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Abstract
Recently, several socio-/bio-inspired algorithms have been proposed for solving a variety of problems. Generally, they 
perform well when applied for solving unconstrained problems; however, their performance degenerates when applied for 
solving constrained problems. Several types of penalty function approaches have been proposed so far for handling linear 
and non-linear constraints. Even though the approach is quite easy to understand, the precise choice of penalty parameter 
is very much important. It may further necessitate significant number of preliminary trials. To overcome this limitation, a 
new self-adaptive penalty function (SAPF) approach is proposed and incorporated into socio-inspired Cohort Intelligence 
(CI) algorithm. This approach is referred to as CI–SAPF. Furthermore, CI–SAPF approach is hybridized with Colliding 
Bodies Optimization (CBO) algorithm referred to as CI–SAPF–CBO algorithm. The performance of the CI–SAPF and CI–
SAPF–CBO algorithms is validated by solving discrete and mixed variable problems from truss structure domain, design 
engineering domain, and several problems of linear and nonlinear in nature. Furthermore, the applicability of the proposed 
techniques is validated by solving two real-world applications from manufacturing engineering domain. The results obtained 
from CI–SAPF and CI–SAPF–CBO are promising and computationally efficient when compared with other nature inspired 
optimization algorithms. A non-parametric Wilcoxon’s rank sum test is performed on the obtained statistical solutions to 
examine the significance of CI–SAPF–CBO. In addition, the effect of the penalty parameter on pseudo-objective function, 
penalty function and constrained violations is analyzed and discussed along with the advantages over other algorithms.

Keywords Self-adaptive penalty function approach · Cohort intelligence · Colliding bodies optimization · Discrete and 
mixed variable problems · Linear and nonlinear constraints

Abbreviations
AI  Artificial intelligence
CI  Cohort intelligence
SPF  Static penalty function approach
SAPF  Self-adaptive penalty function approach
CBO  Colliding bodies optimization
TSP  Travelling salesman problems
GA  Genetic algorithm
PSO  Particle swarm optimization
ACO  Ant colony optimization

BA  Bat algorithm
FA  Firefly algorithm
IA  Ideology algorithm
SOS  Symbiotic organism search
PC  Probability collectives
SELO  Socio evolution and learning optimization
IA  Ideology algorithm
EA  Election algorithm
ECO  Election campaign optimization
LCA  League championship algorithm
SLC  Soccer league computation
TLBO  Teaching learning-based optimization
SGO  Social group optimization
SLO  Social learning algorithms
SACI  Self-adaptive cohort intelligence
DPF  Dynamic penalty function
COR  Coefficient of restitution
PSOPC  PSO with passive congregation
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HS  Harmony search
MBA  Mine blast algorithm
FL  Fuzzy logic
B&B  Branch and bound
NLP  Nonlinear programming
ADS  Adaptive dimensional search
EAs  Evolutionary algorithms
HPSO  Hybrid particle swarm optimization
DHPSACO  Discrete heuristic particle swarm ant colony 

optimization
ISCSO  International student competition in struc-

tural optimization
GHN  Generalized Hopfield network
AIS-GA  Artificial immune system with genetic 

algorithm
AIS-GA-C  AIS-GA with clearing
SOS  Symbiotic organisms search
SA  Simulated annealing
SQP  Sequential quadratic programming
SlQP  Sequential penalty quadratic programming
CPSO  Co-evolutionary particle swarm 

optimization
NIDPM  Nonlinear integer and discrete programming
NSGA  Nondominated sorting genetic algorithm
AIA  Artificial immune algorithm
OIO  Optics-inspired optimization
RNES  Rank-niche evolution strategy
CS  Cuckoo search
AHGA  Adaptive hybrid genetic algorithm
ABC  Artificial bee colony
HGSS  Hybrid genetic simulated swarm

Introduction

The mechanical design engineering and truss structure opti-
mization domain problems are complex and cumbersome to 
solve as they involve linear and nonlinear constraints. These 
problems become more challenging when they have discrete 
and mixed design variables. Several Artificial Intelligence 
(AI)-based optimization techniques such as Particle Swarm 
Optimization (PSO) [14, 59], Firefly Algorithm (FA) [23], 
Probability Collectives (PC) [41, 44, 45], Colliding Bod-
ies Optimization (CBO) Kaveh and Mahdavi [38], Sym-
biosis Organism Search (SOS) (2014), Mine Blast Algo-
rithm (MBA) [73], Cuckoo Search (CS) [22], Generalized 
Hopfield Networks (GHN) [77], Genetic Algorithm (GA) 
[3, 9, 18, 56, 71, 86, 87] and socio based algorithms such 
as Cohort Intelligence (CI) [46], Ideology Algorithm (IA) 
[88], Socio evolution and learning optimization algorithm 
(SELO) [52] have been developed so far. The real-world 
problems generally are constrained in nature. Several con-
straint handling techniques have been developed so far such 

as penalty-based methods, probability-based methods, fea-
sibility-based methods, etc.

The penalty-based methods convert the constrained prob-
lem into unconstrained problem. The approach is character-
ized by a penalty parameter which necessitates significant 
number of preliminary trials to set its appropriate value. The 
penalty function approach is widely used due to its simple 
construction and easy implementation. Several penalty-
based constraint handling techniques have been proposed 
so far, such as barrier (death) penalty function approach, 
which is based on elimination of infeasible solution [60], 
exact penalty function [30] and dynamic penalty function 
[34] approaches are based on setting the penalty parameter 
value and multiplication of factors (penalty reduction or 
expansion factor), respectively. Other techniques are also 
proposed such as annealing penalty function approach [63], 
Carlson et al. [5] which is based on the idea of Simulated 
Annealing (SA) and adaptive penalty function [25, 27, 81, 
90] aimed at eliminating the setting of penalty parameter. In 
penalty-based segregated GA Le et al. [54], a distinct pen-
alty parameter is set for different evaluated fitness functions. 
So far, these techniques have been successfully employed 
with nature inspired optimization techniques to deal with 
linear and nonlinear constraints. These techniques are simple 
and easy to apply for solving wide variety of constrained 
optimization problems [57, 91], however, as the number of 
constraints increase their performance degenerates [60]. An 
exact penalty approach is adopted by Shin et al. [80] and Wu 
and Chow [86] for nonlinear optimization problems having 
discrete design variables. For every independent problem, 
several preliminary trials are required to set an appropriate 
penalty parameter [30, 62]. Similar approach is adopted in 
FA [23] and CI algorithm (CI-SPF) [35] for solving discrete 
and mixed variable problems with linear as well as nonlin-
ear constraints from engineering design and truss structure 
domains. However, it is noticed that the selection of penalty 
parameter becomes tedious with the increase in number of 
constraints.

The dynamic penalty function [40] incorporated with 
augmented Lagrange multiplier approach Viswanathan 
and Grossmann [84] is used for solving discrete and mixed 
variable problems from design engineering domain. In this 
approach, penalty parameter is multiplied by a suitable fac-
tor to penalize the cost function. Similar to the dynamic 
penalty function approach, Curtis and Nocedal [13] intro-
duced flexible penalty function to handle nonlinear con-
straints. In this approach, the penalty parameter is arbitrar-
ily chosen from the prescribed interval rather than a fixed 
value which influentially guided the convergence. Shih and 
Yang [77] introduced a generalized Hopfield network using 
extended penalty function approach. In this approach, the 
penalty parameter is initialized based on an arbitrary value 
(0 or 1) and then updated iteratively with an incremental 
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multiplication factor. However, if the multiplication factor 
is too high the objective function value may become unsta-
ble and the solution may stuck into the local minima. An 
adaptive penalty function approach is proposed by Nanakorn 
and Meesomklin [65] in which the modified binary scaling 
technique is employed to scale the fitness value. Broyden 
and Attia [4] proposed a smooth sequential penalty func-
tion incorporated with Quasi Newton approach. It is then 
combined with orthogonal transformation based on Jacobian 
constraints. A non-stationary multistage penalty function 
approach is implemented by Parsopoulos and Vrahatis [67]. 
It is then followed by Coath and Halgamuge [12] along with 
a feasibility preservation method for solving nonlinear prob-
lems. Coello [10] proposed a self-adaptive penalty function 
approach which splits the penalty function into two distinct 
parts such as sum of violated constraints and number of vio-
lated constraints. Nie [66] proposed a novel semi-penalty 
approach considering the qualities of Sequential Quadratic 
Programming (SQP) method and Sequential Penalty Quad-
ratic Programming (SlQP) method where both equality and 
inequality constraints are distinctly treated.

An external penalty function scheme with relaxation 
strategy is incorporated into Adaptive Dimensional Search 
(ADS) method by [28]. In this strategy, the infeasible solu-
tion is retained to escape from the local minima. At the satu-
ration stage, the intensity of penalty parameter is reduced 
by multiplying the reduction factor. After every stagnation 
escape period, the solution is recalculated using an updated 
penalty parameter and then compared with previous satu-
rated solution. A parameter less approach referred to as 
niched penalty function approach is proposed by Deb and 
Agrawal [16]. In this approach, a feasible solution is selected 
based on three criteria such as accept the feasible solution 
rather than infeasible solution, accept best-fitted solution 
from two feasible solutions and accept infeasible solution 
based on fewer number of constraint violations. These three 
rules are then referred to as feasibility-based rules and are 
used as a constraint handling technique [17] and later imple-
mented by Kulkarni and Tai [51]. It is further modified by 
Kulkarni et al. [45] in which after a stagnation period, worst 
solution found so far is accepted. The algorithm then restarts 
to help the solution jump out of local minima. It is success-
fully applied for solving problems from design engineering 
and truss structure domains.

Various constraint handling techniques associated with 
other nature-inspired algorithms are discussed in the lit-
erature along with their limitations. Apart from these, there 
are several socio-inspired optimization algorithms have been 
proposed so far, such as PC Wolpert et al. [85, Kulkarni 
and Tai [42], SOS [8], SELO [52]. SOS models symbiotic 
interaction] strategies that the independent agents (organ-
isms) use to survive in the ecosystem. Political election-
based socio algorithms such as IA [82], Election Algorithm 

(EA) Emami and Derakhshan [21], Election Campaign 
Optimization (ECO) (Lv et al. [61] are also proposed. ECO 
models the social behavior of voters where the candidates 
attempt to pursue maximum support from them. Based on 
the position of the candidates and voters, the global and local 
voters are considered. The uniform distribution method is 
used to identify the supported focus of the candidates. EA 
is based on the process of advertisement during the election 
campaign. With similar motivation, IA is proposed by Teo 
et al. [88]. It emphasizes the behavior of political parties 
aiming to improve their rank. The League Championship 
Algorithm (LCA) [31, 36] is inspired from distinct features 
of the sports activity. LCA models the social tendencies of 
sport competition in a league. Similar to the LCA, Soccer 
League Competition (SLC) algorithm is proposed by Moosa-
vian and Roodsari [64]. It is based on the interaction of play-
ers during a soccer match. A physics-based Optic-Inspired 
Optimization (OIO) method [37], [32] and [33] works on the 
optical characteristics of concave and convex mirrors. The 
socio-inspired algorithm such as Teaching Learning-Based 
Optimization (TLBO) [68] models the influence of teaching 
process on students’ performance. The influence of teaching 
process on students’ outcome is modeled. A Social Group 
Optimization (SGO) Satapathy and Naik [75] and Social 
Learning Optimization (SLO) Liu et al. [58] are based on the 
process of propagation of human knowledge in the learning 
society/group to solve complex engineering problems.

