ∈ K.

M	� A sufficiently large positive number.
|*|	� The number of elements in a certain set

Decision variables:

xi,j	� 1, If the point j is assigned after i; 0, otherwise, i,
j ∈ N.

ui	� The sequence of point i, i ∈ N. ui ∈ [0, n1 + n], ui ∈ ℤ.
ai

k	� The arrive time of point i in scenario k, i ∈ N, k ∈ K.
li

k	� The leave time of point i in scenario k, i ∈ N, k ∈ K.
twi

k	� The wait time of point i in scenario k, i ∈ P, k ∈ K.
toi

k	� The overtime of point i in scenario k, i ∈ D, k ∈ K

(1)min
x,u

ETC =
∑
i∈N

∑
j∈N−{0}

di,jxi,j

v
+ℚ(x, �r)

Fig. 2   An instance of the
SORPP

1211Complex & Intelligent Systems (2021) 7:1207–1222	

1 3

s.t.

where:

s.t.

(2)
∑

j∈N−{0}

xi,j = 1, ∀i ∈ N

(3)
∑

j∈N−{0}

xj,i = 1, ∀i ∈ N − {0}

(4)ui ≤ M − 1 − (M − 2)x0,i, ∀i ∈ N − {0}

(5)
ui − uj + (M − 1)xi,j + (M − 3)xj,i ≤ M − 2, ∀i ∈ N, j ∈ N, j ≠ i

(6)ui ≤ ui+n − 1, ∀i ∈ P

(7)u0 = 0

(8)xi,j ∈ {0, 1}, ∀i ∈ N, j ∈ N − {0}, j ≠ i

(9)ui ∈
[
0, n1 + n

]
N, ∀i ∈ N,

(10)ℚ(x, �r) = min
to,tw

1

|K|
∑
k∈K

(∑
i∈D

tok
i
+
∑
i∈P

twk
i

)

(11)
ak
j
− lk

i
−Mxi,j ≥

di,j

v
xi,j −M, ∀i ∈ N, j ∈ N − {0}, j ≠ i, ∀k ∈ K

(12)
ak
j
− lk

i
+Mxi,j ≤

di,j

v
xi,j +M, ∀i ∈ N, j ∈ N − {0}, j ≠ i, ∀k ∈ K

(13)lk
i
≥ ak

i
, ∀i ∈ N, ∀k ∈ K

(14)lk
i
≥ �rk

i
, ∀i ∈ P, ∀k ∈ K

(15)lk
0
= 0, ∀k ∈ K

(16)ak
0
= 0, ∀k ∈ K

(17)twk
i
≥ �rk

i
− ak

i
, ∀i ∈ P, ∀k ∈ K

(18)tok
i
≥ lk

i
− ei, ∀k ∈ K

(19)twk
i
≥ 0, ∀i ∈ P, ∀k ∈ K

The objective function (1) is to minimize the expected time
cost ETC which includes the rider traveling time, the expected
waiting time, and overtime under stochastic situation. x and
u are the first-stage decisions. tw and to are the second-stage
decisions. Constraints (2) and (3) imply that each order can
only be picked up once and delivered once, and the starting
point will only be select once. Constraints (4) and (5) indi-
cate the transformation of x and the sequence of the points u.
Constraints (6) ensure that the precedence relationships can-
not be violated. Constraints (7)–(9) display the value ranges
of the first-stage decision variables. The objective function
(10) of the second stage is to minimize the expected waiting
time and overtime under stochastic situation. Constraints (11)
and (12) reveal that the arrive time of one point is equal to
the leave time of the previous visited point plus the traveling
time between the two in a certain scenario. Constraints (13)
and (14) show that the leave time of each point is larger than
the arrive time and the preparation time (for pickup points).
Constraints (15) and (16) denote that the leave time and arrive
time of the starting point are both 0. In addition, Constraints
(17) define that tw is larger than the difference between the
stochastic food preparation time and the arrive time for pickup
points. Similarly, to is larger than the difference between the
leave time and the ETA for delivery points as shown in Con-
straints (18). Constraints (19) and (20) demonstrate the value
ranges of tw and to in each scenario.

The IG algorithm for labeling

As mentioned before, we employ supervised learning to train
the model where the labels are obtained by the IG algorithm.
The IG algorithm is of powerful exploitation capability and
has been successfully applied to various scheduling prob-
lems [25]. As shown in Fig. 3, the main procedure of the IG
algorithm includes initialization, destruction, reconstruction,
and problem-specific local search.

Representation

A solution is represented by 1 + n1 + n permutation sequence
Π, including the starting point of the rider, the pickup and
delivery points of all orders. For an example with n1 = 2,
n = 3, as shown in Fig. 1, the permutation sequence is
Π = {0, 5, 1, 3, 2, 4}, where the starting point is set as 0,
and w1, w2, w3 are associated with (1, 3), (2, 4), and (− 1,
5), respectively. The point − 1 is ignored in the problem.

(20)tok
i
≥ 0, ∀i ∈ D, ∀k ∈ K.

1212	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

Initialization

The initial route is generated by the adaptive
Nawaz–Enscore–Ham (aNEH) heuristic [25]. The main
steps of the aNEH are as follows.

Step 1: Set initial permutation as Π0 = {0}.
Step 2: Rank n orders by their ETAs in an ascending

order, W = (w(1), w(2), …, w(n)) where w(i) represents the ith
order with the least ETAs. Let i = 1.

