
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2021) 7:1565–1596
https://doi.org/10.1007/s40747-021-00283-3

ORIGINAL ARTICLE

Cohort intelligence with self‑adaptive penalty function approach
hybridized with colliding bodies optimization algorithm for discrete
and mixed variable constrained problems

Ishaan R. Kale1 · Anand J. Kulkarni1

Received: 5 October 2019 / Accepted: 20 January 2021 / Published online: 18 February 2021
© The Author(s) 2021

Abstract
Recently, several socio-/bio-inspired algorithms have been proposed for solving a variety of problems. Generally, they
perform well when applied for solving unconstrained problems; however, their performance degenerates when applied for
solving constrained problems. Several types of penalty function approaches have been proposed so far for handling linear
and non-linear constraints. Even though the approach is quite easy to understand, the precise choice of penalty parameter
is very much important. It may further necessitate significant number of preliminary trials. To overcome this limitation, a
new self-adaptive penalty function (SAPF) approach is proposed and incorporated into socio-inspired Cohort Intelligence
(CI) algorithm. This approach is referred to as CI–SAPF. Furthermore, CI–SAPF approach is hybridized with Colliding
Bodies Optimization (CBO) algorithm referred to as CI–SAPF–CBO algorithm. The performance of the CI–SAPF and CI–
SAPF–CBO algorithms is validated by solving discrete and mixed variable problems from truss structure domain, design
engineering domain, and several problems of linear and nonlinear in nature. Furthermore, the applicability of the proposed
techniques is validated by solving two real-world applications from manufacturing engineering domain. The results obtained
from CI–SAPF and CI–SAPF–CBO are promising and computationally efficient when compared with other nature inspired
optimization algorithms. A non-parametric Wilcoxon’s rank sum test is performed on the obtained statistical solutions to
examine the significance of CI–SAPF–CBO. In addition, the effect of the penalty parameter on pseudo-objective function,
penalty function and constrained violations is analyzed and discussed along with the advantages over other algorithms.

Keywords Self-adaptive penalty function approach · Cohort intelligence · Colliding bodies optimization · Discrete and
mixed variable problems · Linear and nonlinear constraints

Abbreviations
AI Artificial intelligence
CI Cohort intelligence
SPF Static penalty function approach
SAPF Self-adaptive penalty function approach
CBO Colliding bodies optimization
TSP Travelling salesman problems
GA Genetic algorithm
PSO Particle swarm optimization
ACO Ant colony optimization

BA Bat algorithm
FA Firefly algorithm
IA Ideology algorithm
SOS Symbiotic organism search
PC Probability collectives
SELO Socio evolution and learning optimization
IA Ideology algorithm
EA Election algorithm
ECO Election campaign optimization
LCA League championship algorithm
SLC Soccer league computation
TLBO Teaching learning-based optimization
SGO Social group optimization
SLO Social learning algorithms
SACI Self-adaptive cohort intelligence
DPF Dynamic penalty function
COR Coefficient of restitution
PSOPC PSO with passive congregation

 * Ishaan R. Kale
 ishaan.kale@sitpune.edu.in

 Anand J. Kulkarni
 anand.kulkarni@sitpune.edu.in

1 Symbiosis Institute of Technology, Symbiosis International
(Deemed University), Pune 412115, India

http://orcid.org/0000-0003-2983-5004
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00283-3&domain=pdf

1566 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

HS Harmony search
MBA Mine blast algorithm
FL Fuzzy logic
B&B Branch and bound
NLP Nonlinear programming
ADS Adaptive dimensional search
EAs Evolutionary algorithms
HPSO Hybrid particle swarm optimization
DHPSACO Discrete heuristic particle swarm ant colony

optimization
ISCSO International student competition in struc-

tural optimization
GHN Generalized Hopfield network
AIS-GA Artificial immune system with genetic

algorithm
AIS-GA-C AIS-GA with clearing
SOS Symbiotic organisms search
SA Simulated annealing
SQP Sequential quadratic programming
SlQP Sequential penalty quadratic programming
CPSO Co-evolutionary particle swarm

optimization
NIDPM Nonlinear integer and discrete programming
NSGA Nondominated sorting genetic algorithm
AIA Artificial immune algorithm
OIO Optics-inspired optimization
RNES Rank-niche evolution strategy
CS Cuckoo search
AHGA Adaptive hybrid genetic algorithm
ABC Artificial bee colony
HGSS Hybrid genetic simulated swarm

Introduction

The mechanical design engineering and truss structure opti-
mization domain problems are complex and cumbersome to
solve as they involve linear and nonlinear constraints. These
problems become more challenging when they have discrete
and mixed design variables. Several Artificial Intelligence
(AI)-based optimization techniques such as Particle Swarm
Optimization (PSO) [14, 59], Firefly Algorithm (FA) [23],
Probability Collectives (PC) [41, 44, 45], Colliding Bod-
ies Optimization (CBO) Kaveh and Mahdavi [38], Sym-
biosis Organism Search (SOS) (2014), Mine Blast Algo-
rithm (MBA) [73], Cuckoo Search (CS) [22], Generalized
Hopfield Networks (GHN) [77], Genetic Algorithm (GA)
[3, 9, 18, 56, 71, 86, 87] and socio based algorithms such
as Cohort Intelligence (CI) [46], Ideology Algorithm (IA)
[88], Socio evolution and learning optimization algorithm
(SELO) [52] have been developed so far. The real-world
problems generally are constrained in nature. Several con-
straint handling techniques have been developed so far such

as penalty-based methods, probability-based methods, fea-
sibility-based methods, etc.

