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Abstract
With the rapid development of e-economy, ordering via online food delivery platforms has become prevalent in recent years. 
Nevertheless, the platforms are facing lots of challenges such as time-limitation and uncertainty. This paper addresses a 
complex stochastic online route-planning problem (SORPP) which is mathematically formulated as a two-stage stochastic 
programming model. To meet the immediacy requirement of online fashion, an end-to-end deep learning model is designed 
which is composed of an encoder and a decoder. To embed different problem-specific features, different network layers are 
adopted in the encoder; to extract the implicit relationship, the probability mass functions of stochastic food preparation 
time is processed by a convolution neural network layer; to provide global information, the location map and rider features 
are handled by the factorization-machine (FM) and deep FM layers, respectively; to screen out valuable information, the 
order features are embedded by attention layers. In the decoder, the permutation sequence is predicted by long-short term 
memory cells with attention and masking mechanism. To learn the policy for finding optimal permutation under complex 
constraints of the SORPP, the model is trained in a supervised learning way with the labels obtained by iterated greedy 
search algorithm. Extensive experiments are conducted based on real-world data sets. The comparative results show that 
the proposed model is more efficient than meta-heuristics and is able to yield higher quality solutions than heuristics. This 
work provides an intelligent optimization technique for complex online food delivery system.

Keywords  Stochastic online route planning · Intelligent optimization · End-to-end deep learning · Supervised learning · 
Iterated greedy search

Introduction

With the prevalence of mobile Internet, online food delivery 
(OFD) APPs have become more and more popular for the 
convenience in daily life. Millions and billions of transac-
tions are completed via these APPs every day. In 2016, the 
worldwide market of food delivery reached up to €83 bil-
lion [39]. In China, one of the best-known OFD platforms, 
Meituan, obtained a total revenue of ¥24.7 billion for the 
second quarter of 2020. Over 457 million customers order 
food on Meituan platform with more than 6.3 million active 
restaurants to choose [23]. In the United States, the total 
food sales of OFD were expected to grow by 16% from 2017 
to 2022 according to Morgan Stanley Research [24]. With 
huge market opportunities and strong user demand, the OFD 
will continue to develop quickly and steadily in the future.

The major mode of the Meituan is shown in Fig. 1. When 
a customer orders food, the order will be pushed to the cor-
responding restaurant and then assigned to a rider instantly 

 *	 Ling Wang 
	 wangling@tsinghua.edu.cn

	 Jie Zheng 
	 j‑zheng18@mails.tsinghua.edu.cn

	 Shengyao Wang 
	 wangshengyao@meituan.com

	 Yile Liang 
	 liangyile@meituan.com

	 Jize Pan 
	 panjize@meituan.com

1	 Department of Automation, Tsinghua University, 
Beijing 100084, China

2	 Meituan, Beijing 100102, China

http://orcid.org/0000-0002-9640-1604
http://orcid.org/0000-0001-8964-6454
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00288-y&domain=pdf


1208	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

with a well-planned route by the platform. The whole mode 
can be abstracted as an order dispatching problem and an 
online route-planning problem (ORPP), where the latter is 
the key problem of the system. The quality of the planned 
routes can directly influence the assignment of orders to rid-
ers where improper assignments will cause great waste of 
transportation resources. Besides, low-quality routes will 
make riders to take a detour or deliver food later than the 
estimated time of arrival (ETA) promised to customers, and 
therefore affect the efficiency of riders and experience of 
customers. Since there are massive orders every day and 
each order needs to be delivered in a short period of time 
(usually less than 40 min), the platform should make deci-
sions very fast even within 1 min. The computational time 
left for route planning will be limited to millisecond level. In 
consequence, it is absolutely necessary for the platforms to 
put forward intelligent techniques to deal with the complex 
problems efficiently and robustly.

Extensive research works about solution methods [1, 
29] have been carried out on the traditional route-planning 
problem (RPP) which is abstracted as traveling salesman 
problem (TSP), such as branch and bound method [3], 2-opt 
algorithm [34], genetic algorithm (GA) [12], and ant colony 
optimization [13]. Compared to the traditional RPP or TSP, 
the ORPP is much more complex. In addition to the imme-
diacy requirement of the online fashion, the ORPP is also 
subject to time-window constraints, precedence constraints, 
and so on. However, few research works have been carried 
out on the ORPP. To minimize the total cost of the ORPP, 
Wang et al. [37] proposed an iterated greedy algorithm (IG) 
with several problem-specific heuristics. To speed up the 
initialization process of the same problem, they employed 
the extreme gradient boosting method to adaptively select 
the appropriate constructive algorithms [36]. The problem 
related to the ORPP is the single vehicle pickup and deliv-
ery problem with time windows (SVPDPTW), which is an 
extension of TSP and a basic version of pickup and delivery 
problem (PDP). Hosny and Mumford [17] presented a GA 
with a duplicate gene encoding to deal with a large number 

of constraints. To solve the SVPDPTW with capacity con-
straints, Edelkamp and Gath [9] designed a nested Monte 
Carlo search with policy adaptation. However, these algo-
rithms cannot satisfy the immediacy requirement of online 
optimization. On the contrary, machine learning (ML) turns 
out to be promising for solving combinational optimization 
(CO) problems effectively in short computational time. Ben-
gio et al. [5] have investigated the major methods of comb-
ing ML with traditional CO algorithms, and divided them 
into three kinds: (a) end-to-end learning methods, which 
use ML to directly solve the problem; (b) ML-first meth-
ods, which apply ML to provide meaningful properties of 
optimization problems and guide the search direction for 
CO algorithms; (c) ML-alongside methods, which utilize 
ML during the iterative process of optimization algorithms. 
The end-to-end learning methods are suitable for real-time 
applications, while the latter two are still time-consuming 
due to the CO algorithms.