Step 3: Insert the pickup point of w(i) into all position
of Π0. Once assigned, insert the delivery point of w(i) into
all positions after the position of the related pickup point.
The permutation with minimal ETC will be reserved
and replace Π0. The ETC is calculated by Monte Carlo
sampling.

Step 4: If i ≤ n, i = i + 1, go to Step 3; otherwise, output
Π0.

By this way, a solution with certain quality is generated.

Random destruction

In the destruction phase, α (α < n) orders are randomly
selected, with the removal of their pickup and delivery
points from the permutation sequence. The chosen point
pairs constitute a list, denoted as LS = {pairi, i ∈ [1, α]}, and
the remaining permutation is denoted as ΠR.

Greedy reconstruction

In the reconstruction phase, the LS is shuffled at first to
ensure sufficient randomicity. Then, the pickup point (if not
− 1) and the delivery point of the order in LS will be inserted
into ΠR successionally. The partial solution with minimal
ETC will be reserved greedily.

Problem‑specific local search

To further improve the performance of the algorithm, a
problem-specific local search is designed with following
two neighborhood search operators.

Backward search

Find the delivery points with largest expected overtime and
move them backward to an optimal position.

Forward search

Find the points with most sufficient time and move them
forward to an optimal position.

Acceptance and stopping criteria

To avoid falling into local minimum, we employ the accept-
ance criteria of simulated algorithm. That is, we not only
accept the solutions better than current one, but also worse
solutions sometimes according to an acceptable probability.
The probability is p = e

−
(
E
�

TC
−Ebest

TC

)
∕T
, where T > 0 is the cur-

rent temperature, E′

TC
 is the objective function value of a

certain solution, and Ebest
TC

 is the objective function value of
the best solution obtained before. T is initialized with initial
temperature T0, and is updated as Tg+1 = c × Tg at iteration g.
c ∈ (0, 1) is the cooling rate.

The algorithm will be finished if one of the following
stopping criteria is met: the maximum number of iterations
gmax has been reached; the best solution is not improved for
t consecutive iterations.

MSDN for SORPP

We design an end-to-end deep learning model to solve the
SORPP in an online fashion. The MSDN is composed of
an encoder and a decoder, which is shown in Fig. 4. The
encoder is used to produce embeddings of all input features,
and the decoder can produce the sequence of the route points
based on the output of the encoder.

Fig. 3   The framework of iterated greedy algorithm

1213Complex & Intelligent Systems (2021) 7:1207–1222	

1 3

Feature engineering

Feature engineering is to extract features from raw data and
transform them into applicable format, which is a crucial
part in machine learning. Suitable features can reduce the
difficulty of modeling and improve the performance of out-
put results [41]. However, it is challenging to design effec-
tive features which usually depend on expert knowledge
about the optimization problem and statistics analysis on
large quantity of data.

In our paper, basic features of the SORPP include the
rider and order information as follows.

Rider‑related features

The location (latitude and longitude) of starting point, the
average speed during the last month, the number of carried
orders, and the number of pickup points and delivery points.

Order‑related features

The ETAs, the locations of the pickup and delivery points,
respectively, and the PMFs of the food preparation time.

Although these features are enough to define an instance
of the SORPP, they cannot well reveal the law of optimal
solutions. For example, the order which is closer to the
rider or is more urgent will possibly be visited with higher
priority. Therefore, we design problem-specific features to
describe the urgency of orders, the position relationship
(including distance and time) between orders, as well as
the position relationship between orders and the rider, as
shown in Fig. 5. The urgency is represented by the remaining
time of order delivery, defined as etai − d0,i/v for the orders
already picked up, while etai − (di,i+n + d0,i)/v otherwise. The
distance and travel time between order points and the rider
position are denoted as d0,i and d0,i/v, i ∈ N − {0}, respec-
tively, where d0,i is calculated by the longitude and latitude
position information. Besides, the distance and travel time

between the pickup and delivery points of each order are
di,i+n1 , di,i+n1∕v, i ∈ [1, n1] , respectively, for orders which
have not been picked up and d0,i+n1 , d0,i+n1∕v, i ∈ [n1 + 1, n]
otherwise. Besides, the specific statistics of PMF is com-
posed of the corresponding mean, sum, medium, maximum,
minimum values, and standard deviation. By introducing
these problem-specific features, the performance of the
model is further improved.

We pre-process the data by cleaning missing data and
replacing anomalous data with average values. Besides, all
the continuous features are normalized first according to the
average values and standard deviations of the training set.

Encoder

The encoder is used to transform the input into an intermedi-
ate embedding. As shown in Fig. 6, we deal with different
types of features separately and then concatenate them to
a final embedding. The encoder component includes three
parts: rider embedding of rider features, order embedding
of order features, and location embedding of the loca-
tion matrix which consists of all the location information
extracted from the rider and all orders.

Location embedding

Because the latitudes and longitudes are nonnumeric infor-
mation, we adapt the GPS embedding (or cell coding) [21]
to represent them. The main idea of GPS embedding is to
divide the area into small grids with corresponding geo-
graphical information according to certain rules. Compared

Fig. 4   The framework of the MSDN

Fig. 5   All features of the SORPP

1214	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

to geohash method [26] or one-hot representation [6], the
GPS embedding can depict GPS information more accu-
rately based on distance weights. Therefore, it can avoid
the sudden change of neighborhood location and make the
embedding smoother. The main steps of the GPS embedding
are as follows.

Step 1: Map the latitudes and longitudes into grids of
300 × 300 m2.