The penalty-based methods convert the constrained prob-
lem into unconstrained problem. The approach is character-
ized by a penalty parameter which necessitates significant
number of preliminary trials to set its appropriate value. The
penalty function approach is widely used due to its simple
construction and easy implementation. Several penalty-
based constraint handling techniques have been proposed
so far, such as barrier (death) penalty function approach,
which is based on elimination of infeasible solution [60],
exact penalty function [30] and dynamic penalty function
[34] approaches are based on setting the penalty parameter
value and multiplication of factors (penalty reduction or
expansion factor), respectively. Other techniques are also
proposed such as annealing penalty function approach [63],
Carlson et al. [5] which is based on the idea of Simulated
Annealing (SA) and adaptive penalty function [25, 27, 81,
90] aimed at eliminating the setting of penalty parameter. In
penalty-based segregated GA Le et al. [54], a distinct pen-
alty parameter is set for different evaluated fitness functions.
So far, these techniques have been successfully employed
with nature inspired optimization techniques to deal with
linear and nonlinear constraints. These techniques are simple
and easy to apply for solving wide variety of constrained
optimization problems [57, 91], however, as the number of
constraints increase their performance degenerates [60]. An
exact penalty approach is adopted by Shin et al. [80] and Wu
and Chow [86] for nonlinear optimization problems having
discrete design variables. For every independent problem,
several preliminary trials are required to set an appropriate
penalty parameter [30, 62]. Similar approach is adopted in
FA [23] and CI algorithm (CI-SPF) [35] for solving discrete
and mixed variable problems with linear as well as nonlin-
ear constraints from engineering design and truss structure
domains. However, it is noticed that the selection of penalty
parameter becomes tedious with the increase in number of
constraints.

The dynamic penalty function [40] incorporated with
augmented Lagrange multiplier approach Viswanathan
and Grossmann [84] is used for solving discrete and mixed
variable problems from design engineering domain. In this
approach, penalty parameter is multiplied by a suitable fac-
tor to penalize the cost function. Similar to the dynamic
penalty function approach, Curtis and Nocedal [13] intro-
duced flexible penalty function to handle nonlinear con-
straints. In this approach, the penalty parameter is arbitrar-
ily chosen from the prescribed interval rather than a fixed
value which influentially guided the convergence. Shih and
Yang [77] introduced a generalized Hopfield network using
extended penalty function approach. In this approach, the
penalty parameter is initialized based on an arbitrary value
(0 or 1) and then updated iteratively with an incremental

1567Complex & Intelligent Systems (2021) 7:1565–1596

1 3

multiplication factor. However, if the multiplication factor
is too high the objective function value may become unsta-
ble and the solution may stuck into the local minima. An
adaptive penalty function approach is proposed by Nanakorn
and Meesomklin [65] in which the modified binary scaling
technique is employed to scale the fitness value. Broyden
and Attia [4] proposed a smooth sequential penalty func-
tion incorporated with Quasi Newton approach. It is then
combined with orthogonal transformation based on Jacobian
constraints. A non-stationary multistage penalty function
approach is implemented by Parsopoulos and Vrahatis [67].
It is then followed by Coath and Halgamuge [12] along with
a feasibility preservation method for solving nonlinear prob-
lems. Coello [10] proposed a self-adaptive penalty function
approach which splits the penalty function into two distinct
parts such as sum of violated constraints and number of vio-
lated constraints. Nie [66] proposed a novel semi-penalty
approach considering the qualities of Sequential Quadratic
Programming (SQP) method and Sequential Penalty Quad-
ratic Programming (SlQP) method where both equality and
inequality constraints are distinctly treated.

An external penalty function scheme with relaxation
strategy is incorporated into Adaptive Dimensional Search
(ADS) method by [28]. In this strategy, the infeasible solu-
tion is retained to escape from the local minima. At the satu-
ration stage, the intensity of penalty parameter is reduced
by multiplying the reduction factor. After every stagnation
escape period, the solution is recalculated using an updated
penalty parameter and then compared with previous satu-
rated solution. A parameter less approach referred to as
niched penalty function approach is proposed by Deb and
Agrawal [16]. In this approach, a feasible solution is selected
based on three criteria such as accept the feasible solution
rather than infeasible solution, accept best-fitted solution
from two feasible solutions and accept infeasible solution
based on fewer number of constraint violations. These three
rules are then referred to as feasibility-based rules and are
used as a constraint handling technique [17] and later imple-
mented by Kulkarni and Tai [51]. It is further modified by
Kulkarni et al. [45] in which after a stagnation period, worst
solution found so far is accepted. The algorithm then restarts
to help the solution jump out of local minima. It is success-
fully applied for solving problems from design engineering
and truss structure domains.

Various constraint handling techniques associated with
other nature-inspired algorithms are discussed in the lit-
erature along with their limitations. Apart from these, there
are several socio-inspired optimization algorithms have been
proposed so far, such as PC Wolpert et al. [85, Kulkarni
and Tai [42], SOS [8], SELO [52]. SOS models symbiotic
interaction] strategies that the independent agents (organ-
isms) use to survive in the ecosystem. Political election-
based socio algorithms such as IA [82], Election Algorithm

(EA) Emami and Derakhshan [21], Election Campaign
Optimization (ECO) (Lv et al. [61] are also proposed. ECO
models the social behavior of voters where the candidates
attempt to pursue maximum support from them. Based on
the position of the candidates and voters, the global and local
voters are considered. The uniform distribution method is
used to identify the supported focus of the candidates. EA
is based on the process of advertisement during the election
campaign. With similar motivation, IA is proposed by Teo
et al. [88]. It emphasizes the behavior of political parties
aiming to improve their rank. The League Championship
Algorithm (LCA) [31, 36] is inspired from distinct features
of the sports activity. LCA models the social tendencies of
sport competition in a league. Similar to the LCA, Soccer
League Competition (SLC) algorithm is proposed by Moosa-
vian and Roodsari [64]. It is based on the interaction of play-
ers during a soccer match. A physics-based Optic-Inspired
Optimization (OIO) method [37], [32] and [33] works on the
optical characteristics of concave and convex mirrors. The
socio-inspired algorithm such as Teaching Learning-Based
Optimization (TLBO) [68] models the influence of teaching
process on students’ performance. The influence of teaching
process on students’ outcome is modeled. A Social Group
Optimization (SGO) Satapathy and Naik [75] and Social
Learning Optimization (SLO) Liu et al. [58] are based on the
process of propagation of human knowledge in the learning
society/group to solve complex engineering problems.