The CI algorithm is proposed by Kulkarni et al. [46]. 
It is motivated from the socially learning behavior of the 
candidates such as following, interacting, cooperating 
and competing with every other candidate in the cohort. 
It is implemented for constrained problems and applied 
to solve combinatorial NP-hard 0–1 Knapsack problem 
with the number of items varying from 4 to 75 Kulkarni 
and Shabir [48]. The constraints involved in this prob-
lem are handled by a problem-specific probability-based 
constraint handling technique. The algorithm yielded 
competent results as compared to integer program-
ming solutions. This approach is also applied for solv-
ing real-world combinatorial problems from healthcare 
and logistics domains as well as for large-sized complex 
problems from the Cross Border Supply Chain domain 
[50], Traveling Salesman Problem (TSP) [49] and several 
benchmark problems [76]. A Self-adaptive Cohort Intelli-
gence (SACI) algorithm [1] is proposed using tournament 
mutation operator and a self-adaptive scheme to update 
the sampling interval. It is tested on several benchmark 
problems and obtained promising results. The static and 
dynamic penalty function approach is incorporated in CI 
(CI–SPF and CI–DPF) for solving several test problems 
and manufacturing engineering problems Kulkarni et al. 
[48]. The CI–SPF is adopted for solving complex problems 
from truss structure and mechanical engineering domain 
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[35]. In the current work, a self-adaptive penalty function 
(SAPF) approach is proposed and incorporated into the CI 
algorithm. This approach eliminated the effort of setting 
the penalty parameter and no other supporting parameter is 
required. Additionally, the CI–SAPF algorithm is hybrid-
ized with CBO (referred to as CI–SAPF–CBO) which 
eliminated the dependence of the CI algorithm on sam-
pling space reduction factor. It is discussed in Sect. “CI-
SAPF”. The proposed CI–SAPF and CI–SAPF–CBO are 
tested for solving 10 discrete truss structure problems, 
11 mixed variable design engineering problems and 17 
discrete variable test problems (linear, nonlinear, global, 
convex and monotonous functions). The performance is 
validated by comparing the solutions with other contem-
porary techniques available in the literature. Finally, the 
influence of SAPF on penalty function, constraint viola-
tions, pseudo-objective function is thoroughly discussed. 
The proposed techniques are also applied to solve two real-
world applications from manufacturing engineering such 
as a) multi-pass turning process problem and b) multi-pass 
milling process problem.

The paper is organized as follows: the mathematical rep-
resentation of SAPF approach is presented in Sect. “Self-
adaptive penalty function (SAPF)”. Section “Cohort intel-
ligence (CI) algorithm” describes the basic version of 
CI algorithm along with its characteristics. A CI–SAPF 
algorithm is presented in Sect.  “CI-SAPF” along with its 
pseudo code. The detailed description of CBO algorithm 
and its characteristics are mentioned in Sect.    “Collid-
ing bodies optimization (CBO)”. The pseudo code of the 
CBO algorithm is also presented in the same section. Sec-
tion  “Framework of CI–SAPF–CBO” describes the hybrid 
CI–SAPF–CBO algorithm and its mathematical expres-
sion with flowchart. Section “Test examples” discusses 
the discrete and mixed variable problems from truss struc-
ture, design engineering, linear and non-linear domains. In 
the same section, the results obtained from CI–SAPF and 
CI–SAPF–CBO algorithms are compared with other tech-
niques available in the literature. Section  “Test example-3: 
spatial 25-bar truss structure (transmission tower) [38, 42, 
52, 58] discusses theoretical analysis and comparison of the 
results with other contemporary techniques. In Sect.  “Test 
example-4: planer 38-bar truss structure [43, 68]”, the 
graphical representation of variation in constraint violations, 
penalty parameter, penalty function and pseudo-objective 
function along with theoretical discussion on comparison of 
results is provided. The Wilcoxon’s rank sum test analysis 
is presented in Sect.  “Test example-5: planer 45-bar truss 
structure [2, 41]” to check the significance of solutions of 
the CI-SAPF-CBO over CI-SAPF. This test is conducted 
based on function values, function evaluation and CPU time. 
Finally, in Sect.  “Result analysis and discussion”, the appli-
cations of the proposed CI–SAPF and CI–SAPF–CBO are 

presented by solving multi-pass turning and milling process 
problems. Section  “Applications” discusses the conclusions 
and future recommendations.

Self‑adaptive penalty function (SAPF)

In general, the constrained optimization problem is 
expressed as follows:

Subject to 

A Static Penalty Function (SPF) constraint handling 
approach is widely used. It is expressed as follows:

w h e r e  �  i s  a  p e n a l t y  p a r a m e t e r  a n d �∑n

i=1
gi(X) +

∑m

i=1
hi(X)

�
 is summation of the violated con-

straints. However, significant number of preliminary trials 
are required to choose suitable value of � . It is the major 
disadvantage of the SPF approach. To overcome this limi-
tation, a Self-Adaptive Penalty Function (SAPF) approach 
is proposed. In the SAPF approach, the objective function 
f (X) is itself utilized as a penalty parameter. It is expressed 
as follows:

It further forms the pseudo-objective function �(X) as 
follows:

It is important to note that when the objective function 
value of the problem is too small, the SAPF approach may 
not give best feasible solution. In such cases, an arbitrary 
integer (fixed) value (int) is added in the function value f (X) . 
Then, the SAPF would be calculated as follows:

(2.1)Minimize f (X) = f (x1, x2, x3,… , xN)

gi(X) ≤ 0, i = 1, 2,… , n

hi(X) = 0, i = 1, 2,… ,m

Ψlower ≤ (X) ≤ Ψupper

(2.2)PF = � ×

(
n∑

i=1

gi(X) +

m∑

i=1

hi(X)

)

,

(2.3)SAPF = (X) ×

(
n∑

i=1

gi(X) +

m∑

i=1

hi(X)

)

.

(2.4)�(X) = f (X) + SAPF.

(2.5)SAPF = f (X) + ∫ ×

(
n∑

i=1

gi(X) +

m∑

i=1

hi(X)

)

.
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Cohort intelligence (CI) algorithm

The CI algorithm [46] is motivated from the social tenden-
cies of learning candidates of a cohort. Every candidate in 
the cohort iteratively attempts to achieve a goal which is com-
mon to all. For this, every candidate employs roulette wheel 
approach and selects another candidate to follow which may 
result in the improvement of its own behavior. This makes 
every candidate learn from one another and helps the over-
all cohort behavior to evolve. The cohort behavior could be 
considered saturated, if for considerable number of learning 
attempts the behavior of every candidate does not improve 
considerably and becomes almost same. The characteristics 
of CI algorithm are as follows:

1. It models the learning mechanism of cohort candidates. 
Every candidate has inherently common goal to achieve 
the best behavior by improving its qualities. The inter-
action and competition are the two natural instincts of 
every cohort individual. These are achieved through rou-
lette wheel selection and further sampling in the close 
neighborhood of the selected (being followed) candi-
date. For details refer to Kulkarni et al. [46, 49].

2. Every candidate observes itself and every other candi-
date in the cohort to improve its individual behavior and 
associated qualities.

3. In CI algorithm, at the end of every learning attempt, 
every candidate independently updates its search space.

4. The problem with large number of variables and con-
straints can be efficiently handled Kulkarni et al. [35, 
50].

CI‑SAPF

Consider a cohort with number of candidates C . For every 
individual candidate c(c = 1,2,… ,C) the pseudo-objec-
tive function (behavior) using the CI-SAPF approach (refer 
Eq. 2.3) can be expressed as follows:

where SAPF
�
X
c
�
= f

�
X
c
�
×
�∑n

i=1
gi(X

c) +
∑m

i=1
hic

�
 is the 

penalty function and f
(
X
c
)
 is the objective function of indi-

vidual candidate. As the algorithm progresses, every can-
didate narrows down the sampling space using a sampling 
space reduction factor R . An independent penalty parameter 
f (Xc) is generated by every individual candidate c to penal-
ize its associated behavior and subsequently updates the pen-
alty parameter for every learning attempt of the algorithm. 
The pseudo code of the CI-SAPF is presented in Fig. 1. The 
performance of CI is dependent on the parameters such 
as number of candidates C and sampling space reduction 
factor R . As cohort is a group of learning candidates, it is 

(3.1)�
(
X
c
)
= f

(
X
c
)
+ SAPF

(
X
c
)
,

necessary to decide the number of candidates C . In a cohort 
with fewer number of candidates (for example: 2, 3, 4), the 
number of choices to follow for an individual are also less. 
On the other hand, as the number of candidates increases 
(for example: 7, 8, 9 and above), the number of behavior 
choices also increases which certainly helps to improve 
the quality of the function value,however, it significantly 
increases the computational cost (function evaluations and 
CPU time). Based on the statistical analysis in Kale and 
Kulkarni [35], the number candidates considered here are 5, 
as there is no significant improvement observed in function 
value with more number of candidates. Another, limitation 
is the selection of sampling space reduction factor R . At 
the end of every learning attempt (iteration), every candi-
date updates its individual search space using the sampling 
space reduction factor R . The choice of R is decided based 
on preliminary trials. To overcome this limitation, CI-SAPF 
is hybridized with CBO. It is discussed in the next section.

Metaheuristic CI–SAPF–CBO

This section describes the proposed hybrid CI–SAPF–CBO 
algorithm. In CI–SAPF–CBO, eminent properties of CI 
and CBO algorithms are incorporated to enhance the appli-
cability of algorithm towards variety of problems from 
different domains. The mathematical representation of 
CI–SAPF–CBO is presented along with its flowchart. The 
detailed review and characteristics of CBO algorithm are 
discussed.

Colliding bodies optimization (CBO)

The CBO algorithm is proposed by Kaveh and Mahdavi 
[38]. It is motivated from the physical behavior of colliding 
bodies (objects). It obeys the law of conservation of momen-
tum and energy in which, the momentum of all the objects 
before collision is equal to the momentum of all the objects 
after collision. After the collision, two moving bodies having 
masses and velocities are separated with updated velocities. 
This causes to move an object towards better position in the 
search space. The pseudo code of the CBO is presented in 
Fig. 2. The characteristics of CBO algorithm are as follows:

1. CBO algorithm is governed by the physics law of con-
servation of momentum and energy. The momentum of 
all the objects before collision is equal to the momentum 
of all the objects after collision.

2. The colliding bodies are arranged in such a way that the 
moving objects are keen to improve. Moving objects 
motivate the stationary objects to explore the search 
space and push them towards better solution.
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3. The colliding bodies are independent of computational 
parameters. Therefore, the preliminary process of 
parameter tuning is not required.

4. The Coefficient of Restitution (COR) used to keep the 
balance between global and local minima.

The CBO algorithm is successfully validated on certain 
continuous, discrete and mixed variable truss structure and 
design engineering domain optimization problems [38]. It is 
observed that the CBO is sensitive to the number of objects 
and needed more colliding bodies to maintain better con-
vergence and higher level of exploration. Furthermore, [38] 
modified the CBO to Enhanced CBO (ECBO) to incorporate 
the colliding memory to save the so far best solutions; so 
that, it could be used for further operations by replacing 
current worst solutions. This helps the ECBO algorithm to 
enhance and provide faster convergence within less com-
putational cost. In ECBO, two parameters are introduced 
randomly between [0, 1] which help the solution jump out of 
the local minima/maxima. The first parameter represents the 

change in component of each colliding body which is then 
compared with a second uniformly distribute random num-
ber. This further decides the modification in the positions of 
the colliding bodies. The hybrid CBO-PSO [38] is proposed 
to exploit the ability of CBO by incorporating basic features 
of PSO. The CBO-PSO is successfully validated by solving 
continuous variable truss structure problems with dynamic 
constraints incorporated with SPF approach.

Framework of CI–SAPF–CBO

It is necessary to generalize the problem-solving technique 
to explore the applicability of diversified real-world appli-
cations. The algorithm of CI has already been validated by 
solving large group of problems; however, the algorithm 
required certain preliminary trials to set a sampling space 
reduction factor R to avoid the solution to trap into the 
local minima [35]. To overcome this limitation of the CI 
algorithm, an important characteristic of CBO is incorpo-
rated into CI.

Fig. 1  Pseudo Code of CI-SAPF
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The CI–SAPF–CBO algorithm (refer Fig. 3 employs CI 
for global search, SAPF for constraint handling and CBO 
for local search. The natural tendency of CI candidates is 
to follow candidates chosen probabilistically using roulette 
wheel approach to evolve their individual behavior. Fur-
thermore, the learning ability of CI candidates is refined 
(updated) using CBO. The CI-SAPF-CBO is mathemati-
cally expressed as follows:

Step 1: Consider a cohort with C number of candidates; 
every individual candidate c(c = 1, 2,… ,C) belongs a set 
of attributes/variables (X)c = (xc

1
, xc

2
,… , xc

N
) which makes 

the behaviour of an individual candidate f (Xc) . The initial 
solution is randomly generated as follows:

The round-off integer sampling approach is employed 
to generate the integer value and further it helps to select 
the discrete variable from the predefined set.