Step 2: Reserve the grids which are not out of vocabulary.
Since some of the grids have one or multiple GPS points,
while others may have none, we only reserve the grids with

multiple GPS points according to a threshold (set as 300) to
guarantee the continuity of a route.

Step 3: Transform the retained grids into a d1-dimensional
embedding denoted as Em(*).

Step 4: Calculate the embedding of each location based on
bilinear interpolation of 4 nearest vertices of the grid. For an
example, as shown in Fig. 7, G is a certain location which is
concatenated with 4 vertices, denoted as Gij i, j = {1, 2}. The
embedding of G is calculated as follows:

To better reflect the location relationship between the
points, we extract the location features from all the points
and form a global location embedding with (1 + n + n1, d1)
size by above method, denoted as Emloc. Then, a factor-
ization-machine (FM) [30] layer is employed to fuse the
features. The FM can find the correlation of features by

(21)

Em(G) =
(lx − x)(ly − y)

lx × ly
Em(G

11
) +

x(ly − y)

lx × ly
Em(G

21
)

+
(lx − x)y

lx × ly
Em(G

12
) +

xy

lx × ly
Em(G

22
).

Fig. 6   The encoder of the MSDN

Fig. 7   An instance of grid code

1215Complex & Intelligent Systems (2021) 7:1207–1222	

1 3

combing and overlapping them. The formulation of FM
is as follows:

where w ∈ R
d , Vi ∈ R

k are weight vectors, d is the num-
ber of features, k is the given embedding length, and xi is
the value of ith feature. The addition unit ⟨w, x⟩ reflects the
importance of order-1 features and the inner product units
represent the impact of order-2 feature interaction. In the
location embedding, x = Emloc, d = n + n1, and k = d1. The
FM acts on the first axis and outputs a vector with the size
of d1 which is denoted as Lloc.

By this method, all the locations can be mapped into a
reasonable embedding which implies the spatial distance
relationship between them.

Rider embedding

Rider features include one continuous feature (rider speed)
and five discrete features. The latitude and longitude of the
starting point is disposed by above method. To avoid infor-
mation loss during the training process, we increase the
dimension of other numeric features by transforming them
into a d2-dimensional learnable embedding, denoted as er.
The deep FM [14] is adopted to further process the rider
features thanks to its effectiveness in combinatory features.
Deep FM consists of an FM and a deep neutral network
(DNN). The former is used to learn the linear and pairwise
interactions between features and the latter is used to learn
high-order feature interactions. The FM and DNN compo-
nent shares the same input features. Set x(0) = [Em(0), er]
as the initial input. yFM can be calculated as Eq. (22) in the
FM component. In addition, in the DNN component, x is
updated by:

where i is the layer depth and σ is an activation function
which is set as ReLU function [11] in this paper. xi, Wi and
bi are the output, model weight, and bias of the ith layer,
respectively. Then, a dense vector is generated and fed into
the activation function as follows:

where |H| is the number of hidden layers. The output rider
embedding is denoted as Lrider = [yFM, yDNN].

Order embedding

The order embedding is mostly important in the encoder
component based on attention mechanism, which enables

(22)yFM = ⟨w, x⟩ +
d�
i=0

d�
j=i+1

�
Vi,Vj

�
xi ⋅ xj,

(23)x(i+1) = �(Wixi + bi),

(24)yDNN = �(W|H|+1xH + b|H|+1),

it to extract important information effectively. The order
embedding contains the basic information of all the order
points which affect the generation of the permutation
sequence.

Similarly, the order locations are disposed by GPS
embedding, and turned into a d1-dimensional embedding
for each point. The other numeric features are transformed
into a d3-dimensional embedding for each pickup point or
delivery point. The initial order embeddings are generated
by concatenation, denoted as xi, i ∈ [1, nf].

It is typical to generate a large number of scenarios to
approximately describe complex PMFs. However, the com-
putational time of this method is unaffordable for online
system. Since the PMFs can be regarded as a 2-D image-like
matrix and convolution neural network is widely employed
for image classification and compression [32], we adopt
the CNN with one hidden layer to pre-process them and
obtain global information of food preparation time. The fil-
ter size is 3 × 3, and the output vector is concatenated with
the embedding of pickup point features, while the delivery
points remain unchanged as follows:

By this way, the features of pickup and delivery points
are turned into learnable embeddings, respectively. And a
feed-forward network (FFN) [31] is employed to match their
size as follows:

After the above pre-processing, we employ the similar
encoder used in attention model by [19] to extract valuable
information of order features for its effectiveness in TSP.
The point embeddings are updated by a multi-head self-
attention (MHSA) and a node-wise FFN. Each layer adds a
skip-connection [16] and batch normalization (BN) [2]. The
specific structure can be referred to [19]:

Then, a graph embedding is calculated as the mean of the
final node embeddings, denoted as Lorder =

1

nf

∑nf

i=1
h(i) . The

final embedding in encoder consists of the graph embedding
of order features, the rider embedding, and the location
embedding as follows. It is used to compose the input of the
decoder together with point embeddings:

(25)xi =

{
[xi, yCNN], i ∈ P

xi, i ∈ D.

(26)hi = FFN(xi), i ∈ N − {0}.

(27)h
�

i
= BN(hi +MHSAi(h1, h2,… , hnf)), i ∈ N − {0}

(28)h(i) = BN(h
�

i
+ FFN(h

�

i
)), i ∈ N − {0}.

(29)L =
[
Lloc,Lrider,Lorder

]
.