The CI algorithm is proposed by Kulkarni et al. [46].
It is motivated from the socially learning behavior of the
candidates such as following, interacting, cooperating
and competing with every other candidate in the cohort.
It is implemented for constrained problems and applied
to solve combinatorial NP-hard 0–1 Knapsack problem
with the number of items varying from 4 to 75 Kulkarni
and Shabir [48]. The constraints involved in this prob-
lem are handled by a problem-specific probability-based
constraint handling technique. The algorithm yielded
competent results as compared to integer program-
ming solutions. This approach is also applied for solv-
ing real-world combinatorial problems from healthcare
and logistics domains as well as for large-sized complex
problems from the Cross Border Supply Chain domain
[50], Traveling Salesman Problem (TSP) [49] and several
benchmark problems [76]. A Self-adaptive Cohort Intelli-
gence (SACI) algorithm [1] is proposed using tournament
mutation operator and a self-adaptive scheme to update
the sampling interval. It is tested on several benchmark
problems and obtained promising results. The static and
dynamic penalty function approach is incorporated in CI
(CI–SPF and CI–DPF) for solving several test problems
and manufacturing engineering problems Kulkarni et al.
[48]. The CI–SPF is adopted for solving complex problems
from truss structure and mechanical engineering domain

1568 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

[35]. In the current work, a self-adaptive penalty function
(SAPF) approach is proposed and incorporated into the CI
algorithm. This approach eliminated the effort of setting
the penalty parameter and no other supporting parameter is
required. Additionally, the CI–SAPF algorithm is hybrid-
ized with CBO (referred to as CI–SAPF–CBO) which
eliminated the dependence of the CI algorithm on sam-
pling space reduction factor. It is discussed in Sect. “CI-
SAPF”. The proposed CI–SAPF and CI–SAPF–CBO are
tested for solving 10 discrete truss structure problems,
11 mixed variable design engineering problems and 17
discrete variable test problems (linear, nonlinear, global,
convex and monotonous functions). The performance is
validated by comparing the solutions with other contem-
porary techniques available in the literature. Finally, the
influence of SAPF on penalty function, constraint viola-
tions, pseudo-objective function is thoroughly discussed.
The proposed techniques are also applied to solve two real-
world applications from manufacturing engineering such
as a) multi-pass turning process problem and b) multi-pass
milling process problem.

The paper is organized as follows: the mathematical rep-
resentation of SAPF approach is presented in Sect. “Self-
adaptive penalty function (SAPF)”. Section “Cohort intel-
ligence (CI) algorithm” describes the basic version of
CI algorithm along with its characteristics. A CI–SAPF
algorithm is presented in Sect. “CI-SAPF” along with its
pseudo code. The detailed description of CBO algorithm
and its characteristics are mentioned in Sect. “Collid-
ing bodies optimization (CBO)”. The pseudo code of the
CBO algorithm is also presented in the same section. Sec-
tion “Framework of CI–SAPF–CBO” describes the hybrid
CI–SAPF–CBO algorithm and its mathematical expres-
sion with flowchart. Section “Test examples” discusses
the discrete and mixed variable problems from truss struc-
ture, design engineering, linear and non-linear domains. In
the same section, the results obtained from CI–SAPF and
CI–SAPF–CBO algorithms are compared with other tech-
niques available in the literature. Section “Test example-3:
spatial 25-bar truss structure (transmission tower) [38, 42,
52, 58] discusses theoretical analysis and comparison of the
results with other contemporary techniques. In Sect. “Test
example-4: planer 38-bar truss structure [43, 68]”, the
graphical representation of variation in constraint violations,
penalty parameter, penalty function and pseudo-objective
function along with theoretical discussion on comparison of
results is provided. The Wilcoxon’s rank sum test analysis
is presented in Sect. “Test example-5: planer 45-bar truss
structure [2, 41]” to check the significance of solutions of
the CI-SAPF-CBO over CI-SAPF. This test is conducted
based on function values, function evaluation and CPU time.
Finally, in Sect. “Result analysis and discussion”, the appli-
cations of the proposed CI–SAPF and CI–SAPF–CBO are

presented by solving multi-pass turning and milling process
problems. Section “Applications” discusses the conclusions
and future recommendations.

Self‑adaptive penalty function (SAPF)

In general, the constrained optimization problem is
expressed as follows:

Subject to

A Static Penalty Function (SPF) constraint handling
approach is widely used. It is expressed as follows:

w h e r e � i s a p e n a l t y p a r a m e t e r a n d �∑n

i=1
gi(X) +

∑m

i=1
hi(X)

�
 is summation of the violated con-

straints. However, significant number of preliminary trials
are required to choose suitable value of � . It is the major
disadvantage of the SPF approach. To overcome this limi-
tation, a Self-Adaptive Penalty Function (SAPF) approach
is proposed. In the SAPF approach, the objective function
f (X) is itself utilized as a penalty parameter. It is expressed
as follows:

It further forms the pseudo-objective function �(X) as
follows:

It is important to note that when the objective function
value of the problem is too small, the SAPF approach may
not give best feasible solution. In such cases, an arbitrary
integer (fixed) value (int) is added in the function value f (X) .
Then, the SAPF would be calculated as follows:

(2.1)Minimize f (X) = f (x1, x2, x3,… , xN)

gi(X) ≤ 0, i = 1, 2,… , n

hi(X) = 0, i = 1, 2,… ,m

Ψlower ≤ (X) ≤ Ψupper

(2.2)PF = � ×

(
n∑

i=1

gi(X) +

m∑

i=1

hi(X)

)

,

(2.3)SAPF = (X) ×

(
n∑

i=1

gi(X) +

m∑

i=1

hi(X)

)

.

(2.4)�(X) = f (X) + SAPF.

(2.5)SAPF = f (X) + ∫ ×

(
n∑

i=1

gi(X) +

m∑

i=1

hi(X)

)

.

1569Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Cohort intelligence (CI) algorithm

The CI algorithm [46] is motivated from the social tenden-
cies of learning candidates of a cohort. Every candidate in
the cohort iteratively attempts to achieve a goal which is com-
mon to all. For this, every candidate employs roulette wheel
approach and selects another candidate to follow which may
result in the improvement of its own behavior. This makes
every candidate learn from one another and helps the over-
all cohort behavior to evolve. The cohort behavior could be
considered saturated, if for considerable number of learning
attempts the behavior of every candidate does not improve
considerably and becomes almost same. The characteristics
of CI algorithm are as follows:

1. It models the learning mechanism of cohort candidates.
Every candidate has inherently common goal to achieve
the best behavior by improving its qualities. The inter-
action and competition are the two natural instincts of
every cohort individual. These are achieved through rou-
lette wheel selection and further sampling in the close
neighborhood of the selected (being followed) candi-
date. For details refer to Kulkarni et al. [46, 49].

2. Every candidate observes itself and every other candi-
date in the cohort to improve its individual behavior and
associated qualities.