Recently, end-to-end machine learning methods have 
been explored on CO problems, especially on TSP. Vinyals 
et al. [35] proposed a pointer network model to tackle the 
Euclidean TSP with supervised learning based on sequence-
to-sequence framework. The encoder and decoder are both 
constructed by recurrent neural networks, which make it 
possible to solve different input graph sizes. Nevertheless, 
this supervised learning model has the limitation of strong 
dependence on high-quality labels. To overcome the draw-
back, Bello et al. [4] used a reinforcement learning method 
to train the similar pointer network and set the tour length 
as a reward signal. To avoid the influence of input sequence 
on the model, Khalil et al. [18] employed a graph neural 
network to process the input data, and combined the rein-
forcement learning to address the problem. By modifying 
the pointer network with attention mechanism and reinforce-
ment learning method, the solutions gained by Kool et al. 
[19] have been improved over recent heuristics for TSP. 
Besides, Ma et al. [22] introduced the graph pointer network 
trained by reinforcement learning which performed better 
than the pointer network [35], but could not dominate the 
attention model [19].

Most of the above literatures assumed all the parameters 
as deterministic values. However, uncertainty is ubiquitous 
and inevitable in real life. Powell [28] published a compre-
hensive review of the stochastic optimization. As mentioned, 
the stochastic problems can be solved either exactly [15] or 
approximately [40]. The former usually assumes the distri-
bution functions to be additive such as gamma distribution 
and normal distribution, or can be decomposed into multi-
ple additive functions. The latter includes sampling methods 
such as Monte Carlo sampling or direct online observations 
(also called data driven approach). However, the conver-
gence of the Monte Carlo method is very slow: the ultimate 
accuracy cannot be improved faster than O(1∕

√
N) , where N 

Fig. 1   The major mode of Meituan platform
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is the number of simulation samples or replications [20]. The 
computational cost will be prohibitively high if the problem 
is complex and requires high accuracy.

To speed up the stochastic optimization, some methods 
have been developed. For ranking and selection problems, 
Chen and Lee [8] proposed an optimal computing budget 
allocation method, which allocates the samples sequentially 
to optimize the selection quality under a simulation budget 
constraint. Besides, Bengio et al. [7] proposed a supervised 
learning method to find the representation scenario (RS) and 
transformed the stochastic problem to a deterministic one, 
which could obtain similar solution quality with much less 
computing time than general algorithms. However, the RS 
could not always exist and the generalization ability of the 
model is unsatisfactory sometimes. Although this method 
greatly reduces the computational time compared to sam-
pling methods, it sacrifices accuracy to a certain extent.

As for TSP and PDP, uncertainty mainly lies in travel 
time, food preparation time, service time, and customer 
demand. For the dynamic PDP with stochastic food prepa-
ration time, Ulmer et al. [33] assumed that the time was 
gamma distributed and presented a cost function approxi-
mation with time buffers to solve the uncertainty. For the 
stochastic TSP with pickups and deliveries, Elgesem et al. 
[10] assumed that the travel time was independent normal 
distributed, and employed several exact methods based on 
Monte Carlo simulation to solve the problem. As for the 
green vehicle routing problem with stochastic costumer 
demands, Niu et  al. [27] generated the mean demand 
according to a discrete uniform distribution and proposed 
a membrane-inspired multi-objective algorithm to solve the 
problem. The above literatures all assumed that the random 
variables obeyed independent and additive functions. How-
ever, this assumption may lose some information of real data 
distributions. In this paper, we assume the food preparation 
time as stochastic variables and propose the stochastic ORPP 
(SORPP). The discrete distribution functions of the food 
preparation time are predicted by an ML model trained by 
historic data from Meituan. The functions are very complex 
with long tail, multimodality, and without additivity. To our 
best knowledge, there are no other research works that con-
sider stochastic variables with such kind of distributions.

From the literature review, it can be seen that the exist-
ing exact algorithms or meta-heuristics of related problems 
are inappropriate to solve the SORPP due to their unaccepta-
ble computational time. Although some heuristics can solve 
related problems quickly, they cannot guarantee the quality 
of the obtained solutions. Therefore, the core challenge for 
SORPP is how to obtain satisfactory solutions within a very 
short period of time. Hence, we use an end-to-end machine 
learning method to solve the proposed problem efficiently. As 

mentioned before, the existing research works of end-to-end 
learning can mainly be classified into two types: supervised 
learning [35] and reinforcement learning [4, 18, 19, 22]. The 
former is relatively easy to implement, but strongly depends 
on the label quality. In the case of high-quality labels, super-
vised learning can well imitate the “expert experience” and 
learn the optimization policy to generate satisfying solutions. 
The latter does not require labeling and complex feature engi-
neering, but it is difficult to design appropriate reward/action/
state functions. With approximated policy, the reinforcement 
learning model may fall into local optima easily. Besides, it 
usually costs much longer training time than supervised learn-
ing. In real-life situation of Meituan platform, each rider can 
only carry a small number of packages limited by the trunk 
capacity. If the computational time is not limited, the optimal 
(or approximate optimal) solutions of the problems on this 
scale are easy to find. That is, we can obtain plenty of high-
quality labels of the problem. Therefore, we design an end-
to-end deep learning model trained by supervised learning to 
solve the problem. The model is denoted as Meituan stochastic 
delivery network (MSDN).

Overall, the major contributions of this paper can be sum-
marized as follows:

1.	 We propose the stochastic online route-planning prob-
lem for the first time which is formulated by a two-stage 
stochastic programming mathematical model.

2.	 We design an end-to-end deep learning method to solve 
the SORPP. In the encoder, the model produces the 
embeddings of all input features by specially designed 
network layers. In the decoder, the permutation sequence 
is predicted by long-short term memory (LSTM) cells 
with attention and masking mechanism.

3.	 We present problem-specific features to improve the per-
formance of the model.

4.	 We adopt the IG algorithm based on Monte Carlo sam-
pling to obtain high-quality labels for model training.

5.	 We conduct extensive experiments on the real-world 
data sets from Meituan. The results show the effective-
ness and efficiency of the proposed model.