1216	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

Decoder

The decoder is used to generate the permutation sequence
based on attention mechanism similar to the pointer net-
works [34] and problem-specific masking mechanism. The
former allows the decoder to quickly judge the importance
of each points and the latter guarantees the feasibility of
generated solutions. The decoder consists of a LSTM cell
and a softmax layer. At each timestep t in {1, n1 + n}, the
LSTM cell will output a point vector go,t based on the point
embeddings from the encoder. The implementation of the
LSTM is shown in Eqs. (30)–(35), where gf,t, gi,t, go,t, gc’,t,
gc,t, and Ht are the output of forget gate, input gate, expo-
sure gate, new memory cell state, final memory cell state,
and hidden state, respectively. W(*) and b(*) are the weights
and bias for each gate or state, and are shared among all
cells at each timestep. Besides, hc,t is the decoder context
at time t, which is composed of the point embedding and
final embedding from encoder. Since the route starts at the
location of the rider, the hc,t is set as Eq. (36):

(30)gf ,t = �(W (f)
⋅ [Ht−1, hc,t] + b(f))

(31)gi,t = �(W (i)
⋅ [Ht−1, hc,t] + b(i))

(32)gc�,t = tanh(W (c)
⋅ [Ht−1, hc,t] + b(c))

(33)gc,t = gf ,t ∗ gc,t−1 + gi,t ∗ gc�,t

(34)go,t = �(W (o)
⋅ [Ht−1, hc,t] + b(o))

(35)Ht = go,t ∗ tanh gc,t

(36)hc,t =

{
[L, Lrider], t = 1

[L, h(𝜋t−1)], t > 1.

To ensure the feasibility of the solution, the candidate
points must satisfy the constraints of the SORPP. To meet
the precedence constraint, the points will be masked (set
the pointer vector ui,t = − ∞) if the corresponding food has
not been picked up by the rider. Likewise, to guarantee
each point only appears once, the points that have already
been visited will also be masked. By this way, the pointer
vector ui,t is defined as:

where W1 and W2 are trainable matrices. Then, a distribution
over the next candidate points is generated by passing the
vector into the softmax layer as follows. The one with the
largest probability will be chosen as the next point:

An example is shown in Fig. 8 which explains how to
generate a feasible permutation sequence. Two orders are
considered and represented by (1, 3) and (2, 4), respectively.
The decoder takes as input the graph embedding and point
embeddings. Note that the point 3 and 4 are masked at t = 1
because the corresponding orders have not been picked up
and the point 1, 2, and 3 are masked at t = 4, because they
have been visited before. The permutation sequence Π = {0,
2, 1, 3, 4} is constructed at the end.

Loss function

Since the decoder can be regarded as a multi-classify model,
the cross-entropy loss function as follows is employed in
our paper, which is widely used in multi-classify problems:

(37)

ui,t =

⎧⎪⎨⎪⎩

−∞, if i ≠ 𝜋t� , ∀t
� < t

−∞, if ∄(i − n) = 𝜋t� , ∀t
� < t, i ∈ D

vT(W1Lorder +W2Ht) otherwise
,

(38)pi,t = softmax(ui,t).

Fig. 8   An example of the decoder for the SORPP

1217Complex & Intelligent Systems (2021) 7:1207–1222	

1 3

where πL is the permutation sequence of label, πi is the ith
point in πL, pi is the predicted possibility of πi at t = i, and
θ represents all the parameters of the model. By this way,
the distance of the predicted route and the label can be esti-
mated. Given a training pair (N, πL), the parameters of the
MSDN are learnt by maximizing the loss function for the
training set, that is:

Computational results

Experimental settings

In this section, numerical experiments are conducted to
evaluate the performance of the MSDN. The data sets are
sampled from real historical data across China in Meituan
platform. Two kinds of training and validation sets are gen-
erated, denoted as TS1 and TS2, respectively, where TS1
obeys the distribution of real data and TS2 is equalized
according to n. Besides, the test set is shared by all models
and comparison algorithms which will be introduced later.
The data distribution is shown in Fig. 9, where the numbers
around the pie chart represent the order number n of a route.
The PMFs are obtained from extensive history data and are
assumed to be known in this paper. Figure 10 shows an
example of a PMF and its cumulative distribution function
(CDF) correspondingly. All the parameters are empirically

(39)L(�L|N;�) = −
1

nf

∑
i∈N−{0}

�i log
(
pi;�

)
,

(40)�∗ = argmax
�

∑
�L,N

L(�L|N;�).

set, as shown in Table 1. The model is trained in Python 2 on
Meituan servers and saved as a checkpoint file which is used
to invoke the model during the test experiments under Mac
OS. Besides, all the comparative algorithms (introduced
later in the paper) are coded in Java SE8. The experiments
are run on a MacBook Pro with 2.2 GHz processors/16 GB
RAM under Mac OS.

For the SORPP, the performances of the algorithms are
evaluated in terms of computational time and solution qual-
ity. In this paper, we employ the average CPU time to meas-
ure the computational time and the following two metrics to
evaluate the solution quality.

Fig. 9   The distribution of different data sets

Fig. 10   An instance of the CDF and PMF of the food preparation
time

1218	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

Route consistency (RC)

where lens is sequence length and Sm is the length of long-
est common prefix between two permutation sequences. In
this paper, 0 is excluded, since all the sequences start from
0. For example, supposing two solutions A = {0, 1, 2, 3, 4}
and B = {0, 1, 3, 4, 2}. Sm is 1 (the length of {1}), and lens
is 4 after excluding 0. Therefore, the RC of A and B equals
to 1/4 = 0.25. If the first nonzero number of two solutions is
not the same, the RC = 0 despite how similar the successive
points can be. The RC will be higher if two solutions have
longer common prefix. It can be used to measure the learn-
ing ability of models by evaluating the similarity between
the solutions learned by the model and the labels.