(4.1)(X)c = Ψlower +
(
Ψupper−Ψlower

)
× rand(1,N).

Step 2: The SAPF approach is incorporated to handle 
the constraints and obtained pseudo objective function 
�(Xc) (refer Eq. 3.1).

Step 3: The probability of selecting behavior �(Xc) of 
every associated candidate c(c = 1, 2,… ,C) is evaluated 
as follows:

Step 4: Every individual candidate c(c = 1, 2,… ,C) 
generates a random number r�[0,1] and using roulette 
wheel approach decides to follow the corresponding 
behaviour �(Xc) and associated attributes �c . The behavior 
is selected by candidate c and not known in advance. The 
roulette wheel approach provides chance to every behavior 
in the cohort to get selected purely based on its quality. In 
addition, it also may increase the chances of any candidate 
to select the better behavior as the associated probability 
pc , c(c = 1, 2,… ,C) (refer Eq. 4.1) in the interval [0, 1] is 

(4.2)pc =
1∕�(Xc)

∑C

c=1
1∕�(Xc)

.

Fig. 2  Pseudo Code of the CBO
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directly proportional to the quality of the behavior �(Xc) . 
In other words, better the solution, higher is the probability 
of being followed by the candidates in the cohort.

Step 5: After following a suitable candidate’s behavior 
in the cohort, all the candidates are arranged in descending 

order of the fitness value. In the context of CBO, the first 
half of the candidates (having greater fitness value) are 
referred to as stationary bodies and other half of the candi-
dates (having lesser fitness value towards minimization) are 
referred to as moving bodies. For the sake of hybridization 

Fig. 3  CI-SAPF-CBO Flow-
chart
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of CI–SAPF–CBO, stationary bodies are considered as slow-
learning candidates and moving bodies are considered as 
fast-learning candidates. The fast-learning candidates moti-
vate slow-learning candidates to improve their learning abil-
ity in the cohort. The learning ability of every candidate is 
identified by determining the initial and final velocities of 
the colliding bodies ( C candidates) after collision Kaveh and 
Mahadavi [38]. The learning ability of each candidate refers 
to the velocity m of colliding bodies.

The initial learning ability (initial velocity mc = 0 ) of 
slow-learning candidates and fast-learning candidates is 
represented as follows:

where mc and (X)c are the learning ability and position of 
cth candidate, respectively; (X)c−C∕2 is the cth position of 
(X) . The final learning ability of candidates are evaluated 
by utilizing the initial learning ability of the candidates. The 
learning ability of slow-learning candidates is as follows:

where mc+C∕2 and m′c are the initial learning ability of 
cth fast-learning candidate and final learning ability of cth 
slow-learning candidate, respectively;pc is probability of 
cth candidate, pc+C∕2 is the probability of cth fast-learning 
candidate. Furthermore, the learning ability of fast-learning 
candidate is represented as follows:

where m′c is the final learning ability of cth fast-learning 
candidate, pc−C∕2 is the probability of cth slow-learning 
candidate pair and � is the COR. It is introduced to evaluate 
the initial and final learning abilities of each of the candi-
dates in order to control the exploration of search space and 
exploitation of the best solution [37]. More specifically, it 
controls the local and global searches. The index COR ( � ) 
is calculated as follows:

where mc is initial learning ability of the candidates, m′c is 
final learning ability of the candidates, iter and itermax are 
the current iteration number and total number of iterations, 
respectively. In addition, the final learning abilities of fast-
learning candidates is used to obtain the new position of 

(4.3)mc = 0, c = 1,2,… ,C∕2

(4.4)mc = X
c − X

c−
C

2 , c = C∕2 + 1,= C∕2 + 2,… ,

(4.5)

m�c =

(
pc+C∕2 + �pc+C∕2

)
mc+C∕2

pc + pc+C∕2
, c = 1,2,… ,= C∕2,

(4.6)

m�c =

(
pc − �pc−C∕2

)
mc

pc + pc−=C∕2
, c = C∕2 + 1,C∕2 + 2,… ,C

(4.7)� = 1 −
iter

itermax

,

candidates in the search space which fulfills the objective 
of removing the sampling space reduction factor R from CI-
SAPF algorithm.

Step 6: The new position of attributes for every candidate 
in the search space are updated as follows:

where (X)cnew , (X)c and m′c are the new position of the attrib-
utes, previous position of attributes and final learning ability 
of fast-learning candidate, respectively. rand is the random 
vector uniformly distributed in the range [− 1,1]. The learn-
ing attempt is repeated from Step 2 until the termination 
criteria (number of iterations) is satisfied.

For the validation of proposed CI–SAPF and 
CI–SAPF–CBO techniques, the problems considered here 
are from design engineering domain, truss structure domain 
and linear and non-linear test problems. The CI–SAPF and 
CI–SAPF–CBO are coded in MATLAB 7.7.0 (R2013b) 
and the simulations are run on Windows platform using 
an Intel(R) Core (TM)2Duo, 2.93 GHz processor speed 
and 4 GB RAM. Furthermore, every individual problem is 
solved 30 times. The solutions obtained from proposed tech-
niques and comparison with other contemporary algorithms 
are discussed in the following sections.

Test examples

The CI–SAPF and CI–SAPF–CBO algorithms are applied 
to solve 7 discrete variable truss structure problems, 11 
mixed variable design engineering problems and 17 discrete 
variable linear and nonlinear test functions. To handle the 
discrete variables, a round off integer sampling approach 
[35] is employed. Also, the linear and nonlinear constraints 
involved with these problems are handled by proposed SAPF 
approach. To ensure the performance of the CBO algorithm, 
it is incorporated with static penalty function approach 
applied to solve all the other problems considered in the 
current work. In the previous studies, CBO is applied to 
solve 52-bar, 72-bar case 1 truss structure problems, pres-
sure vessel and welded beam case 1 problem. In the current 
work, the MATLAB code for CBO is adopted form Kaveh 
and Mahdavi [38].

Truss structure problems

All the truss structure problems aimed to minimize over-
all weight by satisfying the constraints, such as maximum 
allowable stress �max in both tension and compression on 

(4.8)(X)cnew = (X)c + rand.m�c, c = 1,2,… ,= C∕2

(4.9)
(X)cnew = (X)c−C∕2 + rand.m�c, c = C∕2 + 1,= C∕2 + 2,… ,C
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every member and maximum allowable displacement umax 
at every node in both horizontal and vertical directions. In 
these problems, the number of variables is equal to the num-
ber of members of the truss. For symmetric truss structure 
problems, such as 25-bar, 45-bar, 52-bar and 72-bar, the 
variables are considered in a group as presented in respec-
tive comparison tables. For all truss structure problems, the 
design variable is cross-section area of each truss member 
and it is selected from within the set of discrete values. 
All the truss structure problems are successfully solved by 
CI–SAPF and CI–SAPF–CBO; however, CBO could not 
achieve the feasible solution for 6-bar, 10-bar cased 1 and 
2, 25-bar case 1 and 2, 38-bar, 45-bar and 72-bar case 2. This 
is due to premature convergence of solution. In general, the 
problem definition for the truss structure is as follows:

where W  Objective function (Weight). Ai Set of cross sec-
tion area of every truss structure member i, i = 1,2,… ,N . 
� Weight density of the truss structure material. li Length 
of truss structure member i, i = 1,2,… ,N.�max Maximum 
allowable stress. umax Maximum allowable displacement.

Test example‑1: six‑bar truss structure [65]

For six-bar truss structure problem CI-SAPF and CI-
SAPF-CBO obtained same results as the GA [65] (refer 

(5.1)Minimize f = W =

N∑

i=1

�Aili

(5.2)subject to ||�i
|| ≤ �maxi = 1,2,… ,N

(5.3)
||
|
uj
||
|
≤ umax j = 1,2,… ,M

Table 1. The best, mean and worst solutions obtained 
from 30 trials using CI-SAPF is 4962.09lb and those of 
CI–SAPF–CBO algorithm are 4962.09lb, 4963.86lb and 
4965.39lb with standard deviation 0 (zero) and 1.72, 
respectively. The average number of function evalu-
ations for both the proposed techniques are 2735 and 
2449 , respectively. The average computational time are 
4.58 s and 3.32 s , respectively. The average function value 
reported using GA is 5250lb whereas, CI–SAPF and 
CI–SAPF–CBO are 4962.09lb and 4963.8558lb , respec-
tively. It is noticed that CI-SAPF and CI–SAPF–CBO per-
formed better than GA. The same problem is attempted 
using CBO,however, the algorithm unable to get the fea-
sible solution due to premature convergence of the solu-
tion. The other computational details of CI–SAPF and 
CI–SAPF–CBO associated with this problem are presented 
in Tables 34 and 35, respectively.

Test example‑2: ten‑bar truss structure [28, 45, 59, 65, 78]

For case 1 and case 2 of the ten-bar truss structure prob-
lem, CI–SAPF and CI–SAPF–CBO algorithm solutions 
are compared with other contemporary algorithms (refer 
Tables 2 and 3. The best, mean and worst function values 
(Wlb) obtained for case 1 and case 2 using CI–SAPF and 
CI–SAPF–CBO with standard deviation and the average 
CPU time are presented in Table 4. The statistical details 
along with the parameters used for CI–SAPF associated with 
these problems are listed in Tables 34 and 35, respectively. 
For case 1, it is noticed that the solutions obtained using 
ABC, ADS, PC and CI–SAPF are similar,however, CI–SAPF 
and CI–SAPF–CBO algorithms performed computationally 
better than other two approaches, whereas, for solving case 
2, PC yielded significantly better objective function value 
within a large number of function evaluations 2,363,380 and 
average CPU time 99 s . When compared with the ADS, the 
solution obtained here for case 1 are similar,however, ADS 
performance is better in terms of function evaluations. The 
Search Dimension Ratio (SDR) incorporated in ADS helped 
to explore and exploit the search space and yielded better 
solutions with fewer number of function evaluations. The 
CBO algorithm could not achieve the feasible solution.

Table 1  Comparison of results for solving 6-bar truss structure prob-
lem

NA Not available

Techniques GA [65] CI–SAPF CI–SAPF–CBO

Truss Weight W(lb) 4962.09 4962.09 4962.09
Function evaluations NA 2250 1740

Table 2  Comparison of results for case 1 solving 10-bar truss structure problem

NA Not Available

Techniques GA [65] ABC [78] ADS [28] PC Kulkarni 
et al. [45]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight
W(lb)

5499.35 5490.74 5490.74 5490.74 5490.74 5490.60 5490.60

Function evaluations NA 25,800 1000 1,852,059 19,250 16,940 14,160
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Test example‑3: spatial 25‑bar truss structure (transmission 
tower) [39, 44, 55, 59]

For solving case 1 and 2 of 25-bar truss structure prob-
lem, CI–SAPF and CI–SAPF–CBO solutions are compared 
with other contemporary algorithms (refer Tables 5 and 6. 
The best, mean and worst function values with standard 
deviation, average function evaluations and average CPU 
time obtained from 30 independent trials are presented in 
Table 7. It is observed that both the techniques performed 
better as compared to PSO, PSOPC, HPSO and DHPSACO 
algorithm. The algorithm of PC obtained better solution as 

compared to CI–SAPF and CI–SAPF–CBO,however, the 
computational cost is significantly higher due to slower 
convergence. The other statistical details of CI–SAPF and 
CI–SAPF–CBO are presented in Tables 34 and 35.