The remaining of the paper is organized as follows. The 
next section provides the description and formulation of the 
SORPP. The continuous section introduces the IG algorithm 
for labeling. And the following section presents the details 
of the proposed MSDN. Computational results and compari-
sons are reported in the consequent section. Finally, the paper 
is ended with some conclusions and future work in the last 
section.
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Problem description

A problem instance of the SORPP comprises one rider 
and n orders, denoted as W = {w1, w2, …, wn}. Each order 
specifies a pickup point (the corresponding restaurant) 
and a delivery point (the corresponding customer). As 
shown in Fig. 2, the rider will start from the current posi-
tion and pick up or deliver food according to the planned 
route where the food preparation time of unpicked orders 
is stochastic. At the scheduling time, some of the orders 
have already been picked up, so we only consider their 
delivery points. P = {1, …, n1} is the set of pickup points 
and D = {n1 + 1, …, n1 + n} is the set of the delivery 
points, where n1 is the number of pickup points. In addi-
tion, an order is represented as a point pair (i, n1 + i), 
i ∈ [1, n1], or (− 1, n1 + i), i ∈ [n1 + 1, n], where − 1 is the 
pickup point which has already been visited before.

In Meituan’s situation, some basic constraints are given 
as follows.

1.	 Precedence constraints. The rider must pick up the food 
before deliver it.

2.	 Time window constraints. The rider must pick up the 
food after it has been prepared (hard time-window) and 
should try to deliver it before the promised time, also 
called ETA (soft time-window). Since the food prepa-
ration time is stochastic, all the values sampled from 
the corresponding probability mass functions (PMFs) 
should meet the time-window constraints.

The goal of the SORPP is to minimize the expected 
time cost, denoted as ETC. The problem can be modeled 
as a two-stage stochastic programming with the follow-
ing notations.

Parameters:

v	� The speed of the rider.
n	� The number of orders.
n1	� The number of pickup points.
W	� The set of all orders.
K	� The set of scenarios.
N	� The set of all points, N = {0, 1, …, n1 + n}, where 0 is 

the starting point of the rider.
P	� The set of pickup points, P = {1, …, n1}.
D	� The set of delivery points, D = {n1 + 1, …, n1 + n}.
dij	� The distance between point i and j, i, j ∈ N.
tij	� The travel time between point i and j, i, j ∈ N.
ei	� The ETA of point i, i ∈ D.
ξri

k	� The preparation time of point i in scenario k, i ∈ P, 
k ∈ K.

M	� A sufficiently large positive number.
|*|	� The number of elements in a certain set

Decision variables:

xi,j	� 1, If the point j is assigned after i; 0, otherwise, i, 
j ∈ N.

ui	� The sequence of point i, i ∈ N. ui ∈ [0, n1 + n], ui ∈ ℤ.
ai

k	� The arrive time of point i in scenario k, i ∈ N, k ∈ K.
li

k	� The leave time of point i in scenario k, i ∈ N, k ∈ K.
twi

k	� The wait time of point i in scenario k, i ∈ P, k ∈ K.
toi

k	� The overtime of point i in scenario k, i ∈ D, k ∈ K

(1)min
x,u

ETC =
∑
i∈N

∑
j∈N−{0}

di,jxi,j

v
+ℚ(x, �r)

Fig. 2   An instance of the 
SORPP
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s.t.

where:

s.t.

(2)
∑

j∈N−{0}

xi,j = 1, ∀i ∈ N

(3)
∑

j∈N−{0}

xj,i = 1, ∀i ∈ N − {0}

(4)ui ≤ M − 1 − (M − 2)x0,i, ∀i ∈ N − {0}

(5)
ui − uj + (M − 1)xi,j + (M − 3)xj,i ≤ M − 2, ∀i ∈ N, j ∈ N, j ≠ i

(6)ui ≤ ui+n − 1, ∀i ∈ P

(7)u0 = 0

(8)xi,j ∈ {0, 1}, ∀i ∈ N, j ∈ N − {0}, j ≠ i

(9)ui ∈
[
0, n1 + n

]
N, ∀i ∈ N,

(10)ℚ(x, �r) = min
to,tw

1

|K|
∑
k∈K

(∑
i∈D

tok
i
+
∑
i∈P

twk
i

)

(11)
ak
j
− lk

i
−Mxi,j ≥

di,j

v
xi,j −M, ∀i ∈ N, j ∈ N − {0}, j ≠ i, ∀k ∈ K

(12)
ak
j
− lk

i
+Mxi,j ≤

di,j

v
xi,j +M, ∀i ∈ N, j ∈ N − {0}, j ≠ i, ∀k ∈ K

(13)lk
i
≥ ak

i
, ∀i ∈ N, ∀k ∈ K

(14)lk
i
≥ �rk

i
, ∀i ∈ P, ∀k ∈ K

(15)lk
0
= 0, ∀k ∈ K

(16)ak
0
= 0, ∀k ∈ K

(17)twk
i
≥ �rk

i
− ak

i
, ∀i ∈ P, ∀k ∈ K

(18)tok
i
≥ lk

i
− ei, ∀k ∈ K

(19)twk
i
≥ 0, ∀i ∈ P, ∀k ∈ K

The objective function (1) is to minimize the expected time 
cost ETC which includes the rider traveling time, the expected 
waiting time, and overtime under stochastic situation. x and 
u are the first-stage decisions. tw and to are the second-stage 
decisions. Constraints (2) and (3) imply that each order can 
only be picked up once and delivered once, and the starting 
point will only be select once. Constraints (4) and (5) indi-
cate the transformation of x and the sequence of the points u. 
Constraints (6) ensure that the precedence relationships can-
not be violated. Constraints (7)–(9) display the value ranges 
of the first-stage decision variables. The objective function 
(10) of the second stage is to minimize the expected waiting 
time and overtime under stochastic situation. Constraints (11) 
and (12) reveal that the arrive time of one point is equal to 
the leave time of the previous visited point plus the traveling 
time between the two in a certain scenario. Constraints (13) 
and (14) show that the leave time of each point is larger than 
the arrive time and the preparation time (for pickup points). 
Constraints (15) and (16) denote that the leave time and arrive 
time of the starting point are both 0. In addition, Constraints 
(17) define that tw is larger than the difference between the 
stochastic food preparation time and the arrive time for pickup 
points. Similarly, to is larger than the difference between the 
leave time and the ETA for delivery points as shown in Con-
straints (18). Constraints (19) and (20) demonstrate the value 
ranges of tw and to in each scenario.