Relative percentage deviation (RPD)

where alg is the solution obtained by a certain algorithm (or
model), and lab is the label obtained by the IG algorithm in
this paper. Different from the RC, the RPD is used to evalu-
ate the solution quality of the algorithms and model. The
algorithm performs better with a smaller RPD.

Effectiveness of special designs

In this section, we verify the effectiveness of several spe-
cial designs, including data equalization, the design of the

(41)RC =
Sm

lens
,

(42)RPD =
alg − lab

lab
× 100,

problem-specific features, and the utilization of the CNN.
To demonstrate the effect of the problem-specific features,
we compare the MSDN using basic features (*_BF) to the
one with special features (*_SF). Besides, the model with
(*_CNN) or without CNN layer (*_nCNN) are also tested to
illustrate the influence of CNN layer. To show the impact of
data equalization, TS1 and TS2 are used to train the model,
respectively, denoted as *_TS1 and *_TS2. The results are
shown in Tables 2 and 3.

From Tables 2 and 3, it can be seen that the MSDN_
CNN_SF_TS2 performs best on average, which indicates
the superiority of this model. Besides, the MSDN_CNN_
SF_TS2 is better than MSDN_nCNN_SF_TS2 on most
instance, which shows the effectiveness of the CNN layer
on the information extract of PMFs. As for MSDN_CNN_
SF_TS1, the model trained by TS1 is superior on instances
with small n especially when n = 2, but is inferior with
large n. Similarly, although MSDN_CNN_SF_TS2 can
perform better on average when we equalize the training
data, it also loses accuracy on the instances with small n.
By comparing these two models, we can conclude that
models with different training sets cannot always perform

Table 1   Parameter values

Parameter Value

Hyper parameters Epoch 8
Batch size 256
Training steps (per epoch) 2500
Optimizer Adam
Learning rate 0.003
Learning rate decay 0.95

Parameters of the MSDN d1 128
d2 128
d3 128
|H| 3

Parameters of the IG algorithm α 3
T0 500
gmax 200
c 0.95
Sampling number 10,000

Table 2   Average RC of different models

The best results are in bold

n MSDN_
CNN_SF_
TS2

MSDN_
nCNN_SF_
TS2

MSDN_
CNN_SF_
TS1

MSDN_
CNN_BF_
TS2

2 0.910 0.906 0.910 0.747
3 0.807 0.796 0.822 0.592
4 0.616 0.608 0.597 0.390
5 0.596 0.584 0.577 0.346
6 0.507 0.493 0.475 0.357
7 0.503 0.491 0.493 0.348
8 0.531 0.514 0.518 0.307
Average 0.613 0.604 0.607 0.437

Table 3   Average RPD of different models

The best results are in bold

n MSDN_
CNN_SF_
TS2

MSDN_
nCNN_SF_
TS2

MSDN_
CNN_SF_
TS1

MSDN_
CNN_BF_
TS2

2 0.08 0.10 0.00 3.87
3 0.19 0.49 0.13 7.04
4 1.73 2.54 2.20 12.02
5 1.57 1.48 1.80 13.56
6 1.40 2.16 2.08 8.27
7 1.28 1.39 1.35 10.83
8 2.08 2.31 3.37 13.22
Average 1.05 1.34 1.32 9.50

1219Complex & Intelligent Systems (2021) 7:1207–1222	

1 3

best on every instance, which lends support to no free
lunch theorem [38] and shows the important influence of
the data distribution on the model performance. Besides,
the MSDN_CNN_BF_TS2 is obviously worse than oth-
ers. The main reason is that the problem-specific features
can provide more information for the model to learn the
implicit relationship.

In general, we can draw the following conclusions: the
CNN layer is effective to extract the information of PMFs; the
problem-specific features can significantly improve the model
performance; The distribution of training data will impact the
model performance on instances of different scales.

Comparisons with other algorithms

To the best of our knowledge, there is little works carried
out on SORPP. Therefore, we apply some algorithms which
are commonly used in TSP or PDP as comparative algo-
rithms. Due to the immediacy of the online problem, only
heuristics or meta-heuristics are adopted as follows. The first
four heuristics belong to constructive algorithms and the
last three belong to (meta-)heuristics with iterative process,
called iterative algorithm for convenience.

Random generation (RG)

The route is constructed randomly. If the solution is unfeasi-
ble, we will repair it by swapping the position of the illegal
pickup point and its corresponding delivery point.

Earliest ETA first (EEF)

The order with earliest ETA will be inserted into the per-
mutation sequence first. Its pickup and delivery points are
assigned in order.

Most urgent first (MUF)

The most urgent order will be inserted into the permutation
sequence first. Its pickup and delivery points are assigned

consecutively. The urgency is defined similarly as in “Fea-
ture engineering”.

Nearest first (NF)

The points are sorted by the distance to the rider starting
position. And the nearest point will be assigned first. If
the solution is unfeasible, the illegal delivery point will be
inserted right after its corresponding pickup point.

aNEH

Defined in “Initialization”.

IG with random initialization (IG_RG)

The solutions are initialized by RG and then improved by the
destruction and reconstruction operators described in “The
IG algorithm for labeling”. Due to time-limitation, these
operators are only performed once.