Test example‑4: planer 38‑bar truss structure [45, 72]

For solving 38-bar truss structure problem, the best, mean 
and worst function values (Wlb) obtained using CI-SAPF 
are 5891.05lb , 5895.37lb and 5898.44lb , respectively, with 
standard deviation 2.19 , average function evaluations 

Table 3  Comparison of results for case 2 solving 10-bar truss structure problem

NA Not Available

Techniques PSO [59] PSOPC [59] HPSO [59] MBA [73] PC Kulkarni 
et al. [45]

CI–SAPF CI–SAPF–CBO

Truss weight
W(lb)

5243.71 5133.16 5073.51 5067.33 4686.77 5061.76 5061.76

Function evaluations NA NA NA NA 2,363,380 9450 8400

Table 4  Statistical results for 10-bar case 1 and 2 using CI–SAPF and 
CI–SAPF–CBO

Results CI–SAPF CI–SAPF–CBO

Case 1 Case 2 Case 1 Case 2

Best 5490.60 5061.76 5490.60 5061.76
Mean 5505.75 5062.22 5505.71 5061.81
Worst 5534.96 5067.33 5532.85 5062.12
Std. Dev 16.65 1.54 14.09 0.13
Avg. CPU time (sec) 10.64 12.70 10.80 33.42
Avg. function evaluations 22,654 22,874 16,845 24,325

Table 5  Comparison of results solving 25-bar case 1 truss structure problem

NA Not Available

Techniques HS [55] DHPSACO 
[39]

PSO [59] PSOPC [59] HPSO [59] PC 
Kulkarni 
et al. [44]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight W(lb) 560.59 551.61 566.44 560.59 560.59 477.17 516.20 512.81 512.81
Function evaluations NA NA NA NA NA 1,844,457 21,350 18,500 15,000

Table 6  Comparison of results solving 25-bar case 2 truss structure problem

NA Not Available

Techniques PSO [59] PSOPC [59] HPSO [59] DHPSACO 
[39]

PC Kulkarni 
et al. [44]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight W(lb) 567.49 556.9 551.14 551.14 464.15 500.04 470.14 473.47
Function evaluations NA NA NA NA 1,963,415 14,350 31,500 15,000

Table 7  Statistical results for 25-bar case 1 and 2 using CI–SAPF and 
CI–SAPF–CBO

Results CI–SAPF CI–SAPF–CBO

Case 1 Case 2 Case 1 Case 2

Best 512.81 470.14 512.81 473.47
Mean 530.87 486.79 531.95 485.97
Worst 548.61 498.06 543.07 487.94
Std. Dev 10.16 6.80 8.80 2.82
Avg. CPU Time (sec) 12.21 15.95 11.71 22.18
Avg. Function Evaluations 22,588 26,796 21,652 28,513
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69920 average and CPU time 87.8s . The best, mean and 
worst function values resulted using CI–SAPF–CBO are 
5889.95 lb, 5903.25 lb and 5927.08 lb, respectively, with 
the standard deviation of 10.93 , average function evalu-
ations of 46900 and average CPU time of 33.30s . The 
results obtained using CI–SAPF and CI–SAPF–CBO algo-
rithms are compared with other contemporary approaches 
(refer Table 8 and the associated parameters are listed in 
Tables 34 and 35. The solutions reported by both the algo-
rithms are better as compared to PC. However, PC exhib-
ited more robust performance with standard deviation of 
0.37.

Test example‑5: planer 45‑bar truss structure [2, 43]

For 45-bar truss structure problem the results obtained using 
CI-SAPF and CI-SAPF-CBO algorithms along with the 
other approaches is presented in Table 9. Using CI-SAPF the 
best, mean and worst function values (Wlb) obtained from 
30 trials are14322.29lb, 14476.49lband14667.10lb , respec-
tively, with standard deviation91.77 , average function evalu-
ations 114525 and average CPU time64.69s . Also, the best, 
mean and worst function values obtained using CI-SAPF-
CBO are14322.29 , 14413.89 and14480.44 , respectively, 
with standard deviation of40.18 , average function evolu-
tions of 103237 and average CPU time of 56.94 s . The other 
computational details and parameters associated with the 
both algorithms are listed in Tables 34 and 35, respectively. 
The CI–SAPF and CI–SAPF–CBO algorithm obtained 
better results as compared to other algorithms,however, 

CI–SAPF–CBO yielded better solutions with less compu-
tational cost (average function evolutions and average CPU 
time).

Test example‑6: spatial 52‑bar truss structure [38, 39, 55, 
59, 73, 86]

The discrete 52-bar planer truss structure problem for weight 
minimization is successfully solved using CI-SAPF and 
CI–SAPF–CBO algorithms and the solutions are compared 
with other contemporary approaches presented in Table 10. 
The best, mean and worst CI–SAPF solutions obtained 
from 30 trials are 1894.48 kg , 1913.98 kg and 1934.94 kg , 
respectively, with standard deviation 11.99 , average num-
ber of function evaluations 101751 and average CPU time 
52.73 s . Also, for CI–SAPF–CBO, the best, mean and worst 
function values are 1891.44 kg, 1909.33 kg and 1920.11 kg , 
respectively, with standard deviation 7.18 , average function 
evaluations 95645 and the average CPU time 61.16 s . The 
other associated details are listed in Tables 34 and 35. The 
reported solution using CI–SAPF is better as compare to 
other contemporary approaches. However, CBO algorithm 
exhibited faster convergence as compared to CI–SAPF and 
CI–SAPF–CBO algorithms due to its exploitation quality.

Test example‑7: spatial 72‑bar truss structure [39, 44, 55, 
59, 86]

The CI–SAPF and CI–SAPF–CBO algorithms are success-
fully applied for solving case 1 and 2 of the 72-bar truss 
structure problem and the solutions are compared with 

Table 8  Comparison of results 
solving 38-bar truss structure 
problem

Techniques ISCSO (Rudolph
and Schmidt, 2012)

PC Kulkarni 
et al. [45]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight W(lb) 5889.90 5893.02 5900.34 5891.05 5889.95
Function evaluations 4618 1,793,966 106,666 151,240 42,750

Table 9  Comparison of results 
solving 45-Bar truss structure 
problem

NA Not Available

Techniques ISCSO [2] PC [43] CI-SPF [35] CI-SAPF CI–SAPF–CBO

Truss weight W(lb) 14,341.21 14,377.92 14,354.27 14,322.29 14,322.29
Function evaluations NA 4,494,278 163,483 95,625 51,750

Table 10  Comparison of results for 52-bar truss structure problem

NA Not Available

Techniques GA [86] HS [55] HPSO [59] DHPSACO [39] MBA [73] CBO [38] CI–SAPF CI–SAPF–CBO

Truss weight W(kg) 1970.14 1906.76 1905.49 1904.83 1902.61 1899.35 1894.48 1891.44
Function evaluations 60,000 NA 100,000 5300 NA 3840 175,240 42,432
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other algorithms (refer Tables 11 and 12. The CI–SAPF and 
CI–SAPF–CBO algorithm yielded a better solution with less 
computational time and function evaluations. The best, mean 
and worst function values, standard deviation, average func-
tion evaluations and average CPU time obtained using 30 
trials are presented in Table 13. The associated parameters 
used to run CI–SAPF are illustrated in Table 34.

Design engineering problems

The proposed CI–SAPF and CI–SAPF–CBO algorithms are 
also validated by solving 11 problems from design engi-
neering domain including stepped cantilever beam problem 
(minimization of volume), pressure vessel problem (cost 
minimization), speed reducer problem (minimization of 
weight), reinforced concrete beam problem (minimization 
of cost), welded beam design problem case 1 (minimization 
of cost), case 2 (minimization of overall fabrication cost), 
multiple disc clutch brake problem (minimization of mass), 
helical tension compression spring problem (minimization 
of volume), I-beam (minimization of vertical deflection), 

cantilever beam problem (minimization of weight) and 
compound gear problem (minimization of gear ratio). For 
the sake of comparison, CBO algorithm is also applied to 
solve these problems except welded beam case 2 (previ-
ously reported by [38]). These problems are consisted of 
mixed design variables. For the statistical analysis, the 
CI–SAPF, CI–SAPF–CBO and CBO are run 30 times for 
every problem.

Test example‑8: stepped cantilever beam design problem 
[23, 35, 83]

The stepped cantilever beam design problem for volume 
minimization is proposed by Thanedar and Vanderplaats 
[83]. The design variables are discrete (b1, h1, b2, h2, b3, h3) 
and continuous ( b4, h4, b5, h5 ). This problem is initially 
solved using branch and bound and simulated anneal-
ing approach. The solution reported is 64558 [83]. The 
CI–SAPF, CI–SAPF–CBO and CBO are also applied to 
solve this problem and the results are compared with other 
algorithms (refer Table 14. The best, mean and worst func-
tion values along with the standard deviation, average 
function evaluations and average CPU time obtained from 
applied techniques are presented in Table 15. It is observed 
that CI–SAPF and CI–SAPF–CBO reported better solutions 
as compared to RNES and similar results as compare to FA 
and CI-SPF. The associated statistical results for CI–SAPF 
and CI–SAPF–CBO are presented in Tables 34 and 35.

Test problem‑9: pressure vessel design problem [10, 40, 74]

The pressure vessel design problem for cost minimization 
is successfully solved using CI–SAPF and CI–SAPF–CBO 
algorithm. The CBO algorithm could not achieve feasible 

Table 11  Comparison of results solving 72-bar case 1 truss structure problem

NA Not Available

Techniques GA [86] HPSO [59] PC Kulkarni 
et al. [44]

CBO
Kaveh and Maha-
davi [38] 

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight W(lb) 400.66 388.9400 372.41 385.54 373.54 372.41 372.41
Function evaluations NA NA 8,843,207 5330 99,288 72,000 38,880

Table 12  Comparison of results solving 72-bar case 2 truss structure problem

NA Not Available

Techniques GA [86] HPSO [59] DHPSACO 
[39]

PC Kulkarni 
et al. [44]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight W(lb) 427.20 933.09 393.38 379.91 381.34 380.18 379.06
Function evaluations NA NA NA 8,730,598 63,000 48,240 60,912

Table 13  Statistical results for 72-bar case 1 and 2 using CI–SAPF 
and CI–SAPF–CBO

Results CI–SAPF CI–SAPF–CBO

Case 1 Case 2 Case 1 Case 2

Best 372.41 380.18 372.41 379.06
Mean 381.53 383.24 398.08 387.81
Worst 384.63 385.96 418.90 397.39
Std. Dev 3.25 1.69 11.89 5.43
Avg. CPU time (sec) 78.61 118.52 53.88 80.39
Avg. Function evaluations 85,500 124,080 85,872 91,872
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solution due to premature convergence. The results 
obtained using CI–SAPF and CI–SAPF–CBO algorithms 
compared with other contemporary algorithms are pre-
sented in Table  16. For CI-SAPF, the best, mean and 
worst function values obtained from 30 trials are 6051.48, 
6065.25 and 6103.27 with standard deviation 11.91, aver-
age function evaluation 11974 average and CPU time 
4.43 s . Also, for CI–SAPF–CBO, the best, mean and worst 
solution are 6059.72, 6066.11 and 6090.53 with standard 
deviation 9.22 , average average function evaluation of 
12, 113 and CPU time 4.29 s . From the statistical results, 
it is noticed that CI–SAPF obtained better solution as com-
pared to other approaches with less computational cost. 
CI–SAPF–CBO obtained similar results as compared to 
LCA and OIO. It is due to the faster convergence rate of 
the CBO algorithm.

Test example‑10: speed reducer design problem [3, 9, 20]

For the speed reducer design problem, the results obtained 
using CI-SAPF, CI-SAPF-CBO and CBO algorithms are 
presented in Table 17 in comparison with other contem-
porary approaches. The proposed algorithms yielded 
better results with less computational cost and function 
evaluations. The best, mean and worst function values 
with standard deviation, average computational time and 
average number of function evaluations are presented in 
Table 18. The other associated parameters are listed in 
Tables 34 and 35. The CI–SAPF–CBO algorithm obtained 
better solutions so far with very less computational cost 
(refer Table 17).