3. In CI algorithm, at the end of every learning attempt,
every candidate independently updates its search space.

4. The problem with large number of variables and con-
straints can be efficiently handled Kulkarni et al. [35,
50].

CI‑SAPF

Consider a cohort with number of candidates C . For every
individual candidate c(c = 1,2,… ,C) the pseudo-objec-
tive function (behavior) using the CI-SAPF approach (refer
Eq. 2.3) can be expressed as follows:

where SAPF
�
X
c
�
= f

�
X
c
�
×
�∑n

i=1
gi(X

c) +
∑m

i=1
hic

�
 is the

penalty function and f
(
X
c
)
 is the objective function of indi-

vidual candidate. As the algorithm progresses, every can-
didate narrows down the sampling space using a sampling
space reduction factor R . An independent penalty parameter
f (Xc) is generated by every individual candidate c to penal-
ize its associated behavior and subsequently updates the pen-
alty parameter for every learning attempt of the algorithm.
The pseudo code of the CI-SAPF is presented in Fig. 1. The
performance of CI is dependent on the parameters such
as number of candidates C and sampling space reduction
factor R . As cohort is a group of learning candidates, it is

(3.1)�
(
X
c
)
= f

(
X
c
)
+ SAPF

(
X
c
)
,

necessary to decide the number of candidates C . In a cohort
with fewer number of candidates (for example: 2, 3, 4), the
number of choices to follow for an individual are also less.
On the other hand, as the number of candidates increases
(for example: 7, 8, 9 and above), the number of behavior
choices also increases which certainly helps to improve
the quality of the function value,however, it significantly
increases the computational cost (function evaluations and
CPU time). Based on the statistical analysis in Kale and
Kulkarni [35], the number candidates considered here are 5,
as there is no significant improvement observed in function
value with more number of candidates. Another, limitation
is the selection of sampling space reduction factor R . At
the end of every learning attempt (iteration), every candi-
date updates its individual search space using the sampling
space reduction factor R . The choice of R is decided based
on preliminary trials. To overcome this limitation, CI-SAPF
is hybridized with CBO. It is discussed in the next section.

Metaheuristic CI–SAPF–CBO

This section describes the proposed hybrid CI–SAPF–CBO
algorithm. In CI–SAPF–CBO, eminent properties of CI
and CBO algorithms are incorporated to enhance the appli-
cability of algorithm towards variety of problems from
different domains. The mathematical representation of
CI–SAPF–CBO is presented along with its flowchart. The
detailed review and characteristics of CBO algorithm are
discussed.

Colliding bodies optimization (CBO)

The CBO algorithm is proposed by Kaveh and Mahdavi
[38]. It is motivated from the physical behavior of colliding
bodies (objects). It obeys the law of conservation of momen-
tum and energy in which, the momentum of all the objects
before collision is equal to the momentum of all the objects
after collision. After the collision, two moving bodies having
masses and velocities are separated with updated velocities.
This causes to move an object towards better position in the
search space. The pseudo code of the CBO is presented in
Fig. 2. The characteristics of CBO algorithm are as follows:

1. CBO algorithm is governed by the physics law of con-
servation of momentum and energy. The momentum of
all the objects before collision is equal to the momentum
of all the objects after collision.

2. The colliding bodies are arranged in such a way that the
moving objects are keen to improve. Moving objects
motivate the stationary objects to explore the search
space and push them towards better solution.

1570 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

3. The colliding bodies are independent of computational
parameters. Therefore, the preliminary process of
parameter tuning is not required.

4. The Coefficient of Restitution (COR) used to keep the
balance between global and local minima.

The CBO algorithm is successfully validated on certain
continuous, discrete and mixed variable truss structure and
design engineering domain optimization problems [38]. It is
observed that the CBO is sensitive to the number of objects
and needed more colliding bodies to maintain better con-
vergence and higher level of exploration. Furthermore, [38]
modified the CBO to Enhanced CBO (ECBO) to incorporate
the colliding memory to save the so far best solutions; so
that, it could be used for further operations by replacing
current worst solutions. This helps the ECBO algorithm to
enhance and provide faster convergence within less com-
putational cost. In ECBO, two parameters are introduced
randomly between [0, 1] which help the solution jump out of
the local minima/maxima. The first parameter represents the

change in component of each colliding body which is then
compared with a second uniformly distribute random num-
ber. This further decides the modification in the positions of
the colliding bodies. The hybrid CBO-PSO [38] is proposed
to exploit the ability of CBO by incorporating basic features
of PSO. The CBO-PSO is successfully validated by solving
continuous variable truss structure problems with dynamic
constraints incorporated with SPF approach.

Framework of CI–SAPF–CBO

It is necessary to generalize the problem-solving technique
to explore the applicability of diversified real-world appli-
cations. The algorithm of CI has already been validated by
solving large group of problems; however, the algorithm
required certain preliminary trials to set a sampling space
reduction factor R to avoid the solution to trap into the
local minima [35]. To overcome this limitation of the CI
algorithm, an important characteristic of CBO is incorpo-
rated into CI.

Fig. 1 Pseudo Code of CI-SAPF

1571Complex & Intelligent Systems (2021) 7:1565–1596

1 3

The CI–SAPF–CBO algorithm (refer Fig. 3 employs CI
for global search, SAPF for constraint handling and CBO
for local search. The natural tendency of CI candidates is
to follow candidates chosen probabilistically using roulette
wheel approach to evolve their individual behavior. Fur-
thermore, the learning ability of CI candidates is refined
(updated) using CBO. The CI-SAPF-CBO is mathemati-
cally expressed as follows:

Step 1: Consider a cohort with C number of candidates;
every individual candidate c(c = 1, 2,… ,C) belongs a set
of attributes/variables (X)c = (xc

1
, xc

2
,… , xc

N
) which makes

the behaviour of an individual candidate f (Xc) . The initial
solution is randomly generated as follows:

The round-off integer sampling approach is employed
to generate the integer value and further it helps to select
the discrete variable from the predefined set.

(4.1)(X)c = Ψlower +
(
Ψupper−Ψlower

)
× rand(1,N).

Step 2: The SAPF approach is incorporated to handle
the constraints and obtained pseudo objective function
�(Xc) (refer Eq. 3.1).