IG with NF initialization (IG_NF)

It is the same as IG_RG except solutions are initialized by
NF.

We use Monte Carlo sampling to dispose the uncertainty
in these algorithms. To determine the sampling times, we
compare the computational time and the fluctuation of the
ETC under different sampling times, represented by s = {1,
10, 100, 1000, 10,000, 100,000}. Denoting the evaluation of
a label under a certain s as a case, there are 6 × 2600 = 15,600
cases in total. To obtain credible results, each case runs 20
times to calculate the average computational time. Besides,
six cases of the instance 1 under different s run 1000 times,
respectively, to evaluate the fluctuation.

The results are shown in Table 4 and Fig. 11. Table 4
shows the average computational time of all the cases
grouped by n. The computational time multiplies with the
increasement of s, which shows the positivity between them.
Figure 11 is a boxplot of the ETC on a certain permutation

Table 4   The average
computational time under
different sample times (ms)

n 100,000 10,000 1000 100 10 1

2 74.031 7.457 0.752 0.077 0.0075 0.00086
3 103.763 10.417 1.047 0.105 0.0124 0.0016
4 129.077 12.832 1.289 0.138 0.0144 0.0022
5 153.442 15.443 1.554 0.158 0.0178 0.0022
6 174.449 17.222 1.727 0.18 0.02 0.0024
7 171.149 17.219 1.722 0.179 0.0184 0.0034
8 155.529 15.655 1.595 0.163 0.0164 0.0016
Average 127.070 12.728 1.281 0.132 0.014 0.002

1220	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

sequence (the label of instance 1). From the figure, it can
be seen that with the decline of s, the fluctuation increases
rapidly and the deviation of expectation enlarges promptly.
By balancing the precision and elapsed time, we set the sam-
pling times as 10,000 for the compared algorithms.

The comparison results of the model and the constructive
algorithms are listed in Table 5, where the MSDN represents

the MSDN_CNN_SF_TS2 for convenience. It can be seen
that the computational time is similar between the model
and the constructive algorithms. That is because most time
of these methods is spent on solution evaluation by sampling
method while constructing or predicting the sequence usu-
ally costs less than 1 ms. Although the consumed time is
similar, the model performs much better than the construc-
tive algorithms.

Table 6 shows the comparison results of the MSDN and
the iterative algorithms. It can be seen that the average RPDs
of the MSDN are superior than IG_RG and IG_NF on all
instances and are better than aNEH on some instances.
For instances with n = 2 or 3, all these methods perform
well, because it is easy for iterative algorithms or models
to find the optimal solution. With the increasement of the
point number in a route, the difficulty in solving the problem
increases, which enlarges the average RPD. When n = 8, the
model performs slightly worse than aNEH mainly because
of the lack of similar data in the training set. Although the
average RPDs of the MSDN are not always the best, it is
satisfying with relatively short computational time than the
compared iterative algorithms, almost one-fiftieth of them.
Therefore, the MSDN is more appropriate to be employed
online than the compared iterative algorithms.

In conclusion, the MSDN is more effective and efficient
to solve the proposed problem.

Fig. 11   The boxplot of the ETC of a certain permutation sequence

Table 5   Results of the
constructive algorithms

The best results are in bold

n Average RPD (%) Time (ms)

RG EEF MUF NF MSDN RG EEF MUF NF MSDN

2 17.66 14.68 15.71 3.58 0.08 8.19 8.17 8.50 8.16 8.06
3 48.25 36.74 38.86 10.04 0.19 11.48 10.97 12.61 11.21 11.02
4 88.79 40.53 44.51 23.26 1.73 14.27 14.15 14.37 13.64 13.43
5 123.78 54.56 59.56 30.44 1.57 17.46 17.17 21.76 17.18 16.04
6 161.39 48.47 50.46 46.09 1.40 19.41 18.82 29.99 18.08 17.82
7 215.08 56.74 59.73 71.36 1.28 19.02 18.49 18.35 18.31 17.82
8 216.17 38.82 41.50 70.48 2.08 20.62 19.47 18.89 19.17 16.26
Average 99.14 39.26 42.18 27.40 1.05 14.43 14.07 16.18 13.93 13.33

Table 6   Results of the iterative
algorithms

The best results are in bold

n Average RPD (%) Time (ms)

aNEH IG_RG IG_NF MSDN aNEH IG_RG IG_NF MSDN

2 0.10 0.10 0.10 0.08 55.03 62.13 55.03 8.06
3 0.42 6.35 1.46 0.19 161.12 162.95 161.12 11.02
4 0.94 16.94 5.01 1.73 445.49 424.43 445.49 13.43
5 1.14 25.93 7.34 1.57 851.02 924.69 851.02 16.04
6 1.95 44.58 14.28 1.40 1218.38 1472.89 1218.38 17.82
7 1.37 50.22 18.62 1.28 1289.88 1301.94 1289.88 17.82
8 1.91 63.47 18.57 2.08 1148.83 1138.54 1148.83 16.26
Average 0.90 21.66 6.64 1.05 572.21 603.76 572.21 13.33

1221Complex & Intelligent Systems (2021) 7:1207–1222	

1 3

Conclusions

In this paper, we addressed the stochastic online route-plan-
ning problem with the minimization of expectation time
cost for the first time and established a two-stage stochastic
programming mathematical model. It is a complex problem
with immediacy requirement, uncertainty, precedence con-
straints, time-window constraints, and so on. To solve the
problem in a very short time, we designed an end-to-end
deep learning method and employed different network layers
to tackle problem-specific features with different formats.
According to the circumstances of real-world delivery, the
model was trained by supervised learning to study the opti-
mization policy under complex constraints, where the labels
were obtained by iterated greedy algorithm. The experimen-
tal results showed that the MSDN is effective and efficient to
solve the addressed problem on real-world data sets. There-
fore, this research work can provide effective intelligent
technique for complex online food delivery system.