Table 14  Comparison of results 
solving stepped cantilever beam 
design problem

NA Not Available

Design variables RNES [6] FA [23] CI-SPF [35] CBO CI–SAPF CI–SAPF–CBO

Volume 
(
cm3

)
64,269.59 63,893.52 63,893.49 80,329.37 63,893.45 63,893.47

Function Evaluations NA NA 19,740 4560 10,000 12,000

Table 15  Statistical results for stepped cantilever beam problem using 
CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 63,839.45 63,893.47 80,329.37
Mean 64,248.96 64,229.23 85,830.51
Worst 64,333.45 64,579.43 101,024.23
Std. Dev 175.29 207.14 6610.61
Avg. CPU time (sec) 5.36 7.45 1.14
Avg. function evaluations 21,552 30,437 4448

Table 16  Comparison of results for pressure vessel design problem

NA Not Available

Techniques NIDPM [74] Augmented 
Lagrange [40]

GA [10] CPSO [29] LCA [36] OIO [37] CI–SAPF CI–SAPF–CBO

Cost 7981.57 7198.04 6288.74 6061.08 6059.85 6059.71 6051.48 6059.72
Function evaluations NA NA 900,000 200,000 24,000 50,000 9744 9184

Table 17  Comparison of results solving Speed Reducer Problem for weight optimization

NA Not Available

Techniques AIS-GA-C [3] AIS-GA [9] EA [20] PC Kulkarni 
et al. [45]

CI-SPF [35] CBO CI–SAPF CI–SAPF–CBO

Weight W(lb) 2994.47 2994.34 3025.01 2828.59 2817.56 2840.44 2817.09 2816.79
Function evaluations 36,000 150,000 36,000 1,132,700 16,513 1848 5145 8442

Table 18  Statistical results for speed reducer design problem using 
CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 2817.09 2816.34 2840.44
Mean 2820.32 2817.65 3534.00
Worst 2825.87 2819.57 3582.75
Std. Dev 2.06 1.03 264.39
Avg. CPU time (sec) 2.25 1.02 0.30
Avg. function evaluations 14,420 7597 613
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Test example‑11: reinforced concrete beam design [23, 35]

For reinforced concrete beam problem, CI–SAPF and CI-
SAPF-CBO algorithm reported similar results with less 
computational cost as compared to FA, PC and CI-SPF (refer 
Table 19. The best, mean and worst function values with 
standard deviation, average function evaluation and average 
CPU time obtained from 30 trials are presented in Table 20.

Test problem‑12: welded beam design case 1 [10, 11, 15, 
29]

Test problem‑13: welded beam design problem case 2 [14, 
18, 41] For welded beam design problem (case 1 and case 
2), the solutions obtained from CI–SAPF and CI–SAPF–
CBO algorithms are compared with other contemporary 
techniques (refer to Tables 21 and 22. For case 1, the CBO 
solutions are taken from Kaveh and Mahdavi [38] and in the 
current work CBO is tested on case 2. For both the cases of 
welded beam problem, CI-SAPF and CI–SAPF–CBO per-
formed significantly better. This is due to the probability-
based roulette wheel approach which increased the chances 
to follow the better solution in the cohort. The statistical 
results for case 1 and case 2 obtained form 30 trials are pre-
sented in Table 23.

Test problem‑14: multiple disc clutch brake [19, 70] The 
multiple disc clutch brake design problem is previously 
solved using NSGA [19], PSO and AIA [70]. The CI–
SAPF and CI–SAPF–CBO algorithm are successfully vali-
dated by comparing the solutions with these algorithms 
(refer Table 24. The best, mean and worst function values 
obtained using CI–SAPF and CI–SAPF–CBO algorithm 
are very similar,however, significantly better as compared 
to other algorithms. The statistical results from 30 trials are 
presented in Table 25. The solutions obtained from CBO are 
marginally worse.

Table 19  Comparison of results 
solving reinforced concrete 
beam design problem

NA Not Available

Techniques FA [23] PC Kulkarni 
et al. [45]

CI-SPF [35] CBO CI–SAPF CI–SAPF–CBO

Min. Cost 359.21 359.21 359.21 362.63 359.21 359.21
Function evaluations 30,000 563,490 22,050 252 4515 1710

Table 20  Statistical results for reinforced concrete beam problem 
using CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 359.21 359.21 362.63
Mean 359.24 359.32 379.02
Worst 359.47 359.95 386.40
Std. Dev 0.08 0.18 9.35
Avg. CPU time (sec) 0.73 0.47 0.03
Avg. function evaluations 3047 2255 182

Table 21  Comparison of results solving welded beam design case 1 problem

NA Not available

Techniques GA [15] GA [10] GA [11] PSO [29] CBO [38] CI–SAPF CI–SAPF–CBO

Min. Cost 2.43 1.75 1.73 1.73 1.72 1.55 1.55
Function evaluations NA NA NA NA NA 11,786 9552

Table 22  Optimal solutions for the welding beam design case 2 problem

NA Not available

Techniques GA [18] PSO [40] PSO 
[14]

CBO CI–SAPF CI–SAPF–CBO

Min. cost 1.94 (infeasible) 2.03 1.95 4.98 1.65 1.65
Function evaluations NA 189,800 NA 1152 3000 7092
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Test problem‑15: helical compression spring design [23, 74, 
87]

A mixed variable tension–compression helical spring 
problem is previously solved in Yun [87], Gandomi et al. 
[23], Sandgren [74] and Kulkarni et al. [45]. The solutions 
obtained using CI–SAPF and CI–SAPF–CBO algorithms 
are successfully validated and compared with other con-
temporary algorithms presented in Table 26. It observed 
that the results obtained from CI–SAPF are very similar to 
FA and PC,however, computationally CI-SAPF performed 
better with lesser number of function evaluations. The 

best, mean and worst function values with standard devia-
tion, average function evaluations and average CPU time 
are presented in Table 27. The other statistical details and 
associated parameters are presented in Tables 34 and 35.

Test problem‑16: minimize I‑section beam vertical deflec‑
tion [8, 22] For I-section beam problem, CI–SAPF, CI–
SAPF–CBO and CBO reported better function values as 
compared to CS [22] and SOS [8] (refer Table  28. The 
best, mean and worst function values with standard devia-
tion, average CPU time and average function evaluations 
are presented in Table  29. For this problem, the stand-

Table 23  Statistical results for 
welded beam problem case 1 
and case 2 using CI–SAPF, CI–
SAPF–CBO and CBO

Results Case1 Case2

CI–SAPF CI–SAPF–CBO CI–SAPF CI–SAPF –CBO CBO

Best 1.55 1.55 1.65 1.65 4.98
Mean 1.56 1.55 1.88 1.93 7.36
Worst 1.57 1.56 2.08 2.15 10.49
Std. Dev 0.01 0.003 0.2013 0.2138 2.14
Avg. CPU time (sec) 1.57 2.24 2.08 2.15 0.27
Avg. function evaluations 11,786 8721 8740 6996 684

Table 24  Comparison of results 
solving multiple disc clutch 
brake design problem

NA Not available

Techniques NSGA [19] Rao et al. [70] CBO CI–SAPF CI–SAPF–CBO

PSO AIA

Mass ( kg) 0.41 0.31 0.32 0.28 0.24 0.24
Function evaluations NA NA NA 210 825 450

Table 25  Statistical results for multiple disc clutch brake problem 
using CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 0.24 0.24 0.27
Mean 0.24 0.24 0.44
Worst 0.24 0.24 0.83
Std. Dev 8.62E-17 9.25E-18 0.23
Avg. CPU time (sec) 0.23 0.18 0.08
Avg. function evaluations 671 800 450

Table 26  Performance comparison of various algorithms solving helical spring design problem

NA Not available

Techniques Nonlinear 
B&B [74]

AHGA [87] FA (Gandomi et, 
al. 2011)

PC (Kulakrni 
et al. (2016a))

CBO CI–SAPF CI–SAPF–CBO

Spring volume
(in3)

2.79 2.03 2.66 2.66 3.24 2.66 2.66

Function evaluations NA NA NA 498,567 108 840 1000

Table 27  Statistical results for tension–compression helical spring 
problem using CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 2.6586 2.6586 3.2440
Mean 2.6601 2.6594 4.1223
Worst 2.6722 2.6630 5.5331
Std. Dev 0.0032 0.0014 0.8765
Avg. CPU time (sec) 2.05 2.02 0.04
Avg. function evaluations 3030 2991 65
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ard deviation obtained by CS and SOS are 1.3E − 4 and 
4.0E − 5 , respectively,however, CI–SAPF algorithm is 
more robust with standard deviation of 4.6472E − 7 with 
fewer number of function evaluations (refer Table 29. The 
other computational details and associated parameters are 
presented in Tables 34 and 35.

Test problem‑17: cantilever beam [8, 22] The continu-
ous variable cantilever beam design problem aims at the 
minimization of overall weight. The CI–SAPF approach is 
successfully validated by solving this problem and com-
pared with other techniques presented in Table  30. The 
solutions reported from CI–SAPF–CBO and CBO are pre-
sented in Table 31. The function values using CI–SAPF 
and CI–SAPF–CBO for solving cantilever beam problem 
is very similar to CS [22] and SOS [8] and equally robust. 
The computational cost of the CI–SAPF is marginally bet-
ter as compared to CI–SAPF–CBO, SOS and CBO (refer 
Table 31. The other computational details and associated 
parameters are presented in Tables 34 and 35.

Test problem‑18: compound gear train [14, 40, 74] For 
the compound gear train design problem CI–SAPF, 
CI–SAPF–CBO and CBO are successfully validated by 
comparing the solutions with the methods such as non-
linear B&B Sandgren [74], Lagrange multiplier Kannan 
and Kramer [40] and PSO [14] as presented in Table 32. 
CI–SAPF and CI–SAPF–CBO algorithms obtained very 
similar results as PSO. The best, mean and worst solu-
tions obtained using CI–SAPF, CI–SAPF–CBO and CBO 
with standard deviation, average CPU time and average 
function evaluations are illustrated in Table 33. The other 
computational details and associated parameters are pre-
sented in Tables 34 and 35.

Linear and nonlinear benchmark test problems

The CI–SAPF, CI–SAPF–CBO and CBO algorithms are 
also applied for solving several maximization and minimi-
zation test problems [82] such as dynamic variable problem, 
transportation problem, multistage problem, Rosen Suzuki 
convex test problems, knapsack problem and two cases of 
integer linear problem. Moreover, two cases of non-convex 
integer problem and global nonlinear mixed discrete pro-
gramming problem [89], three-bar test problem [80] and six 
monotone functions [53] are also solved. These all prob-
lems consisted of discrete variables and linear-nonlinear 
type constraints. The discrete variables are handled using 
a round off integer sampling technique [35] and constraints 
are handled using SAPF approach, however, CBO could not 
achieve the feasible solution for transportation problem and 
four monotone functions. For all the solved problems, the 
result comparison is presented in Table 36.

Table 28  Comparison of results 
solving minimize I-beam 
vertical deflection

NA Not available

Techniques CS 
[22]

SOS [8] CBO CI–SAPF CI–SAPF–CBO

Min. deflection 0.0130747 0.0130741 82E-4 66E-4 66E-4
Function evaluations 5000 5000 432 3900 2400

Table 29  Statistical results for I-section beam problem using CI–
SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 66E-4 66E-4 82E-4
Mean 66E-4 66E-4 0.04
Worst 66E-4 66E-4 0.13
Std. Dev 4.65E-07 9.65E-06 0.05
Avg. CPU Time (sec) 1.27 0.47 0.016
Avg. Function evaluations 7830 4553 123

Table 30  Comparison of results solving cantilever beam design

NA Not available

Techniques CS 
[22]

SOS [8] CBO CI–SAPF CI–SAPF–CBO

Min. weight 1.34 1.34 3.20 1.34 1.34
Function evalu-

ations
NA 15,000 2190 13,750 3025

Table 31  Statistical results for cantilever beam problem using CI–
SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 1.34 1.34 3.20
Mean 1.34 1.34 6.28
Worst 1.34 1.34 7.58
Std. Dev 1.74E-07 6.51E-05 1.78
Avg. CPU time (sec) 0.91 1.83 0.06
Avg. function evaluations 9581 11,761 2320
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Result analysis and discussion

The proposed CI–SAPF and CI–SAPF–CBO algorithms 
are successfully validated by solving discrete and mixed 
design variable problems involved with linear and non-
linear constraints. These problems are also solved using 
CBO algorithm to compare the performance of individual 
algorithm. The statistical results of all the problems con-
sidered in the work are presented in Tables 34, 35, 36. 
The Tables 34 and 35 present the best, mean and worst 
function values for CI–SAPF and CI–SAPF–CBO, respec-
tively, including standard deviation of function values, 
average number of function evaluations, average compu-
tational time, closeness to the reported solution and the 
set of parameters required to run the CI-SAPF algorithm. 
Table 36 presents the comparison of solutions obtained 
from CI–SAPF, CI–SAPF–CBO, CBO algorithms and 
other contemporary techniques used to solve linear and 
nonlinear optimization test problems. The problems con-
sidered here are from truss structure domain (10 prob-
lems), mixed variable design engineering domain (11 
problems) and linear and non-linear test problems with 
integer variables (17 problems). In CI–SAPF–CBO, the 
CBO algorithm enhanced the exploration of the search 
space which assisted the CI algorithm to reach towards 
the better solutions within substantially less computational 
cost. The SAPF approach served to handle the linear and 
nonlinear constraints and CI worked as a global opti-
mizer. Most importantly, CI–SAPF–CBO came up with a 

generalized approach, which does not require fine tuning 
of parameters except number of candidates C . This makes 
the proposed algorithm easier to apply to wide range of 
applications.