Step 3: The probability of selecting behavior �(Xc) of
every associated candidate c(c = 1, 2,… ,C) is evaluated
as follows:

Step 4: Every individual candidate c(c = 1, 2,… ,C)
generates a random number r�[0,1] and using roulette
wheel approach decides to follow the corresponding
behaviour �(Xc) and associated attributes �c . The behavior
is selected by candidate c and not known in advance. The
roulette wheel approach provides chance to every behavior
in the cohort to get selected purely based on its quality. In
addition, it also may increase the chances of any candidate
to select the better behavior as the associated probability
pc , c(c = 1, 2,… ,C) (refer Eq. 4.1) in the interval [0, 1] is

(4.2)pc =
1∕�(Xc)

∑C

c=1
1∕�(Xc)

.

Fig. 2 Pseudo Code of the CBO

1572 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

directly proportional to the quality of the behavior �(Xc) .
In other words, better the solution, higher is the probability
of being followed by the candidates in the cohort.

Step 5: After following a suitable candidate’s behavior
in the cohort, all the candidates are arranged in descending

order of the fitness value. In the context of CBO, the first
half of the candidates (having greater fitness value) are
referred to as stationary bodies and other half of the candi-
dates (having lesser fitness value towards minimization) are
referred to as moving bodies. For the sake of hybridization

Fig. 3 CI-SAPF-CBO Flow-
chart

1573Complex & Intelligent Systems (2021) 7:1565–1596

1 3

of CI–SAPF–CBO, stationary bodies are considered as slow-
learning candidates and moving bodies are considered as
fast-learning candidates. The fast-learning candidates moti-
vate slow-learning candidates to improve their learning abil-
ity in the cohort. The learning ability of every candidate is
identified by determining the initial and final velocities of
the colliding bodies (C candidates) after collision Kaveh and
Mahadavi [38]. The learning ability of each candidate refers
to the velocity m of colliding bodies.

The initial learning ability (initial velocity mc = 0) of
slow-learning candidates and fast-learning candidates is
represented as follows:

where mc and (X)c are the learning ability and position of
cth candidate, respectively; (X)c−C∕2 is the cth position of
(X) . The final learning ability of candidates are evaluated
by utilizing the initial learning ability of the candidates. The
learning ability of slow-learning candidates is as follows:

where mc+C∕2 and m′c are the initial learning ability of
cth fast-learning candidate and final learning ability of cth
slow-learning candidate, respectively;pc is probability of
cth candidate, pc+C∕2 is the probability of cth fast-learning
candidate. Furthermore, the learning ability of fast-learning
candidate is represented as follows:

where m′c is the final learning ability of cth fast-learning
candidate, pc−C∕2 is the probability of cth slow-learning
candidate pair and � is the COR. It is introduced to evaluate
the initial and final learning abilities of each of the candi-
dates in order to control the exploration of search space and
exploitation of the best solution [37]. More specifically, it
controls the local and global searches. The index COR (�)
is calculated as follows:

where mc is initial learning ability of the candidates, m′c is
final learning ability of the candidates, iter and itermax are
the current iteration number and total number of iterations,
respectively. In addition, the final learning abilities of fast-
learning candidates is used to obtain the new position of

(4.3)mc = 0, c = 1,2,… ,C∕2

(4.4)mc = X
c − X

c−
C

2 , c = C∕2 + 1,= C∕2 + 2,… ,

(4.5)

m�c =

(
pc+C∕2 + �pc+C∕2

)
mc+C∕2

pc + pc+C∕2
, c = 1,2,… ,= C∕2,

(4.6)

m�c =

(
pc − �pc−C∕2

)
mc

pc + pc−=C∕2
, c = C∕2 + 1,C∕2 + 2,… ,C

(4.7)� = 1 −
iter

itermax

,

candidates in the search space which fulfills the objective
of removing the sampling space reduction factor R from CI-
SAPF algorithm.

Step 6: The new position of attributes for every candidate
in the search space are updated as follows:

where (X)cnew , (X)c and m′c are the new position of the attrib-
utes, previous position of attributes and final learning ability
of fast-learning candidate, respectively. rand is the random
vector uniformly distributed in the range [− 1,1]. The learn-
ing attempt is repeated from Step 2 until the termination
criteria (number of iterations) is satisfied.

For the validation of proposed CI–SAPF and
CI–SAPF–CBO techniques, the problems considered here
are from design engineering domain, truss structure domain
and linear and non-linear test problems. The CI–SAPF and
CI–SAPF–CBO are coded in MATLAB 7.7.0 (R2013b)
and the simulations are run on Windows platform using
an Intel(R) Core (TM)2Duo, 2.93 GHz processor speed
and 4 GB RAM. Furthermore, every individual problem is
solved 30 times. The solutions obtained from proposed tech-
niques and comparison with other contemporary algorithms
are discussed in the following sections.

Test examples

The CI–SAPF and CI–SAPF–CBO algorithms are applied
to solve 7 discrete variable truss structure problems, 11
mixed variable design engineering problems and 17 discrete
variable linear and nonlinear test functions. To handle the
discrete variables, a round off integer sampling approach
[35] is employed. Also, the linear and nonlinear constraints
involved with these problems are handled by proposed SAPF
approach. To ensure the performance of the CBO algorithm,
it is incorporated with static penalty function approach
applied to solve all the other problems considered in the
current work. In the previous studies, CBO is applied to
solve 52-bar, 72-bar case 1 truss structure problems, pres-
sure vessel and welded beam case 1 problem. In the current
work, the MATLAB code for CBO is adopted form Kaveh
and Mahdavi [38].

Truss structure problems

All the truss structure problems aimed to minimize over-
all weight by satisfying the constraints, such as maximum
allowable stress �max in both tension and compression on

(4.8)(X)cnew = (X)c + rand.m�c, c = 1,2,… ,= C∕2

(4.9)
(X)cnew = (X)c−C∕2 + rand.m�c, c = C∕2 + 1,= C∕2 + 2,… ,C

1574 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

every member and maximum allowable displacement umax
at every node in both horizontal and vertical directions. In
these problems, the number of variables is equal to the num-
ber of members of the truss. For symmetric truss structure
problems, such as 25-bar, 45-bar, 52-bar and 72-bar, the
variables are considered in a group as presented in respec-
tive comparison tables. For all truss structure problems, the
design variable is cross-section area of each truss member
and it is selected from within the set of discrete values.
All the truss structure problems are successfully solved by
CI–SAPF and CI–SAPF–CBO; however, CBO could not
achieve the feasible solution for 6-bar, 10-bar cased 1 and
2, 25-bar case 1 and 2, 38-bar, 45-bar and 72-bar case 2. This
is due to premature convergence of solution. In general, the
problem definition for the truss structure is as follows:

where W Objective function (Weight). Ai Set of cross sec-
tion area of every truss structure member i, i = 1,2,… ,N .
� Weight density of the truss structure material. li Length
of truss structure member i, i = 1,2,… ,N.�max Maximum
allowable stress. umax Maximum allowable displacement.