The IG algorithm for labeling

As mentioned before, we employ supervised learning to train 
the model where the labels are obtained by the IG algorithm. 
The IG algorithm is of powerful exploitation capability and 
has been successfully applied to various scheduling prob-
lems [25]. As shown in Fig. 3, the main procedure of the IG 
algorithm includes initialization, destruction, reconstruction, 
and problem-specific local search.

Representation

A solution is represented by 1 + n1 + n permutation sequence 
Π, including the starting point of the rider, the pickup and 
delivery points of all orders. For an example with n1 = 2, 
n = 3, as shown in Fig.  1, the permutation sequence is 
Π = {0, 5, 1, 3, 2, 4}, where the starting point is set as 0, 
and w1, w2, w3 are associated with (1, 3), (2, 4), and (− 1, 
5), respectively. The point − 1 is ignored in the problem.

(20)tok
i
≥ 0, ∀i ∈ D, ∀k ∈ K.
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Initialization

The initial route is generated by the adaptive 
Nawaz–Enscore–Ham (aNEH) heuristic [25]. The main 
steps of the aNEH are as follows.

Step 1: Set initial permutation as Π0 = {0}.
Step 2: Rank n orders by their ETAs in an ascending 

order, W = (w(1), w(2), …, w(n)) where w(i) represents the ith 
order with the least ETAs. Let i = 1.

Step 3: Insert the pickup point of w(i) into all position 
of Π0. Once assigned, insert the delivery point of w(i) into 
all positions after the position of the related pickup point. 
The permutation with minimal ETC will be reserved 
and replace Π0. The ETC is calculated by Monte Carlo 
sampling.

Step 4: If i ≤ n, i = i + 1, go to Step 3; otherwise, output 
Π0.

By this way, a solution with certain quality is generated.

Random destruction

In the destruction phase, α (α < n) orders are randomly 
selected, with the removal of their pickup and delivery 
points from the permutation sequence. The chosen point 
pairs constitute a list, denoted as LS = {pairi, i ∈ [1, α]}, and 
the remaining permutation is denoted as ΠR.

Greedy reconstruction

In the reconstruction phase, the LS is shuffled at first to 
ensure sufficient randomicity. Then, the pickup point (if not 
− 1) and the delivery point of the order in LS will be inserted 
into ΠR successionally. The partial solution with minimal 
ETC will be reserved greedily.

Problem‑specific local search

To further improve the performance of the algorithm, a 
problem-specific local search is designed with following 
two neighborhood search operators.

Backward search

Find the delivery points with largest expected overtime and 
move them backward to an optimal position.

Forward search

Find the points with most sufficient time and move them 
forward to an optimal position.

Acceptance and stopping criteria

To avoid falling into local minimum, we employ the accept-
ance criteria of simulated algorithm. That is, we not only 
accept the solutions better than current one, but also worse 
solutions sometimes according to an acceptable probability. 
The probability is p = e

−
(
E
�

TC
−Ebest

TC

)
∕T
, where T > 0 is the cur-

rent temperature, E′

TC
 is the objective function value of a 

certain solution, and Ebest
TC

 is the objective function value of 
the best solution obtained before. T is initialized with initial 
temperature T0, and is updated as Tg+1 = c × Tg at iteration g. 
c ∈ (0, 1) is the cooling rate.

The algorithm will be finished if one of the following 
stopping criteria is met: the maximum number of iterations 
gmax has been reached; the best solution is not improved for 
t consecutive iterations.

MSDN for SORPP

We design an end-to-end deep learning model to solve the 
SORPP in an online fashion. The MSDN is composed of 
an encoder and a decoder, which is shown in Fig. 4. The 
encoder is used to produce embeddings of all input features, 
and the decoder can produce the sequence of the route points 
based on the output of the encoder.

Fig. 3   The framework of iterated greedy algorithm
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Feature engineering

Feature engineering is to extract features from raw data and 
transform them into applicable format, which is a crucial 
part in machine learning. Suitable features can reduce the 
difficulty of modeling and improve the performance of out-
put results [41]. However, it is challenging to design effec-
tive features which usually depend on expert knowledge 
about the optimization problem and statistics analysis on 
large quantity of data.

In our paper, basic features of the SORPP include the 
rider and order information as follows.

Rider‑related features

The location (latitude and longitude) of starting point, the 
average speed during the last month, the number of carried 
orders, and the number of pickup points and delivery points.

Order‑related features

The ETAs, the locations of the pickup and delivery points, 
respectively, and the PMFs of the food preparation time.

Although these features are enough to define an instance 
of the SORPP, they cannot well reveal the law of optimal 
solutions. For example, the order which is closer to the 
rider or is more urgent will possibly be visited with higher 
priority. Therefore, we design problem-specific features to 
describe the urgency of orders, the position relationship 
(including distance and time) between orders, as well as 
the position relationship between orders and the rider, as 
shown in Fig. 5. The urgency is represented by the remaining 
time of order delivery, defined as etai − d0,i/v for the orders 
already picked up, while etai − (di,i+n + d0,i)/v otherwise. The 
distance and travel time between order points and the rider 
position are denoted as d0,i and d0,i/v, i ∈ N − {0}, respec-
tively, where d0,i is calculated by the longitude and latitude 
position information. Besides, the distance and travel time 

between the pickup and delivery points of each order are 
di,i+n1 , di,i+n1∕v, i ∈ [1, n1] , respectively, for orders which 
have not been picked up and d0,i+n1 , d0,i+n1∕v, i ∈ [n1 + 1, n] 
otherwise. Besides, the specific statistics of PMF is com-
posed of the corresponding mean, sum, medium, maximum, 
minimum values, and standard deviation. By introducing 
these problem-specific features, the performance of the 
model is further improved.