In our future work, we will generalize the problem to
large scale and propose the models with better generaliza-
tion ability. In addition, it is interesting to solve the online
route-planning problem with other types of uncertainties and
to generalize the problems with more objectives including
other robustness criteria.

Acknowledgements  This study is supported by the National Science
Fund for Distinguished Young Scholars of China (no. 61525304) and
the National Natural Science Foundation of China (no. 61873328),
and Meituan.

Compliance with ethical standards 

Conflict of interest  The authors declare that we have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Applegate DL, Bixby RE, Chvatal V, Cook WJ (2006) The trave-
ling salesman problem: a computational study. Princeton Univer-
sity Press, Princeton

	 2.	 Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv
preprint http://arxiv​.org/abs/1607.06450​

	 3.	 Baker EK (1983) An exact algorithm for the time-constrained
traveling salesman problem. Oper Res 31(5):938–945

	 4.	 Bello I, Pham H, Le QV, Norouzi M, Bengio S (2017) Neural
combinatorial optimization with reinforcement learning. In: 2017
International conference on learning representations (ICLR).
arXiv preprint http://arxiv​.org/abs/1611.09940​

	 5.	 Bengio Y, Andrea L, Antoine P (2018) Machine learning for com-
binatorial optimization: a methodological tour d’horizon. arXiv
preprint http://arxiv​.org/abs/1811.06128​

	 6.	 Bengio Y, Courville A, Vincent P (2014) Representation learning:
a review and new perspectives. IEEE Trans Pattern Anal Mach
Intell 35(8):1798–1828

	 7.	 Bengio Y, Frejinger E, Lodi A, Patel R, Sankaranarayanan S
(2019) A learning-based algorithm to quickly compute good
primal solutions for stochastic integer programs. arXiv preprint
http://arxiv​.org/abs/1912.08112​

	 8.	 Chen C, Lee LH (2011) Stochastic simulation optimization: an
optimal computing budget allocation. World Scientific Publishing,
Singapore

	 9.	 Edelkamp S, Gath M (2014) Solving single vehicle pickup and
delivery problems with time windows and capacity constraints
using nested Monte-Carlo search. In: Proceedings of the 6th
international conference on agents and artificial intelligence
(ICAART), pp 22–33

	10.	 Elgesem AS, Skogen ES, Wang X, Fagerholt K (2018) A trave-
ling salesman problem with pickups and deliveries and stochastic
travel times: an application from chemical shipping. Eur J Oper
Res 269:844–859

	11.	 Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural
networks. In: Proceedings of the 14th international conference on
artificial intelligence and statistics (AISTATS), pp 315–323

	12.	 Grefenstette J, Gopal R, Rosmaita B, Van Gucht D (1985)
Genetic algorithms for the traveling salesman problem. In: Pro-
ceedings of the 1st international conference on genetic algo-
rithms and their applications, pp 160–168

	13.	 Gülcü Ş, Mahi M, Baykan ÖK, Kodaz H (2018) A parallel coop-
erative hybrid method based on ant colony optimization and
3-Opt algorithm for solving traveling salesman problem. Soft
Comput 22:1669–1685

	14.	 Guo H, Tang R, Ye Y, Li Z, He X (2017) DeepFM: a factor-
ization-machine based neural network for CTR prediction.
In: Proceedings of the 26th international joint conference on
artificial intelligence (IJCAI). arXiv preprint http://arxiv​.org/
abs/1703.04247​

	15.	 Gupta S, Garg H, Chaudhary S (2020) Parameter estimation
and optimization of multi-objective capacitated stochastic trans-
portation problem for gamma distribution. Complex Intell Syst
6:651–667

	16.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pp 770–778

	17.	 Hosny MI, Mumford CL (2007) Single vehicle pickup and deliv-
ery with time windows: made to measure genetic encoding and
operators. In: Proceedings of the 9th conference companion on
genetic and evolutionary computation (GECCO), pp 2489–2496

	18.	 Khalil E, Dai H, Zhang Y, Dilkina B, Song L (2017) Learning
combinatorial optimization algorithms over graphs. Adv Neural
Inf Process Syst (NIPS) 30:6348–6358

	19.	 Kool W, van Hoof H, Welling M (2019) Attention, learn to solve
routing problems! In: 7th International conference on learn-
ing representations (ICLR). arXiv preprint http://arxiv​.org/
abs/1803.08475​

	20.	 Kushner HJ, Clark DS (2012) Stochastic approximation methods
for constrained and unconstrained systems. Springer Science &
Business Media, Berlin

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1912.08112
http://arxiv.org/abs/1703.04247
http://arxiv.org/abs/1703.04247
http://arxiv.org/abs/1803.08475
http://arxiv.org/abs/1803.08475

1222	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

	21.	 Li X, Zhao K, Cong G, Jensen CS, Wei W (2018) Deep rep-
resentation learning for trajectory similarity computation. In:
2018 IEEE 34th international conference on data engineering
(ICDE), pp 617–628

	22.	 Ma Q, Ge S, He D, Thaker D, Drori I (2019) Combinatorial opti-
mization by graph pointer networks and hierarchical reinforce-
ment learning. arXiv preprint http://arxiv​.org/abs/1911.04936​