The problems from truss structure domain and design 
engineering domain are previously solved using CI–SPF 
approach incorporated with static penalty function approach 
[35]. All the discrete variables truss structure domain prob-
lems considered in the present work are solved for minimiza-
tion of weight subject to stress (in links) and deflection (in 
nodes). For 38 bar, 52 bar and 72 bar case 1, CI–SAPF–CBO 
obtained even better results as compared to CI–SAPF and 
CBO algorithms. For solving 52-bar and 72-bar truss struc-
ture problems and welded beam (case 1) design engineer-
ing problem, the physics inspired CBO algorithm is incor-
porated with a round off approach to handle the discrete 
variables and static penalty function approach to handle the 
inequality constraints. In the current work, CI–SAPF and 
CI–SAPF–CBO exhibited the superiority in dealing with 
such problems as compared to the CI–SPF [35], CBO [38] 
and other contemporary algorithms. The results obtained 
from CI–SAPF and CI–SAPF–CBO are similar as in both the 
approaches, a probabilistic roulette wheel approach provided 
the possible choices to follow the best candidate, wherein, 
the proposed SAPF approach handled the constraints and 
CBO is incorporated to refine the solution obtained from 
CI. The CBO algorithm is tested on all the problems consid-
ered here,however, it exhibited fast and premature conver-
gence. However, in CI–SAPF–CBO, a probabilistic roulette 
approach associated with the CI assisted the algorithm to 
escape the solution from local minima.

An adaptive penalty function approach is incorporated 
in GA Nanakorn and Meesomklin [65] with the similar 
motivation to evade the setting of penalty parameter. For 
six-bar truss structure problem, both the proposed CI–SAPF 
and CI–SAPF–CBO algorithms obtained same results as 
compared to GA and those for ten-bar (case 1) truss struc-
ture problem performed better than GA. In Nanakorn and 
Meesomklin [65], the penalty parameter is set using a ratio 
between best infeasible fitness value and average feasible 
fitness value. This process requires a separate scaling fac-
tor which needs to be set to adjust the strength of penalty 

Table 32  Comparison of results solving compound gear design problem

NA Not available

Techniques Nonlinear B&B [74] Lagrange Multi-
plier [40]

PSO [14] CBO CI–SAPF CI–SAPF–CBO

f (x) 5.7e − 06 2.1246e-08 2.7e − 12 4.5033E-9 2.70e-12 2.70e-12
Gear ratio 0.1466 0.1441 0.1442 0.1443 0.1442 0.1442
Error % 1.65% 0.11% 0.0011% 0.0462% 0.0011% 0.0011%
Function evaluations NA NA NA 420 1260 360

Table 33  Statistical results for compound gear train problem using 
CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 2.7E−12 2.7E−12 4.50E−09
Mean 3.97E−11 1.73E−11 1.46E−05
Worst 6.60E−10 2.31E−11 7.06E−05
Std. Dev 5.26E−12 9.55E−12 3.13E−05
Avg. CPU time (sec) 3.12 2.17 0.03
Avg. function evaluations 8513 6358 102
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Table 34  CI–SAPF results solving truss structure and engineering design problems

Test examples Best mean worst Standard deviation Average number of 
function evalua-
tions

Average com-
putational time 
(sec)

% improvement over 
the best reported 
solution

Set of 
parameters 
C,R

Test Example-1 6-Bar 4962.09 9.25E−13 2735 4.58 0 5, 0.965
4962.09
4962.09

Test Example-2
10-Bar Case 1
10-Bar Case 2

5490.60 16.65 22,654 17.87 0.0024 5, 0.965
5505.75
5534.96
5061.76 1.54 22,874 31.72 0.1099 5, 0.967
5062.22
5067.33

Test Example-3
25-Bar Case 1
25-Bar Case 2

512.81 10.16 22,588 12.21 0.6566 5, 0.955
530.88
548.61
473.47 6.80 26,796 15.95 5.3139 5, 0.955
486.74
498.06

Test Example-4 38-Bar 5891.05 2.18 69,920 40.60 0.0019* 5, 0.967
5895.38
5898.44

Test Example-5 45-Bar 14,322.29 91.77 114,525 63.17 0.1309 5, 0.97
14,455.68
14,667.10

Test Example-6 52-Bar 1894.48 11.98 101,751 52.73 0.2563 5, 0.9567
1913.97
1934.94

Test Example-7 72-Bar 
Case 1

72-Bar Case 2

372.41 3.25 85,500 78.61 0.3033 5, 0.955
381.53
384.63
380.18 1.69 124,080 118.52 0.0718* 5, 0.955
383.24
385.96

Test Example-8 Steeped 
Cantilever Beam

63,893.45 175.29 21,552 5.36 5.57e-5 5, 0.955
64,248.96
64,333.45

Test Example-9 Pressure 
vessel

5850.66 104.65 11,396 4.85 0.6663 5, 0.955
5960.49
6116.89

Test Example-10 Speed 
Reducer

2817.09 2.06 14,420 2.25 0.0165 5, 0.955
2820.32
2825.87

Test Example-11 Concrete 
Beam

359.21 0.08 3047 0.73 0 5, 0.955
359.24
359.47

Test Example-12 Welded 
Beam 1

1.55 77E−4 11,786 4.92 15.7316 5, 0.955
1.56
1.57

Test Example-13 Welded 
Beam 2

1.65 0.20 8740 2.08 10.0600 5, 0.955
1.88
2.08
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parameter. This is one of the limitations of the adaptive 
penalty function approach which may increase preliminary 
trials to set the scaling factor; however, in SAPF approach, 
the function value is used as a penalty parameter which 
is updated in every iteration of the algorithm. This func-
tion value keeps on improving as the iteration progresses 
which accelerates the convergence rate and obtain compe-
tent results with lesser computational cost. For 10-bar (case 
2), 25-bar (Case 1 and 2), 52-bar and 72-bar 3-D spatial 
discrete truss structure, CI-SAPF and CI-SAPF-CBO per-
formed better as compared to PSO and PSOPC. In PSO 
and PSOPC [59] the penalty function is incorporated which 
degenerated the function value. To overcome this limitation, 
fly-back mechanism is used in HPSO to handle the con-
straints which expedited the convergence rate. In CI–SAPF, 
all the candidates are keen to improve their behavior (func-
tion value) and a probability-based roulette wheel approach 
provides them possible choices to follow the better solution 
and CI further push the solution towards global minima. In 
CI–SAPF–CBO, the exploration quality of CBO controls the 
search space which drives the candidate to achieve the better 
behavior in the cohort.

The DHPSACO [39] and MBA [73] are employed with a 
modified feasibility based [17] constraint handling approach 
and obtained better solutions so far with least number of 
function evaluations. A harmony search strategy is adopted 
in DHPSACO to explore the search space which required an 
additional parameter referred to as pitch adjustment rate to 
select the neighborhood values. A SOS (Cheng and Prayogo 
2014) is also incorporated with feasibility-based rule for 

solving design engineering problems such as steeped canti-
lever beam for weight minimization and design of I-section 
beam for minimum vertical deflection. A similar feasibility-
based approach is also adopted by Datta and Figueira [14] in 
real-integer-discrete-coded PSO for solving compound gear 
train design problem. As compared to the feasibility-based 
rule, CI–SAPF and CI–SAPF–CBO observed to be more 
superior obtaining the same results for cantilever beam and 
compound gear train problems. For I-section beam design 
problem, CI–SAPF and CI–SAPF–CBO obtained better 
solutions than PSO and SOS. Moreover, an ADS [27] algo-
rithm is also compared with CI–SAPF and CI–SAPF–CBO 
for 10-bar case 1 truss structure problem. The ADS achieved 
the best solution in 1000 function evaluations, however, the 
external penalty function is incorporated for constraint han-
dling, in which an initial penalty coefficient required to be 
set and further updated by every stagnation escape period. 
This required several preliminary trials and may increase the 
computational cost.

A nonlinear integer and discrete programming method 
[74] is proposed to solve mechanical design engineering 
problems such as gear train design, tension compression 
spring and pressure vessel, in which a nonlinear branch and 
bound approach and exterior penalty function approach are 
incorporated to handle discrete and integer variables and 
to handle the constraints, respectively. A concept of aug-
mented Lagrange multiplier [40] is incorporated with Pow-
ell’s method and Fletcher and Reeves Conjugate Gradient 
method for solving mechanical design problems and it is 
noticed that the zeroth-order search (Powell’s method) found 

Table 34  (continued)

Test examples Best mean worst Standard deviation Average number of 
function evalua-
tions

Average com-
putational time 
(sec)

% improvement over 
the best reported 
solution

Set of 
parameters 
C,R

Test Example-14 Multiple 
Disc Clutch

0.24 8.62E−17 671 0.23 25.0316 5, 0.955

0.24

0.24
Test Example-15 Tension 

Compression Spring
2.66 32E−4 3030 2.05 0 5, 0.955
2.66
2.67

Test Example-16
I Section Beam

66.26E-4 4.65E−07 7830 1.27 49.518 5, 0.955
66.26E-4
66.28E-4

Test Example-17 Cantile-
ver Beam

1.34 1.74E−05 9581 0.91 0 5, 0.955
1.34
1.34

Test Example-18 Gear 
Train Design

2.7E-12 5.26E−12 8513 3.12 0 5, 0.955
3.97E-11
6.60E-10

*The solution obtained using CI–SAPF is worse than other algorithms
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Table 35  CI–SAPF–CBO results solving truss structure and engineering design problems

Test examples Best mean worst Standard deviation Average number of 
function evaluations

Average com-
putational time 
(sec)

% Improvement over 
the best reported 
solution

Test Example-1 6-Bar 4962.09 1.37 2449 3.32 0
4963.86
4965.39

Test Example-2 10-Bar Case 1 10-Bar 
Case 2

5490.60 14.09 16,845 10.81 0.0024
5505.71
5532.85
5061.76 1.88 24,325 34.53 0.1099
5062.50
5067.33

Test Example-3 25-Bar Case 1 25-Bar 
Case 2

512.81 8.80 21,652 11.71 0.6560
531.95
543.07
473.47 2.82 28,513 22.18 5.3139
485.97
487.94

Test Example-4 38-Bar 5889.95 10.93 46,900 33.30 0
5903.25
5927.08

Test Example-5 45-Bar 14,322.29 40.18 103,237 56.95 0.1319
14,413.89
14,480.44

Test Example-6 52-Bar 1891.44 7.17 95,645 61.17 s
1909.33
1920.11

Test Example-7 72-Bar Case 1 72-Bar 
Case 2

372.41 11.89 85,872 53.89 0.3033
398.09
418.90
379.07 5.43 91,872 80.39 0.2213
387.81
397.39

Test Example-8 Steeped Cantilever 
Beam

63,893.47 207.14 30,437 7.46 3.14e-5
64,229.23
64,549.43

Test Example-9 Pressure vessel 5850.65 97.05 11,033 4.69 0.6664
5946.46
6095.05

Test example-10 Speed Reducer 2816.34 1.03 7597 2.01 0.0273
2817.65
2819.57

Test example-11 Concrete Beam 359.21 0.18 2255 0.47 0
359.31
359.95

Test example-12 Welded Beam 1 1.55 35E−4 8721 2.24 15.7316
1.55
1.56

Test Example-13 Welded Beam 2 1.65 0.21 6996 2.15 10.1600
1.93
2.16
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to be more efficient results than first order method. For con-
straint handling, a dynamic constraint handling approach 
is incorporated with augmented Lagrange multiplier-based 
method. In the current work, CI–SAPF and CI–SAPF–CBO 
reduced the effort of setting up the penalty parameter and 
also helped the algorithm to work smoothly with different 
penalty parameter for every learning attempt. This makes the 
algorithm more superior than other contemporary techniques 
and CI–SPF.