We pre-process the data by cleaning missing data and 
replacing anomalous data with average values. Besides, all 
the continuous features are normalized first according to the 
average values and standard deviations of the training set.

Encoder

The encoder is used to transform the input into an intermedi-
ate embedding. As shown in Fig. 6, we deal with different 
types of features separately and then concatenate them to 
a final embedding. The encoder component includes three 
parts: rider embedding of rider features, order embedding 
of order features, and location embedding of the loca-
tion matrix which consists of all the location information 
extracted from the rider and all orders.

Location embedding

Because the latitudes and longitudes are nonnumeric infor-
mation, we adapt the GPS embedding (or cell coding) [21] 
to represent them. The main idea of GPS embedding is to 
divide the area into small grids with corresponding geo-
graphical information according to certain rules. Compared 

Fig. 4   The framework of the MSDN

Fig. 5   All features of the SORPP



1214	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

to geohash method [26] or one-hot representation [6], the 
GPS embedding can depict GPS information more accu-
rately based on distance weights. Therefore, it can avoid 
the sudden change of neighborhood location and make the 
embedding smoother. The main steps of the GPS embedding 
are as follows.

Step 1: Map the latitudes and longitudes into grids of 
300 × 300 m2.

Step 2: Reserve the grids which are not out of vocabulary. 
Since some of the grids have one or multiple GPS points, 
while others may have none, we only reserve the grids with 

multiple GPS points according to a threshold (set as 300) to 
guarantee the continuity of a route.

Step 3: Transform the retained grids into a d1-dimensional 
embedding denoted as Em(*).

Step 4: Calculate the embedding of each location based on 
bilinear interpolation of 4 nearest vertices of the grid. For an 
example, as shown in Fig. 7, G is a certain location which is 
concatenated with 4 vertices, denoted as Gij i, j = {1, 2}. The 
embedding of G is calculated as follows:

To better reflect the location relationship between the 
points, we extract the location features from all the points 
and form a global location embedding with (1 + n + n1, d1) 
size by above method, denoted as Emloc. Then, a factor-
ization-machine (FM) [30] layer is employed to fuse the 
features. The FM can find the correlation of features by 

(21)

Em(G) =
(lx − x)(ly − y)

lx × ly
Em(G

11
) +

x(ly − y)

lx × ly
Em(G

21
)

+
(lx − x)y

lx × ly
Em(G

12
) +

xy

lx × ly
Em(G

22
).

Fig. 6   The encoder of the MSDN

Fig. 7   An instance of grid code
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combing and overlapping them. The formulation of FM 
is as follows:

where w ∈ R
d , Vi ∈ R

k are weight vectors, d is the num-
ber of features, k is the given embedding length, and xi is 
the value of ith feature. The addition unit ⟨w, x⟩ reflects the 
importance of order-1 features and the inner product units 
represent the impact of order-2 feature interaction. In the 
location embedding, x = Emloc, d = n + n1, and k = d1. The 
FM acts on the first axis and outputs a vector with the size 
of d1 which is denoted as Lloc.

By this method, all the locations can be mapped into a 
reasonable embedding which implies the spatial distance 
relationship between them.

Rider embedding

Rider features include one continuous feature (rider speed) 
and five discrete features. The latitude and longitude of the 
starting point is disposed by above method. To avoid infor-
mation loss during the training process, we increase the 
dimension of other numeric features by transforming them 
into a d2-dimensional learnable embedding, denoted as er. 
The deep FM [14] is adopted to further process the rider 
features thanks to its effectiveness in combinatory features. 
Deep FM consists of an FM and a deep neutral network 
(DNN). The former is used to learn the linear and pairwise 
interactions between features and the latter is used to learn 
high-order feature interactions. The FM and DNN compo-
nent shares the same input features. Set x(0) = [Em(0), er] 
as the initial input. yFM can be calculated as Eq. (22) in the 
FM component. In addition, in the DNN component, x is 
updated by:

where i is the layer depth and σ is an activation function 
which is set as ReLU function [11] in this paper. xi, Wi and 
bi are the output, model weight, and bias of the ith layer, 
respectively. Then, a dense vector is generated and fed into 
the activation function as follows:

where |H| is the number of hidden layers. The output rider 
embedding is denoted as Lrider = [yFM, yDNN].

Order embedding

The order embedding is mostly important in the encoder 
component based on attention mechanism, which enables 

(22)yFM = ⟨w, x⟩ +
d�
i=0

d�
j=i+1

�
Vi,Vj

�
xi ⋅ xj,

(23)x(i+1) = �(Wixi + bi),

(24)yDNN = �(W|H|+1xH + b|H|+1),

it to extract important information effectively. The order 
embedding contains the basic information of all the order 
points which affect the generation of the permutation 
sequence.

Similarly, the order locations are disposed by GPS 
embedding, and turned into a d1-dimensional embedding 
for each point. The other numeric features are transformed 
into a d3-dimensional embedding for each pickup point or 
delivery point. The initial order embeddings are generated 
by concatenation, denoted as xi, i ∈ [1, nf].

It is typical to generate a large number of scenarios to 
approximately describe complex PMFs. However, the com-
putational time of this method is unaffordable for online 
system. Since the PMFs can be regarded as a 2-D image-like 
matrix and convolution neural network is widely employed 
for image classification and compression [32], we adopt 
the CNN with one hidden layer to pre-process them and 
obtain global information of food preparation time. The fil-
ter size is 3 × 3, and the output vector is concatenated with 
the embedding of pickup point features, while the delivery 
points remain unchanged as follows:

By this way, the features of pickup and delivery points 
are turned into learnable embeddings, respectively. And a 
feed-forward network (FFN) [31] is employed to match their 
size as follows:

After the above pre-processing, we employ the similar 
encoder used in attention model by [19] to extract valuable 
information of order features for its effectiveness in TSP. 
The point embeddings are updated by a multi-head self-
attention (MHSA) and a node-wise FFN. Each layer adds a 
skip-connection [16] and batch normalization (BN) [2]. The 
specific structure can be referred to [19]:

Then, a graph embedding is calculated as the mean of the 
final node embeddings, denoted as Lorder =

1

nf

∑nf

i=1
h(i) . The 

final embedding in encoder consists of the graph embedding 
of order features, the rider embedding, and the location 
embedding as follows. It is used to compose the input of the 
decoder together with point embeddings:

(25)xi =

{
[xi, yCNN], i ∈ P

xi, i ∈ D.