Test example‑1: six‑bar truss structure [65]

For six-bar truss structure problem CI-SAPF and CI-
SAPF-CBO obtained same results as the GA [65] (refer

(5.1)Minimize f = W =

N∑

i=1

�Aili

(5.2)subject to ||�i
|| ≤ �maxi = 1,2,… ,N

(5.3)
||
|
uj
||
|
≤ umax j = 1,2,… ,M

Table 1. The best, mean and worst solutions obtained
from 30 trials using CI-SAPF is 4962.09lb and those of
CI–SAPF–CBO algorithm are 4962.09lb, 4963.86lb and
4965.39lb with standard deviation 0 (zero) and 1.72,
respectively. The average number of function evalu-
ations for both the proposed techniques are 2735 and
2449 , respectively. The average computational time are
4.58 s and 3.32 s , respectively. The average function value
reported using GA is 5250lb whereas, CI–SAPF and
CI–SAPF–CBO are 4962.09lb and 4963.8558lb , respec-
tively. It is noticed that CI-SAPF and CI–SAPF–CBO per-
formed better than GA. The same problem is attempted
using CBO,however, the algorithm unable to get the fea-
sible solution due to premature convergence of the solu-
tion. The other computational details of CI–SAPF and
CI–SAPF–CBO associated with this problem are presented
in Tables 34 and 35, respectively.

Test example‑2: ten‑bar truss structure [28, 45, 59, 65, 78]

For case 1 and case 2 of the ten-bar truss structure prob-
lem, CI–SAPF and CI–SAPF–CBO algorithm solutions
are compared with other contemporary algorithms (refer
Tables 2 and 3. The best, mean and worst function values
(Wlb) obtained for case 1 and case 2 using CI–SAPF and
CI–SAPF–CBO with standard deviation and the average
CPU time are presented in Table 4. The statistical details
along with the parameters used for CI–SAPF associated with
these problems are listed in Tables 34 and 35, respectively.
For case 1, it is noticed that the solutions obtained using
ABC, ADS, PC and CI–SAPF are similar,however, CI–SAPF
and CI–SAPF–CBO algorithms performed computationally
better than other two approaches, whereas, for solving case
2, PC yielded significantly better objective function value
within a large number of function evaluations 2,363,380 and
average CPU time 99 s . When compared with the ADS, the
solution obtained here for case 1 are similar,however, ADS
performance is better in terms of function evaluations. The
Search Dimension Ratio (SDR) incorporated in ADS helped
to explore and exploit the search space and yielded better
solutions with fewer number of function evaluations. The
CBO algorithm could not achieve the feasible solution.

Table 1 Comparison of results for solving 6-bar truss structure prob-
lem

NA Not available

Techniques GA [65] CI–SAPF CI–SAPF–CBO

Truss Weight W(lb) 4962.09 4962.09 4962.09
Function evaluations NA 2250 1740

Table 2 Comparison of results for case 1 solving 10-bar truss structure problem

NA Not Available

Techniques GA [65] ABC [78] ADS [28] PC Kulkarni
et al. [45]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight
W(lb)

5499.35 5490.74 5490.74 5490.74 5490.74 5490.60 5490.60

Function evaluations NA 25,800 1000 1,852,059 19,250 16,940 14,160

1575Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Test example‑3: spatial 25‑bar truss structure (transmission
tower) [39, 44, 55, 59]

For solving case 1 and 2 of 25-bar truss structure prob-
lem, CI–SAPF and CI–SAPF–CBO solutions are compared
with other contemporary algorithms (refer Tables 5 and 6.
The best, mean and worst function values with standard
deviation, average function evaluations and average CPU
time obtained from 30 independent trials are presented in
Table 7. It is observed that both the techniques performed
better as compared to PSO, PSOPC, HPSO and DHPSACO
algorithm. The algorithm of PC obtained better solution as

compared to CI–SAPF and CI–SAPF–CBO,however, the
computational cost is significantly higher due to slower
convergence. The other statistical details of CI–SAPF and
CI–SAPF–CBO are presented in Tables 34 and 35.

Test example‑4: planer 38‑bar truss structure [45, 72]

For solving 38-bar truss structure problem, the best, mean
and worst function values (Wlb) obtained using CI-SAPF
are 5891.05lb , 5895.37lb and 5898.44lb , respectively, with
standard deviation 2.19 , average function evaluations

Table 3 Comparison of results for case 2 solving 10-bar truss structure problem

NA Not Available

Techniques PSO [59] PSOPC [59] HPSO [59] MBA [73] PC Kulkarni
et al. [45]

CI–SAPF CI–SAPF–CBO

Truss weight
W(lb)

5243.71 5133.16 5073.51 5067.33 4686.77 5061.76 5061.76

Function evaluations NA NA NA NA 2,363,380 9450 8400

Table 4 Statistical results for 10-bar case 1 and 2 using CI–SAPF and
CI–SAPF–CBO

Results CI–SAPF CI–SAPF–CBO

Case 1 Case 2 Case 1 Case 2

Best 5490.60 5061.76 5490.60 5061.76
Mean 5505.75 5062.22 5505.71 5061.81
Worst 5534.96 5067.33 5532.85 5062.12
Std. Dev 16.65 1.54 14.09 0.13
Avg. CPU time (sec) 10.64 12.70 10.80 33.42
Avg. function evaluations 22,654 22,874 16,845 24,325

Table 5 Comparison of results solving 25-bar case 1 truss structure problem

NA Not Available

Techniques HS [55] DHPSACO
[39]

PSO [59] PSOPC [59] HPSO [59] PC
Kulkarni
et al. [44]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight W(lb) 560.59 551.61 566.44 560.59 560.59 477.17 516.20 512.81 512.81
Function evaluations NA NA NA NA NA 1,844,457 21,350 18,500 15,000