	23.	 Meituan (2020) Announcement of the results for the three
months ended June 30, 2020. https​://www1.hkexn​ews.hk/liste​
dco/listc​onews​/sehk/2020/0821/20200​82100​373.pdf. Accessed
10 Dec 2020

	24.	 Morgan Stanley Research (2017) Is online food delivery about
to get ’amazoned’? https​://www.morga​nstan​ley.com/ideas​/onlin​
e-food-deliv​ery-marke​t-expan​ds/. Accessed 10 Dec 2020

	25.	 Nawaz M, Enscore EE Jr, Ham I (1983) A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem. Omega
11:91–95

	26.	 Niemeyer G (2016) Geohash. http://geoha​sh.org. Accessed 10
Dec 2020

	27.	 Niu Y, Zhang Y, Cao Z, Gao K, Xiao J, Song W, Zhang F (2021)
MIMOA: a membrane-inspired multi-objective algorithm for
green vehicle routing problem with stochastic demands. Swarm
Evol Comput 60:100767

	28.	 Powell WB (2019) A unified framework for stochastic optimiza-
tion. Eur J Oper Res 275:795–821

	29.	 Reinelt G (1991) TSPLIB—a traveling salesman problem
library. Informs J Comput 3:376–384

	30.	 Rendle S (2010) Factorization machines. In: 2010 IEEE inter-
national conference on data mining (ICDM), pp 995–1000

	31.	 Sanger TD (1989) Optimal unsupervised learning in a sin-
gle-layer linear feedforward neural network. Neural Netw
2:459–473

	32.	 Traore BB, Kamsu-Foguem B, Tangara F (2018) Deep con-
volution neural network for image recognition. Ecol Inform
48:257–268

	33.	 Ulmer MW, Thomas BW, Campbell AM, Woyak N (2020) The
restaurant meal delivery problem: dynamic pickup and delivery

with deadlines and random ready times. Transp Sci. https​://doi.
org/10.1287/trsc.2020.1000

	34.	 Verhoeven M, Aarts EH, Swinkels P (1995) A parallel 2-opt algo-
rithm for the traveling salesman problem. Future Gener Comput
Syst 11:175–182

	35.	 Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks.
In: 2015 Neural information processing systems (NIPS), pp
2692–2700.

	36.	 Wang X, Wang L, Wang S, Chen J, Wu C (2021) An XGBoost-
enhanced fast constructive algorithm for food delivery route plan-
ning problem. Comput Ind Eng 152:107029

	37.	 Wang X, Wang S, Wang L et al (2020) An effective iterated greedy
algorithm for online route planning problem. In: 2020 IEEE Con-
gress on evolutionary computation (CEC), p 9185864.

	38.	 Wolpert DH, Macready WG (1995) No free lunch theorems for
search. Technical Report SFI-TR-95–02–010, Santa Fe Institute

	39.	 Wrulich M, Hirschberg C, Rajko A, Schumacher T (2016) The
changing market for food delivery. https​://www.mckin​sey.com/
indus​tries​/techn​ology​-media​-and-telec​ommun​icati​ons/our-insig​
hts/the-chang​ing-marke​t-for-food-deliv​ery. Accessed 10 Dec 2020

	40.	 Wu CC, Lin WC, Zhang XG, Bai DY, Tsai YW, Ren T, Cheng
SR (2020) Cloud theory-based simulated annealing for a single-
machine past sequence setup scheduling with scenario-dependent
processing times. Complex Intell Syst. https​://doi.org/10.1007/
s4074​7-020-00196​-7

	41.	 Zheng A, Casari A (2018) Feature engineering for machine learn-
ing: principles and techniques for data scientists. O’Reilly Media,
Inc., Newton

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations

http://arxiv.org/abs/1911.04936
https://www1.hkexnews.hk/listedco/listconews/sehk/2020/0821/2020082100373.pdf
https://www1.hkexnews.hk/listedco/listconews/sehk/2020/0821/2020082100373.pdf
https://www.morganstanley.com/ideas/online-food-delivery-market-expands/
https://www.morganstanley.com/ideas/online-food-delivery-market-expands/
http://geohash.org
https://doi.org/10.1287/trsc.2020.1000
https://doi.org/10.1287/trsc.2020.1000
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-changing-market-for-food-delivery
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-changing-market-for-food-delivery
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/the-changing-market-for-food-delivery
https://doi.org/10.1007/s40747-020-00196-7
https://doi.org/10.1007/s40747-020-00196-7

	Solving two-stage stochastic route-planning problem in milliseconds via end-to-end deep learning
	Abstract
	Introduction
	Problem description
	The IG algorithm for labeling
	Representation
	Initialization
	Random destruction
	Greedy reconstruction
	Problem-specific local search
	Backward search
	Forward search

	Acceptance and stopping criteria

	MSDN for SORPP
	Feature engineering
	Rider-related features
	Order-related features

	Encoder
	Location embedding
	Rider embedding
	Order embedding

	Decoder
	Loss function

	Computational results
	Experimental settings
	Route consistency (RC)
	Relative percentage deviation (RPD)

	Effectiveness of special designs
	Comparisons with other algorithms
	Random generation (RG)
	Earliest ETA first (EEF)
	Most urgent first (MUF)
	Nearest first (NF)
	aNEH
	IG with random initialization (IG_RG)
	IG with NF initialization (IG_NF)

	Conclusions
	Acknowledgements
	References