(26)hi = FFN(xi), i ∈ N − {0}.

(27)h
�

i
= BN(hi +MHSAi(h1, h2,… , hnf )), i ∈ N − {0}

(28)h(i) = BN(h
�

i
+ FFN(h

�

i
)), i ∈ N − {0}.

(29)L =
[
Lloc,Lrider,Lorder

]
.



1216	 Complex & Intelligent Systems (2021) 7:1207–1222

1 3

Decoder

The decoder is used to generate the permutation sequence 
based on attention mechanism similar to the pointer net-
works [34] and problem-specific masking mechanism. The 
former allows the decoder to quickly judge the importance 
of each points and the latter guarantees the feasibility of 
generated solutions. The decoder consists of a LSTM cell 
and a softmax layer. At each timestep t in {1, n1 + n}, the 
LSTM cell will output a point vector go,t based on the point 
embeddings from the encoder. The implementation of the 
LSTM is shown in Eqs. (30)–(35), where gf,t, gi,t, go,t, gc’,t, 
gc,t, and Ht are the output of forget gate, input gate, expo-
sure gate, new memory cell state, final memory cell state, 
and hidden state, respectively. W(*) and b(*) are the weights 
and bias for each gate or state, and are shared among all 
cells at each timestep. Besides, hc,t is the decoder context 
at time t, which is composed of the point embedding and 
final embedding from encoder. Since the route starts at the 
location of the rider, the hc,t is set as Eq. (36):

(30)gf ,t = �(W (f )
⋅ [Ht−1, hc,t] + b(f ))

(31)gi,t = �(W (i)
⋅ [Ht−1, hc,t] + b(i))

(32)gc�,t = tanh(W (c)
⋅ [Ht−1, hc,t] + b(c))

(33)gc,t = gf ,t ∗ gc,t−1 + gi,t ∗ gc�,t

(34)go,t = �(W (o)
⋅ [Ht−1, hc,t] + b(o))

(35)Ht = go,t ∗ tanh gc,t

(36)hc,t =

{
[L, Lrider], t = 1

[L, h(𝜋t−1)], t > 1.

To ensure the feasibility of the solution, the candidate 
points must satisfy the constraints of the SORPP. To meet 
the precedence constraint, the points will be masked (set 
the pointer vector ui,t = − ∞) if the corresponding food has 
not been picked up by the rider. Likewise, to guarantee 
each point only appears once, the points that have already 
been visited will also be masked. By this way, the pointer 
vector ui,t is defined as:

where W1 and W2 are trainable matrices. Then, a distribution 
over the next candidate points is generated by passing the 
vector into the softmax layer as follows. The one with the 
largest probability will be chosen as the next point:

An example is shown in Fig. 8 which explains how to 
generate a feasible permutation sequence. Two orders are 
considered and represented by (1, 3) and (2, 4), respectively. 
The decoder takes as input the graph embedding and point 
embeddings. Note that the point 3 and 4 are masked at t = 1 
because the corresponding orders have not been picked up 
and the point 1, 2, and 3 are masked at t = 4, because they 
have been visited before. The permutation sequence Π = {0, 
2, 1, 3, 4} is constructed at the end.

Loss function

Since the decoder can be regarded as a multi-classify model, 
the cross-entropy loss function as follows is employed in 
our paper, which is widely used in multi-classify problems:

(37)

ui,t =

⎧⎪⎨⎪⎩

−∞, if i ≠ 𝜋t� , ∀t
� < t

−∞, if ∄(i − n) = 𝜋t� , ∀t
� < t, i ∈ D

vT(W1Lorder +W2Ht) otherwise
,

(38)pi,t = softmax(ui,t).

Fig. 8   An example of the decoder for the SORPP
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where πL is the permutation sequence of label, πi is the ith 
point in πL, pi is the predicted possibility of πi at t = i, and 
θ represents all the parameters of the model. By this way, 
the distance of the predicted route and the label can be esti-
mated. Given a training pair (N, πL), the parameters of the 
MSDN are learnt by maximizing the loss function for the 
training set, that is:

Computational results

Experimental settings

In this section, numerical experiments are conducted to 
evaluate the performance of the MSDN. The data sets are 
sampled from real historical data across China in Meituan 
platform. Two kinds of training and validation sets are gen-
erated, denoted as TS1 and TS2, respectively, where TS1 
obeys the distribution of real data and TS2 is equalized 
according to n. Besides, the test set is shared by all models 
and comparison algorithms which will be introduced later. 
The data distribution is shown in Fig. 9, where the numbers 
around the pie chart represent the order number n of a route. 
The PMFs are obtained from extensive history data and are 
assumed to be known in this paper. Figure 10 shows an 
example of a PMF and its cumulative distribution function 
(CDF) correspondingly. All the parameters are empirically 

(39)L(�L|N;�) = −
1

nf

∑
i∈N−{0}

�i log
(
pi;�

)
,

(40)�∗ = argmax
�

∑
�L,N

L(�L|N;�).

set, as shown in Table 1. The model is trained in Python 2 on 
Meituan servers and saved as a checkpoint file which is used 
to invoke the model during the test experiments under Mac 
OS. Besides, all the comparative algorithms (introduced 
later in the paper) are coded in Java SE8. The experiments 
are run on a MacBook Pro with 2.2 GHz processors/16 GB 
RAM under Mac OS.

For the SORPP, the performances of the algorithms are 
evaluated in terms of computational time and solution qual-
ity. In this paper, we employ the average CPU time to meas-
ure the computational time and the following two metrics to 
evaluate the solution quality.