Table 6 Comparison of results solving 25-bar case 2 truss structure problem

NA Not Available

Techniques PSO [59] PSOPC [59] HPSO [59] DHPSACO
[39]

PC Kulkarni
et al. [44]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight W(lb) 567.49 556.9 551.14 551.14 464.15 500.04 470.14 473.47
Function evaluations NA NA NA NA 1,963,415 14,350 31,500 15,000

Table 7 Statistical results for 25-bar case 1 and 2 using CI–SAPF and
CI–SAPF–CBO

Results CI–SAPF CI–SAPF–CBO

Case 1 Case 2 Case 1 Case 2

Best 512.81 470.14 512.81 473.47
Mean 530.87 486.79 531.95 485.97
Worst 548.61 498.06 543.07 487.94
Std. Dev 10.16 6.80 8.80 2.82
Avg. CPU Time (sec) 12.21 15.95 11.71 22.18
Avg. Function Evaluations 22,588 26,796 21,652 28,513

1576 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

69920 average and CPU time 87.8s . The best, mean and
worst function values resulted using CI–SAPF–CBO are
5889.95 lb, 5903.25 lb and 5927.08 lb, respectively, with
the standard deviation of 10.93 , average function evalu-
ations of 46900 and average CPU time of 33.30s . The
results obtained using CI–SAPF and CI–SAPF–CBO algo-
rithms are compared with other contemporary approaches
(refer Table 8 and the associated parameters are listed in
Tables 34 and 35. The solutions reported by both the algo-
rithms are better as compared to PC. However, PC exhib-
ited more robust performance with standard deviation of
0.37.

Test example‑5: planer 45‑bar truss structure [2, 43]

For 45-bar truss structure problem the results obtained using
CI-SAPF and CI-SAPF-CBO algorithms along with the
other approaches is presented in Table 9. Using CI-SAPF the
best, mean and worst function values (Wlb) obtained from
30 trials are14322.29lb, 14476.49lband14667.10lb , respec-
tively, with standard deviation91.77 , average function evalu-
ations 114525 and average CPU time64.69s . Also, the best,
mean and worst function values obtained using CI-SAPF-
CBO are14322.29 , 14413.89 and14480.44 , respectively,
with standard deviation of40.18 , average function evolu-
tions of 103237 and average CPU time of 56.94 s . The other
computational details and parameters associated with the
both algorithms are listed in Tables 34 and 35, respectively.
The CI–SAPF and CI–SAPF–CBO algorithm obtained
better results as compared to other algorithms,however,

CI–SAPF–CBO yielded better solutions with less compu-
tational cost (average function evolutions and average CPU
time).

Test example‑6: spatial 52‑bar truss structure [38, 39, 55,
59, 73, 86]

The discrete 52-bar planer truss structure problem for weight
minimization is successfully solved using CI-SAPF and
CI–SAPF–CBO algorithms and the solutions are compared
with other contemporary approaches presented in Table 10.
The best, mean and worst CI–SAPF solutions obtained
from 30 trials are 1894.48 kg , 1913.98 kg and 1934.94 kg ,
respectively, with standard deviation 11.99 , average num-
ber of function evaluations 101751 and average CPU time
52.73 s . Also, for CI–SAPF–CBO, the best, mean and worst
function values are 1891.44 kg, 1909.33 kg and 1920.11 kg ,
respectively, with standard deviation 7.18 , average function
evaluations 95645 and the average CPU time 61.16 s . The
other associated details are listed in Tables 34 and 35. The
reported solution using CI–SAPF is better as compare to
other contemporary approaches. However, CBO algorithm
exhibited faster convergence as compared to CI–SAPF and
CI–SAPF–CBO algorithms due to its exploitation quality.

Test example‑7: spatial 72‑bar truss structure [39, 44, 55,
59, 86]

The CI–SAPF and CI–SAPF–CBO algorithms are success-
fully applied for solving case 1 and 2 of the 72-bar truss
structure problem and the solutions are compared with

Table 8 Comparison of results
solving 38-bar truss structure
problem

Techniques ISCSO (Rudolph
and Schmidt, 2012)

PC Kulkarni
et al. [45]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight W(lb) 5889.90 5893.02 5900.34 5891.05 5889.95
Function evaluations 4618 1,793,966 106,666 151,240 42,750

Table 9 Comparison of results
solving 45-Bar truss structure
problem

NA Not Available

Techniques ISCSO [2] PC [43] CI-SPF [35] CI-SAPF CI–SAPF–CBO

Truss weight W(lb) 14,341.21 14,377.92 14,354.27 14,322.29 14,322.29
Function evaluations NA 4,494,278 163,483 95,625 51,750

Table 10 Comparison of results for 52-bar truss structure problem

NA Not Available

Techniques GA [86] HS [55] HPSO [59] DHPSACO [39] MBA [73] CBO [38] CI–SAPF CI–SAPF–CBO

Truss weight W(kg) 1970.14 1906.76 1905.49 1904.83 1902.61 1899.35 1894.48 1891.44
Function evaluations 60,000 NA 100,000 5300 NA 3840 175,240 42,432

1577Complex & Intelligent Systems (2021) 7:1565–1596

1 3

other algorithms (refer Tables 11 and 12. The CI–SAPF and
CI–SAPF–CBO algorithm yielded a better solution with less
computational time and function evaluations. The best, mean
and worst function values, standard deviation, average func-
tion evaluations and average CPU time obtained using 30
trials are presented in Table 13. The associated parameters
used to run CI–SAPF are illustrated in Table 34.

Design engineering problems

The proposed CI–SAPF and CI–SAPF–CBO algorithms are
also validated by solving 11 problems from design engi-
neering domain including stepped cantilever beam problem
(minimization of volume), pressure vessel problem (cost
minimization), speed reducer problem (minimization of
weight), reinforced concrete beam problem (minimization
of cost), welded beam design problem case 1 (minimization
of cost), case 2 (minimization of overall fabrication cost),
multiple disc clutch brake problem (minimization of mass),
helical tension compression spring problem (minimization
of volume), I-beam (minimization of vertical deflection),

cantilever beam problem (minimization of weight) and
compound gear problem (minimization of gear ratio). For
the sake of comparison, CBO algorithm is also applied to
solve these problems except welded beam case 2 (previ-
ously reported by [38]). These problems are consisted of
mixed design variables. For the statistical analysis, the
CI–SAPF, CI–SAPF–CBO and CBO are run 30 times for
every problem.