With the motivation of parameter-less penalty function 
approach, He and Wang [29] and Coello [10] proposed the 
constrained handling approach as co-evolutionary Particle 
Swarm Optimization (CPSO) and self-adaptive penalty 
function using GA, respectively. For solving pressure vessel 
problem, the penalty function approach is divided into two 
with separate incremental weighing factors [29]. From the 
results, it is noted that the function evaluations for GA [10] 
and CPSO [29] are 900,000 and for 200,000, respectively. 
The performance of the CI–SAPF–CBO is observed to be 
more efficient with quite less number of function evaluations 
(refer Table 12 with better function value as compared to 
GA, CPSO and CI–SAPF.

To validate the ability of CI–SAPF and CI–SAPF–CBO, 
the discrete variables linear problems (transportation prob-
lem, knapsack problem and linear integer programming) 
and nonlinear problems (dynamic problem, multistage 
problem and Rosen Suzuki convex programming problem) 
are adopted from Srivastava and Fahim (2001). In Srivas-
tava and Fahim (2001), a two-phase optimization procedure 
is proposed, in which a gradient-based steepest descent 
method for feasible solution and hem-stitching approach for 

infeasible solution (when constraint violated) are distinctly 
incorporated. For the second phase, the integer combinations 
vector is obtained from the neighborhood of the first phase. 
The process adopted in this work could make the algorithm 
more efficient and driven towards promising results. The 
CI–SAPF and CI–SAPF–CBO algorithms are also applied 
for solving a Signomial Discrete Programming (SDP) prob-
lem Tsai et al. [89] (non-convex integer programming and 
global nonlinear mixed discrete programming problems). 
When compared to Floudas’s approach of transformation 
of objective function and constraints (SDP problem) into 
convex problem, CI-SAPF and CI–SAPF–CBO are observed 
to have yielded superior solution.

Analysis of CI‑SAPF approach

The proposed CI-SAPF algorithm is successfully tested on 
different domain problems and the results are discussed in 
previous section. CI–SAPF algorithm is run for 30 times 
for solving every problem. The best, mean and worst func-
tion values along with the standard deviations and function 
evaluations including the associated parameters C (number 
of candidates) and R (sampling space reduction factor) are 
presented in Table 34. The main advantage of the proposed 
SAPF approach is that it can be directly applicable to a variety 
of constrained optimization problems without preliminary tri-
als. The CI–SAPF algorithm is reported to be more efficient 
which reduced the efforts of trial-and-error process of set-
ting the suitable penalty parameter. In CI–SAPF algorithm, 
the penalty parameter is selected based on the available set 
of design variables which updated iteratively Fig. 4d). The 

Table 35  (continued)

Test examples Best mean worst Standard deviation Average number of 
function evaluations

Average com-
putational time 
(sec)

% Improvement over 
the best reported 
solution

Test example-14 multiple disc clutch 0.24 8.62E−17 800 0.18 25.0136

0.24

0.24
Test example-15 Tension compression 

Spring
2.66 14E−4 2991 2.03 0
2.666
2.66

Test Example-16 I Section Beam 66.26E−4 9.65E−06 4553 0.47 49.5100
66.26E−4
66.26E-4

Test example-17 steeped beam 2 1.34 6.51E−05 11,761 1.8353 0
1.34
1.34

Test example-18 gear train design 2.70E−12 9.55E−12 6358 2.18 0
1.73E−11
2.31E−11
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Table 36   CI–SAPF results solving linear and nonlinear problems

Sr. No Test functions Solver Search space Function Value Optimum variables

Lower limit Upper limit

1 Dynamic problem 
(Maximization)

Srivastava and Fahim 
[82]

[0, 0, 0] [10, 10, 10] 16 [0, 1, 2]

CI–SAPF 16 [0, 1, 2]
CI–SAPF–CBO 16 [0, 1, 2]
CBO 15 [0, 2, 1]

2 Transportation 
problem

Srivastava and Fahim 
[82]

[0,…,0] [100,…,100] 40.5 [5, 15, 0, 0, 0, 15, 0, 
5, 5]

CI–SAPF 40.8 [2,18, 0, 3, 0,12, 0, 2]
CI–SAPF–CBO 40.8 [2,18, 0, 3, 0,12, 0, 2]

3 Multistage oroblem 
(Maximization)

Srivastava and Fahim 
[82]

[0,0,0] [100,100,100] 55.2 [3, 1, 0]

CI–SAPF 55.2 [3,1,0]
CI–SAPF–CBO 55.2 [3,1,0]
CBO 32.7 [0,1,1]

4 Rosen-Suzuki test 
problem convex 
programming prob-
lem (Minimization)

Srivastava and Fahim 
[82]

[− 10,− 10,− 10,− 10] [20, 20, 20, 20] − 44 [0,1, 2,- 1]

CI–SAPF − 44 [0,1, 2,− 1]
CI–SAPF–CBO − 44 [0, 1, 2, − 1]
CBO − 32 [− 1, 1, 2, 0]

5 Knapsack problem 
(maximization)

Srivastava and Fahim 
[82]

[0,…,0] [100,…,100] 19,979 [32, 2, 1, 0, 0, 0, 0]

CI–SAPF 20,059 [16, 18, 9, 0, 2, 8,0 ]
CI–SAPF–CBO 20,240 [27, 3, 4, 4, 8, 1, 5]
CBO 18,428 [16, 10, 8, 0, 19, 8, 38]

6 Integer linear prob-
lem

(a) (maximization)

Srivastava and Fahim 
[82]

[0,…,0] [200,…,200] 316 [4, 87, 34, 149, 0]

CI–SAPF 1037 [200, 199, 67, 104, 0]
CI–SAPF–CBO 1040 [200, 200, 67, 106, 0]
CBO 393 [111, 138, 27, 0,136]

7 (b) (Maximization) Srivastava and Fahim 
[82]

[0, 0] [100,1 00] 33 [3,6]

CI–SAPF 33 [3,6]
CI–SAPF–CBO 33 [3,6]
CBO 33 [3,6]

8 Non-convex Integer 
problem (formula-
tion 1)

Tsai et al. [89] [1, 1, 1] [5, 5, 5] − 75.7579 [1, 2, 5]
CI–SAPF − 75.7579 [1, 2, 5]
CI–SAPF–CBO − 75.7579 [1, 2, 5]
CBO − 75.7579 [1, 2, 5]

(formulation 2) Tsai et al. [89] [0, 0, 0] [5, 5, 5] − 125 [5, 4, 0]
CI–SAPF − 328.3159 [0, 5, 5]
CI–SAPF–CBO − 328.3159 [0, 5, 5]
CBO − 131.3264 [0, 2, 5]

9 Global nonlinear 
mixed

discrete programming

Tsai et al. [89] [3, 3] [6, 5] − 246 [5, 4]
CI–SAPF − 275 [5, 5]
CI–SAPF–CBO − 275 [5, 5]
CBO − 275 [5, 5]

10 Three-bar truss 
design problem

Shin et al. [80] [0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2] 3.0414 [1. 2, 0.5, 0.1]
CI–SAPF 3.0414 [1.2, 0.5, 0.1]
CI–SAPF–CBO 3.0414 [1.2, 0.5, 0.1]
CBO 3.0414 [1.2, 0.5, 0.1]



1588 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

impact of this penalty parameter on the behavior of penalty 
function Fig. 4c), constraint violations Fig. 4b) and pseudo-
objective function Fig. 4a) is observed to be precisely similar 
to calculated penalty parameter. The CI–SAPF is tested on 
four problems from different domains such as discrete variable 
six-bar truss structure problem, mixed variable pressure ves-
sel design engineering problem, discrete variable linear prob-
lem and Rosen-Suzuki nonlinear problem. From the graphs 

Fig. 4, it is noted that the behavior of the overall cohort is 
based on the performance of SAPF which is ultimately keen 
towards the objective function (penalty parameter) value. From 
the graphs, the trends originated by the penalty parameters 
Fig. 4d) similar trends are followed by the constraint viola-
tions Fig. 4c), penalty functions Fig. 4b) and pseudo-objective 
functions Fig. 4a). As the penalty parameter value is iteratively 
updated, it behaves like a dynamic penalty function approach, 

Table 36  (continued)

Sr. No Test functions Solver Search space Function Value Optimum variables

Lower limit Upper limit

11 Monotone functions Lawler and Bell [53] [0, 0, 0, 0, 0] [3, 3, 3, 3, 3] 8 [1, 1, 1, 1, 2]

CI–SAPF 16 [1, 1, 2, 1, 3]

CI–SAPF–CBO 16 [1, 1, 2, 1, 3]

CBO 16 [1, 1, 2, 1, 3]
12 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7, 

15]
16 [1, 4, 1, 0, 2, 1, 2]

CI–SAPF 14 [0, 2, 4, 0, 2, 1, 6]
CI–SAPF–CBO 14 [0, 2, 4, 0, 2, 1, 6]
CBO 22 [2, 3,1, 1, 2, 1, 2]

13 Lawler and Bell [53] [0,0,0,0,0,0,0] [7,7,7,15,15,7,15] 10 [0,6,0,1,1,1,1]
CI–SAPF 11 [1,3,2,1,1,1,2]
CI–SAPF–CBO 11 [2,4,0,1,1,1,2]

14 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7, 
15]

46 [0, 7, 0, 0, 0, 2, 1]
CI–SAPF 92 [2,4, 0, 0, 1, 2, 2]
CI–SAPF–CBO 92 [2,4, 0, 0, 1, 2, 2]

15 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7, 
15]

25 [1, 4, 1, 1, 1, 1, 2]
CI–SAPF 21 [2,3, 1, 1, 1, 1, 2]
CI–SAPF–CBO 21 [2, 3, 1, 1, 1, 1, 2]

16 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7, 
15]

1000 [0, 7, 0 ,0, 0, 2,1]
CI–SAPF 1331 [1, 3, 2, 1, 1, 1, 2]
CI–SAPF–CBO 1331 [1, 3, 2, 1, 1, 1, 2]

Fig. 4  Behavior of pseudo 
objective function (a), con-
straint violations (b), penalty 
function (c) and penalty param-
eter (d) solving discrete variable 
6-bar truss structure problem 
using CI-SAPF
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and similar trend obtained by the pseudo-objective function 
which represents the ability to jump out of the local minima 
and further helps to avoid the premature convergence of the 
solution.

Wilcoxon’s rank sum test analysis

To examine the statistical significance of CI–SAPF and 
CI–SAPF–CBO, a non-parametric Wilcoxon’s rank sum test 
(Mann–Whitney U Test) is performed for 30 independent trials 
(function values, CPU time and function evaluations). The null 
and alternative hypotheses are as follows:

H0: The distribution of results of CI-SAPF and CI-SAPF-
CBO are identical.

H1: The distribution of results of CI-SAPF and CI-SAPF-
CBO are not identical.

The lower tail test is performed at significance level 
� = 0.05 (95%). The null hypothesis (H0) is rejected for 
p-value (calculated probability) less than � . The p-value is 
calculated based on the statistical test score. All 38 problems 
are independently tested including 10 discrete variable truss 
structure problems (refer Table 37, 11 mixed variable design 
engineering problems (refer Table 38 and 17 integer variable 
test functions (refer Tables 39 and 40. From the statistical 
results, the observations are as follows:

With function values: 31 times failed to reject the null 
hypothesis (H0),

With CPU time: 24 times failed to reject the null hypothesis 
(H0),

With function evaluations: 33 times failed to reject the null 
hypothesis (H0).

It means that there is no significant statistical difference 
between CI–SAPF and CI–SAPF–CBO when compared using 
function values and function evaluations; however, while 
comparing CPU time the CI–SAPF–CBO algorithm gener-
ated higher rank as compared to CI–SAPF. From this, it is 
concluded that CI–SAPF–CBO is marginally worse in compu-
tational time for solving some of these problems. In Tables 37, 
38, 39, 40, the h-values 0 and 1 interpret the acceptance and 
rejection of the null hypothesis (H0), respectively. The main 
objective of hybridization of CI–SAPF–CBO is to make the 
generalized algorithm by removing the sampling space reduc-
tion factor R from CI–SAPF without degenerating the quality 
of solution. Here, the objective is achieved by overcoming the 
limitation of CI–SAPF algorithm with better quality of func-
tion value within lesser number of function evaluations and 
computational time.
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Applications

In the earlier sections, CI–SAPF and CI–SAPF–CBO algo-
rithms are successfully applied to solve truss structure, 
design engineering and linear and nonlinear test problems 
having discrete and mixed design variable. To ensure the 
applicability of these techniques, two real-world applications 
from manufacturing engineering are also solved: multi-pass 
turning process problem for minimization of per unit pro-
duction cost Gupta et al. [26] Chen 1996; Gayatri and Baskar 
[24] and multi-pass milling problem for maximization of 
production rate (minimization of time) [69, 79].