Fig. 9   The distribution of different data sets

Fig. 10   An instance of the CDF and PMF of the food preparation 
time
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Route consistency (RC)

where lens is sequence length and Sm is the length of long-
est common prefix between two permutation sequences. In 
this paper, 0 is excluded, since all the sequences start from 
0. For example, supposing two solutions A = {0, 1, 2, 3, 4} 
and B = {0, 1, 3, 4, 2}. Sm is 1 (the length of {1}), and lens 
is 4 after excluding 0. Therefore, the RC of A and B equals 
to 1/4 = 0.25. If the first nonzero number of two solutions is 
not the same, the RC = 0 despite how similar the successive 
points can be. The RC will be higher if two solutions have 
longer common prefix. It can be used to measure the learn-
ing ability of models by evaluating the similarity between 
the solutions learned by the model and the labels.

Relative percentage deviation (RPD)

where alg is the solution obtained by a certain algorithm (or 
model), and lab is the label obtained by the IG algorithm in 
this paper. Different from the RC, the RPD is used to evalu-
ate the solution quality of the algorithms and model. The 
algorithm performs better with a smaller RPD.

Effectiveness of special designs

In this section, we verify the effectiveness of several spe-
cial designs, including data equalization, the design of the 

(41)RC =
Sm

lens
,

(42)RPD =
alg − lab

lab
× 100,

problem-specific features, and the utilization of the CNN. 
To demonstrate the effect of the problem-specific features, 
we compare the MSDN using basic features (*_BF) to the 
one with special features (*_SF). Besides, the model with 
(*_CNN) or without CNN layer (*_nCNN) are also tested to 
illustrate the influence of CNN layer. To show the impact of 
data equalization, TS1 and TS2 are used to train the model, 
respectively, denoted as *_TS1 and *_TS2. The results are 
shown in Tables 2 and 3.

From Tables 2 and 3, it can be seen that the MSDN_
CNN_SF_TS2 performs best on average, which indicates 
the superiority of this model. Besides, the MSDN_CNN_
SF_TS2 is better than MSDN_nCNN_SF_TS2 on most 
instance, which shows the effectiveness of the CNN layer 
on the information extract of PMFs. As for MSDN_CNN_
SF_TS1, the model trained by TS1 is superior on instances 
with small n especially when n = 2, but is inferior with 
large n. Similarly, although MSDN_CNN_SF_TS2 can 
perform better on average when we equalize the training 
data, it also loses accuracy on the instances with small n. 
By comparing these two models, we can conclude that 
models with different training sets cannot always perform 

Table 1   Parameter values

Parameter Value

Hyper parameters Epoch 8
Batch size 256
Training steps (per epoch) 2500
Optimizer Adam
Learning rate 0.003
Learning rate decay 0.95

Parameters of the MSDN d1 128
d2 128
d3 128
|H| 3

Parameters of the IG algorithm α 3
T0 500
gmax 200
c 0.95
Sampling number 10,000

Table 2   Average RC of different models

The best results are in bold

n MSDN_
CNN_SF_
TS2

MSDN_
nCNN_SF_
TS2

MSDN_
CNN_SF_
TS1

MSDN_
CNN_BF_
TS2

2 0.910 0.906 0.910 0.747
3 0.807 0.796 0.822 0.592
4 0.616 0.608 0.597 0.390
5 0.596 0.584 0.577 0.346
6 0.507 0.493 0.475 0.357
7 0.503 0.491 0.493 0.348
8 0.531 0.514 0.518 0.307
Average 0.613 0.604 0.607 0.437

Table 3   Average RPD of different models

The best results are in bold

n MSDN_
CNN_SF_
TS2

MSDN_
nCNN_SF_
TS2

MSDN_
CNN_SF_
TS1

MSDN_
CNN_BF_
TS2

2 0.08 0.10 0.00 3.87
3 0.19 0.49 0.13 7.04
4 1.73 2.54 2.20 12.02
5 1.57 1.48 1.80 13.56
6 1.40 2.16 2.08 8.27
7 1.28 1.39 1.35 10.83
8 2.08 2.31 3.37 13.22
Average 1.05 1.34 1.32 9.50
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best on every instance, which lends support to no free 
lunch theorem [38] and shows the important influence of 
the data distribution on the model performance. Besides, 
the MSDN_CNN_BF_TS2 is obviously worse than oth-
ers. The main reason is that the problem-specific features 
can provide more information for the model to learn the 
implicit relationship.

In general, we can draw the following conclusions: the 
CNN layer is effective to extract the information of PMFs; the 
problem-specific features can significantly improve the model 
performance; The distribution of training data will impact the 
model performance on instances of different scales.

Comparisons with other algorithms

To the best of our knowledge, there is little works carried 
out on SORPP. Therefore, we apply some algorithms which 
are commonly used in TSP or PDP as comparative algo-
rithms. Due to the immediacy of the online problem, only 
heuristics or meta-heuristics are adopted as follows. The first 
four heuristics belong to constructive algorithms and the 
last three belong to (meta-)heuristics with iterative process, 
called iterative algorithm for convenience.

Random generation (RG)

The route is constructed randomly. If the solution is unfeasi-
ble, we will repair it by swapping the position of the illegal 
pickup point and its corresponding delivery point.

Earliest ETA first (EEF)

The order with earliest ETA will be inserted into the per-
mutation sequence first. Its pickup and delivery points are 
assigned in order.

Most urgent first (MUF)

The most urgent order will be inserted into the permutation 
sequence first. Its pickup and delivery points are assigned 

consecutively. The urgency is defined similarly as in “Fea-
ture engineering”.

Nearest first (NF)

The points are sorted by the distance to the rider starting 
position. And the nearest point will be assigned first. If 
the solution is unfeasible, the illegal delivery point will be 
inserted right after its corresponding pickup point.

aNEH

Defined in “Initialization”.

IG with random initialization (IG_RG)

The solutions are initialized by RG and then improved by the 
destruction and reconstruction operators described in “The 
IG algorithm for labeling”. Due to time-limitation, these 
operators are only performed once.

IG with NF initialization (IG_NF)

It is the same as IG_RG except solutions are initialized by 
NF.

We use Monte Carlo sampling to dispose the uncertainty 
in these algorithms. To determine the sampling times, we 
compare the computational time and the fluctuation of the 
ETC under different sampling times, represented by s = {1, 
10, 100, 1000, 10,000, 100,000}. Denoting the evaluation of 
a label under a certain s as a case, there are 6 × 2600 = 15,600 
cases in total. To obtain credible results, each case runs 20 
times to calculate the average computational time. Besides, 
six cases of the instance 1 under different s run 1000 times, 
respectively, to evaluate the fluctuation.

The results are shown in Table 4 and Fig. 11. Table 4 
shows the average computational time of all the cases 
grouped by n. The computational time multiplies with the 
increasement of s, which shows the positivity between them. 
Figure 11 is a boxplot of the ETC on a certain permutation 

Table 4   The average 
computational time under 
different sample times (ms)

n 100,000 10,000 1000 100 10 1

2 74.031 7.457 0.752 0.077 0.0075 0.00086
3 103.763 10.417 1.047 0.105 0.0124 0.0016
4 129.077 12.832 1.289 0.138 0.0144 0.0022
5 153.442 15.443 1.554 0.158 0.0178 0.0022
6 174.449 17.222 1.727 0.18 0.02 0.0024
7 171.149 17.219 1.722 0.179 0.0184 0.0034
8 155.529 15.655 1.595 0.163 0.0164 0.0016
Average 127.070 12.728 1.281 0.132 0.014 0.002
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sequence (the label of instance 1). From the figure, it can 
be seen that with the decline of s, the fluctuation increases 
rapidly and the deviation of expectation enlarges promptly. 
By balancing the precision and elapsed time, we set the sam-
pling times as 10,000 for the compared algorithms.

The comparison results of the model and the constructive 
algorithms are listed in Table 5, where the MSDN represents 

the MSDN_CNN_SF_TS2 for convenience. It can be seen 
that the computational time is similar between the model 
and the constructive algorithms. That is because most time 
of these methods is spent on solution evaluation by sampling 
method while constructing or predicting the sequence usu-
ally costs less than 1 ms. Although the consumed time is 
similar, the model performs much better than the construc-
tive algorithms.

Table 6 shows the comparison results of the MSDN and 
the iterative algorithms. It can be seen that the average RPDs 
of the MSDN are superior than IG_RG and IG_NF on all 
instances and are better than aNEH on some instances. 
For instances with n = 2 or 3, all these methods perform 
well, because it is easy for iterative algorithms or models 
to find the optimal solution. With the increasement of the 
point number in a route, the difficulty in solving the problem 
increases, which enlarges the average RPD. When n = 8, the 
model performs slightly worse than aNEH mainly because 
of the lack of similar data in the training set. Although the 
average RPDs of the MSDN are not always the best, it is 
satisfying with relatively short computational time than the 
compared iterative algorithms, almost one-fiftieth of them. 
Therefore, the MSDN is more appropriate to be employed 
online than the compared iterative algorithms.

In conclusion, the MSDN is more effective and efficient 
to solve the proposed problem.

Fig. 11   The boxplot of the ETC of a certain permutation sequence

Table 5   Results of the 
constructive algorithms

The best results are in bold

n Average RPD (%) Time (ms)

RG EEF MUF NF MSDN RG EEF MUF NF MSDN

2 17.66 14.68 15.71 3.58 0.08 8.19 8.17 8.50 8.16 8.06
3 48.25 36.74 38.86 10.04 0.19 11.48 10.97 12.61 11.21 11.02
4 88.79 40.53 44.51 23.26 1.73 14.27 14.15 14.37 13.64 13.43
5 123.78 54.56 59.56 30.44 1.57 17.46 17.17 21.76 17.18 16.04
6 161.39 48.47 50.46 46.09 1.40 19.41 18.82 29.99 18.08 17.82
7 215.08 56.74 59.73 71.36 1.28 19.02 18.49 18.35 18.31 17.82
8 216.17 38.82 41.50 70.48 2.08 20.62 19.47 18.89 19.17 16.26
Average 99.14 39.26 42.18 27.40 1.05 14.43 14.07 16.18 13.93 13.33

Table 6   Results of the iterative 
algorithms

The best results are in bold

n Average RPD (%) Time (ms)

aNEH IG_RG IG_NF MSDN aNEH IG_RG IG_NF MSDN

2 0.10 0.10 0.10 0.08 55.03 62.13 55.03 8.06
3 0.42 6.35 1.46 0.19 161.12 162.95 161.12 11.02
4 0.94 16.94 5.01 1.73 445.49 424.43 445.49 13.43
5 1.14 25.93 7.34 1.57 851.02 924.69 851.02 16.04
6 1.95 44.58 14.28 1.40 1218.38 1472.89 1218.38 17.82
7 1.37 50.22 18.62 1.28 1289.88 1301.94 1289.88 17.82
8 1.91 63.47 18.57 2.08 1148.83 1138.54 1148.83 16.26
Average 0.90 21.66 6.64 1.05 572.21 603.76 572.21 13.33
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Conclusions

In this paper, we addressed the stochastic online route-plan-
ning problem with the minimization of expectation time 
cost for the first time and established a two-stage stochastic 
programming mathematical model. It is a complex problem 
with immediacy requirement, uncertainty, precedence con-
straints, time-window constraints, and so on. To solve the 
problem in a very short time, we designed an end-to-end 
deep learning method and employed different network layers 
to tackle problem-specific features with different formats. 
According to the circumstances of real-world delivery, the 
model was trained by supervised learning to study the opti-
mization policy under complex constraints, where the labels 
were obtained by iterated greedy algorithm. The experimen-
tal results showed that the MSDN is effective and efficient to 
solve the addressed problem on real-world data sets. There-
fore, this research work can provide effective intelligent 
technique for complex online food delivery system.

In our future work, we will generalize the problem to 
large scale and propose the models with better generaliza-
tion ability. In addition, it is interesting to solve the online 
route-planning problem with other types of uncertainties and 
to generalize the problems with more objectives including 
other robustness criteria.
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