Multi‑pass turning process problem

The multi-pass turning process problem aimed to minimize 
the unit production cost. The problem is previously solved 
using an integer programming model Gupta et al. [26]. In 
this, the problem is modified to solve in two phases. In first 
phase, the cost minimization of finish pass and rough pass 
is carried out and in second phase, optimal combination of 
depth of cut is identified. Then Chen and Tsai [7] proposed 
a nonlinear constrained optimization algorithm which is 
comprised of SA and Hooke-Jeeves pattern search (SA/PS). 
Onwobolu (2001) modified the problem by incorporating 
the surface finish constraints and adopted GA as solution 
methodology. This problem is also solved using GA, PSO, 
SA and Hybrid Genetic Simulated Swarm (HGSS) (Gayatri 
and Bhaskar [24] algorithms.

The multi-pass turning process problem is solved using 
GA, SA, PSO and HGGS in Gayatri and Bhaskar [24]. The 
constraint values are not illustrated in the literature, hence 
calculated in this work using same variables. It is noticed 
that, the cutting force (g1) and chip-tool interface tempera-
ture constraints (g4, g6) are violated. It is evident that the 
solutions obtained using all the four techniques are not fea-
sible (refer Table 41. For solving the same problem, both 
the proposed CI–SAPF and CI–SAPF–CBO algorithm 

obtained feasible solutions with best unit production cost 
of 2.59 $∕piece . The cost function obtained from CI–SAPF 
and CI–SAPF–CBO are marginally different. The best, 
mean and worst function values obtained from 30 trails 
are presented in Table 42 with other statistical results. It 
is noticed that, CI–SAPF found better solutions as com-
pared to CI–SAPF–CBO with standard deviation of 0.07 
and average function evaluations of 1110.

Multi‑pass milling process problem

The multi-pass turning problem is adopted from Sonmez 
[79]. This problem is solved for the maximization of pro-
duction rate (minimization of time). The problem contains 
mixed design variables, i.e. feed rate 

(
fzmm∕tooth

)
 and spin-

dle speed (Vm∕min) are continuous variables and depth of 
cut (a) is discrete variable. The total depth of cut is 5 mm . In 
the current work, the cutting strategy is adopted from [65], 
i.e. four passes are considered, first three are rough passes of 
a = 1.5 mm and for fourth finish cut a = 0.5 mm . All the con-
straints considered here are formulated in ≤ form. The prob-
lem is solved using CI–SPF, CI–SAPF, CI–SAPF–CBO and 
CBO. The total production time obtained using CI–SAPF 
and CI–SAPF–CBO is less as compared to ABC, PSO and 
SA (refer Table 43. It is observed that the feed rate obtained 
using proposed techniques is marginally higher than ABC, 
PSO and SA by satisfying all the constraints. From the result 
comparison, it is noticed that CI–SAPF–CBO yielded better 
solution as compared to other contemporary techniques. This 
is due to the use of CBO algorithm by which the explora-
tion of search space makes the hybridization more power-
ful to obtain the best feasible solution. Moreover, the SAPF 
approach plays the key role to handle the practical con-
straints. The best production time is 2.15 min with average 
function evaluations of 1988 and average computational time 
of 12.26 s . Other statistical details are illustrated in Table 44.

Table 40  Comparison of CI–SAPF and CI–SAPF–CBO for monotone test functions using Wilcoxon’s rank sum test at � = 0.05

Test examples Monotone functions

1 2 3 4 5 6

Function values Test statistic 0 0.384395061 − 0.221766381 1.818484327 − 1.108831906 0
P value 0.5 0.64965717 0.412247876 0.96550493 0.133751352 0.5
h-value 0 0 0 0 0 0

CPU time Test statistic − 6.372087356 − 4.538818604 4.361405499 -0.066529914 4.405758775 − 0.35482621
P value 9.32363E-11 2.82851E-06 0.999993539 0.473477971 0.999994729 0.361359896
h-value 1 1 0 0 0 0

Function evaluations Test statistic 0.391787274 1.071870843 4.257914521 -0.066529914 4.213561244 3.836558396
P value 0.6523923 0.858110976 0.999989683 0.473477971 0.999987431 0.999937615
h-value 0 0 0 0 0 0



1592 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Conclusions and future directions

The ability of CI algorithm is exhibited to solve discrete and 
mixed variable constrained problems. The SAPF approach is 
developed for constraint handling, whereas CBO algorithm 
adopted for the local search. The ability of the CI–SAPF 
and CI–SAPF–CBO algorithms are examined for solving 10 
discrete truss structure problems, 11 mixed variable design 
engineering problems and 17 discrete variable linear and 
nonlinear test problems. The penalty parameter required to 
run the SAPF approach is generated by CI-SAPF algorithm 
itself which iteratively updated based on the set of design 
variables. The SAPF approach eliminated the setting of 
penalty parameter which overcomes the limitation in SPF 
approach. From the results analysis and comparison, it is 
noticed that CI–SAPF algorithm performed exceptionally 
better in obtaining robust solutions with significantly less 

computational cost (i.e. computational time and function 
evaluations). The behavior of pseudo-objective function, 
penalty function and constraint violation are analyzed based 
on the obtained value of the penalty parameter. In addition, 
the CI-SAPF algorithm is hybridized by adopting the promi-
nent qualities of CBO algorithm. The most important reason 
to use the CBO algorithm is to evade the setting of sam-
pling space reduction factor R which is earlier used in all 
the versions of CI including CI–SAPF to narrow down the 
sampling space for better convergence of function value. The 
proposed CI–SAPF–CBO algorithm does not require param-
eter to run the algorithm. By adopting this, the preliminary 
computational efforts of parameter setting are eliminated. 
The results from CI–SAPF–CBO are significantly superior 
and robust as compared to the CI–SAPF and other contem-
porary algorithms. Furthermore, CI–SPF, CI–SAPF and 
CI–SAPF–CBO are also successfully applied for solving 
multi-pass turning and multi-pass milling process problems 
and exhibited superior results as compared to other con-
temporary techniques. Finally, a non-parametric Wilcoxon’s 
rank sum test is conducted to check statistical significance of 
CI–SAPF–CBO over CI–SAPF for all 38 problems consid-
ered in Sect. 5. The test is performed based on the function 
values, function evaluations and CPU time obtained from 30 
trials. Using function values and function evaluations, the 
performance of CI–SAPF and CI–SAPF–CBO is observed to 
be identical for 31 and 33 times, respectively. However, CPU 
time is observed to be identical only for 24 times. It shows 
that for 14 problems CI–SAPF–CBO is marginally worse as 
compare to CI–SAPF in terms of CPU time.

Table 41  Comparison of results for multi-pass turning process problem

Variables GA
(Gayatri and 
Bhaskar [24]

SA
(Gayatri and 
Bhaskar [24]

PSO
(Gayatri and 
Bhaskar [24]

HGSS  
(Gayatri and Bhaskar 
[24]

CI–SAPF CI–SAPF–CBO

Vr 389.15 447.94 499.99 499.9938 495.0761 496.0539
fr 0.7209 0.7255 0.8999 0.8939 0.1163 0.107
dr 2.03 2.21 2.50 2.50 2.4306 2.5186
Vs 102.78 117.17 89.55 93.8986 144.0232 167.1331
fs 0.8788 0.5059 0.8999 0.8961 0.3289 0.299
ds 1.94 1.58 1.00 1.00 1.0507 1.0644
g1 115.5584 130.3326 188.2936 187.1010 0 − 0.0000
g2 − 187.6149 − 184.4716 − 177.0964 − 177.2108 − 0.0195 − 0.0195
g3 − 53,639.0414 − 65,729.5709 − 89,846.4004 -89,247.7831 − 1.1584 − 1.0325
g4 400.4587 497.6636 691.2212 687.8356 − 0.0091 − 0.0105
g5 − 9.9195 − 9.9733 − 9.9156 − 9.91635 − 0.001 − 0.0010
g6 133.9725 50.0452 49.7859 49.4697 − 0.0001 -0.0002
g7 − 196.3651 − 197.7465 − 198.2822 − 198.2045 -0.0199 -0.0199
g8 − 17,282.8387 − 10,585.6043 − 7076.4803 − 7760.8662 − 0.7011 − 0.6552
g9 − 131.5924 − 241.1098 − 227.9268 − 214.1411 − 0.0306 − 0.0311
Cost $∕piece 2.42 3.07 2.23 2.22 2.59 2.59

Table 42  Statistical results for multi-pass turning process problem 
using CI–SAPF and CI–SAPF–CBO

Results CI–SAPF CI–SAPF–CBO

Best 2.59 2.59
Mean 2.69 2.71
Worst 2.84 2.84
Std. Dev 0.07 0.06
Avg. CPU time (sec) 0.26 0.18
Avg. Function evaluations 1110 1624
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In the near future, the CI–SAPF and CI–SAPF–CBO 
algorithms can be applied for solving real-world mechanical 
design engineering, transportation and healthcare domain. 
Based on the merits and demerits, other nature inspired 
algorithms can be hybridized with CI–SAPF for solving 
challenging and complex real-world problems from various 
domains.
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Table 43  Comparison of results for multi-pass milling process problem

Methods Cutting strategy fz (mm∕tooth) V (m∕min) Arbor stress constraint Arbor deflec-
tion constraint

Power constraint Tpr (min)

ABC (Rao et al. 2010) arough = 1.5 0.337 46.982 4.708 435.02 0.004 3.24
arough = 1.5 0.337 46.982 4.708 435.02 0.004
arough = 1.5 0.337 46.982 4.708 435.02 0.004
afinish = 0.5 0.432 64.41 271.97 1.131 1.400

PSO (Rao et al. 2010) arough = 1.5 0.34 46.61 1.5 431.9 0.01 3.24
arough = 1.5 0.34 46.61 1.5 431.9 0.01
arough = 1.5 0.34 46.61 1.5 431.9 0.01
afinish = 0.5 0.434 63.58 271.9 0.35 1.422

SA (Rao et al. 2010) arough = 1.5 0.336 44.633 1.5 436.1 0.204 3.26
arough = 1.5 0.336 44.633 1.5 436.1 0.204
arough = 1.5 0.336 44.633 1.5 436.1 0.204
afinish = 0.5 0.429 57.23 273.91 2.296 1.683

CBO arough = 1.5 2.1204 33.6372 − 3076.7856 − 7298.4319 − 3839.6497 2.23
arough = 1.5 2.1204 33.6372 − 3076.7856 − 7298.4319 − 3839.6497
arough = 1.5 2.1204 33.6372 − 3076.7856 − 7298.4319 − 3839.6497
afinish = 0.5 0.5144 31.4737 − 4695.8656 − 2031.3311 − 3848.6419

CI–SAPF arough = 1.5 0.9396 30.0021 − 3911.8995 − 8133.5458 − 3844.8622 2.16
arough = 1.5 0.9396 30.0021 − 3911.8995 − 8133.5458 − 3844.8622
arough = 1.5 0.9396 30.0021 − 3911.8995 − 8133.5458 − 3844.8622
afinish = 0.5 0.8222 30.0686 − 4589.8176 − 1925.2832 − 3848.1815

CI–SAPF–CBO arough = 1.5 0.6686 30.0012 − 4139.5509 − 8361.1971 − 3845.9783 2.15
arough = 1.5 0.6686 30.0012 − 4139.5509 − 8361.1971 − 3845.9783
arough = 1.5 0.6686 30.0012 − 4139.5509 − 8361.1971 − 3845.9783
afinish = 0.5 0.5350 30.0406 -4688.3005 − 2023.7660 − 3848.6666

Table 44  Statistical results for multi-pass milling process problem 
using CI-SAPF, CI-SAPF-CBO and CBO

Results CI-SAPF CI-SAPF-CBO CBO

Best 2.16 2.15 2.23
Mean 2.17 2.22 2.31
Worst 2.19 2.33 2.38
Std. Dev 0.82E-2 0.047 0.04
Avg. CPU time (sec) 17.61 12.26 1.39
Avg. function evaluations 2856 1988 227
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