Test example‑8: stepped cantilever beam design problem
[23, 35, 83]

The stepped cantilever beam design problem for volume
minimization is proposed by Thanedar and Vanderplaats
[83]. The design variables are discrete (b1, h1, b2, h2, b3, h3)
and continuous (b4, h4, b5, h5). This problem is initially
solved using branch and bound and simulated anneal-
ing approach. The solution reported is 64558 [83]. The
CI–SAPF, CI–SAPF–CBO and CBO are also applied to
solve this problem and the results are compared with other
algorithms (refer Table 14. The best, mean and worst func-
tion values along with the standard deviation, average
function evaluations and average CPU time obtained from
applied techniques are presented in Table 15. It is observed
that CI–SAPF and CI–SAPF–CBO reported better solutions
as compared to RNES and similar results as compare to FA
and CI-SPF. The associated statistical results for CI–SAPF
and CI–SAPF–CBO are presented in Tables 34 and 35.

Test problem‑9: pressure vessel design problem [10, 40, 74]

The pressure vessel design problem for cost minimization
is successfully solved using CI–SAPF and CI–SAPF–CBO
algorithm. The CBO algorithm could not achieve feasible

Table 11 Comparison of results solving 72-bar case 1 truss structure problem

NA Not Available

Techniques GA [86] HPSO [59] PC Kulkarni
et al. [44]

CBO
Kaveh and Maha-
davi [38]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight W(lb) 400.66 388.9400 372.41 385.54 373.54 372.41 372.41
Function evaluations NA NA 8,843,207 5330 99,288 72,000 38,880

Table 12 Comparison of results solving 72-bar case 2 truss structure problem

NA Not Available

Techniques GA [86] HPSO [59] DHPSACO
[39]

PC Kulkarni
et al. [44]

CI-SPF [35] CI–SAPF CI–SAPF–CBO

Truss weight W(lb) 427.20 933.09 393.38 379.91 381.34 380.18 379.06
Function evaluations NA NA NA 8,730,598 63,000 48,240 60,912

Table 13 Statistical results for 72-bar case 1 and 2 using CI–SAPF
and CI–SAPF–CBO

Results CI–SAPF CI–SAPF–CBO

Case 1 Case 2 Case 1 Case 2

Best 372.41 380.18 372.41 379.06
Mean 381.53 383.24 398.08 387.81
Worst 384.63 385.96 418.90 397.39
Std. Dev 3.25 1.69 11.89 5.43
Avg. CPU time (sec) 78.61 118.52 53.88 80.39
Avg. Function evaluations 85,500 124,080 85,872 91,872

1578 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

solution due to premature convergence. The results
obtained using CI–SAPF and CI–SAPF–CBO algorithms
compared with other contemporary algorithms are pre-
sented in Table 16. For CI-SAPF, the best, mean and
worst function values obtained from 30 trials are 6051.48,
6065.25 and 6103.27 with standard deviation 11.91, aver-
age function evaluation 11974 average and CPU time
4.43 s . Also, for CI–SAPF–CBO, the best, mean and worst
solution are 6059.72, 6066.11 and 6090.53 with standard
deviation 9.22 , average average function evaluation of
12, 113 and CPU time 4.29 s . From the statistical results,
it is noticed that CI–SAPF obtained better solution as com-
pared to other approaches with less computational cost.
CI–SAPF–CBO obtained similar results as compared to
LCA and OIO. It is due to the faster convergence rate of
the CBO algorithm.

Test example‑10: speed reducer design problem [3, 9, 20]

For the speed reducer design problem, the results obtained
using CI-SAPF, CI-SAPF-CBO and CBO algorithms are
presented in Table 17 in comparison with other contem-
porary approaches. The proposed algorithms yielded
better results with less computational cost and function
evaluations. The best, mean and worst function values
with standard deviation, average computational time and
average number of function evaluations are presented in
Table 18. The other associated parameters are listed in
Tables 34 and 35. The CI–SAPF–CBO algorithm obtained
better solutions so far with very less computational cost
(refer Table 17).

Table 14 Comparison of results
solving stepped cantilever beam
design problem

NA Not Available

Design variables RNES [6] FA [23] CI-SPF [35] CBO CI–SAPF CI–SAPF–CBO

Volume
(
cm3

)
64,269.59 63,893.52 63,893.49 80,329.37 63,893.45 63,893.47

Function Evaluations NA NA 19,740 4560 10,000 12,000

Table 15 Statistical results for stepped cantilever beam problem using
CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 63,839.45 63,893.47 80,329.37
Mean 64,248.96 64,229.23 85,830.51
Worst 64,333.45 64,579.43 101,024.23
Std. Dev 175.29 207.14 6610.61
Avg. CPU time (sec) 5.36 7.45 1.14
Avg. function evaluations 21,552 30,437 4448

Table 16 Comparison of results for pressure vessel design problem

NA Not Available

Techniques NIDPM [74] Augmented
Lagrange [40]

GA [10] CPSO [29] LCA [36] OIO [37] CI–SAPF CI–SAPF–CBO

Cost 7981.57 7198.04 6288.74 6061.08 6059.85 6059.71 6051.48 6059.72
Function evaluations NA NA 900,000 200,000 24,000 50,000 9744 9184

Table 17 Comparison of results solving Speed Reducer Problem for weight optimization

NA Not Available

Techniques AIS-GA-C [3] AIS-GA [9] EA [20] PC Kulkarni
et al. [45]

CI-SPF [35] CBO CI–SAPF CI–SAPF–CBO

Weight W(lb) 2994.47 2994.34 3025.01 2828.59 2817.56 2840.44 2817.09 2816.79
Function evaluations 36,000 150,000 36,000 1,132,700 16,513 1848 5145 8442

Table 18 Statistical results for speed reducer design problem using
CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 2817.09 2816.34 2840.44
Mean 2820.32 2817.65 3534.00
Worst 2825.87 2819.57 3582.75
Std. Dev 2.06 1.03 264.39
Avg. CPU time (sec) 2.25 1.02 0.30
Avg. function evaluations 14,420 7597 613

1579Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Test example‑11: reinforced concrete beam design [23, 35]

For reinforced concrete beam problem, CI–SAPF and CI-
SAPF-CBO algorithm reported similar results with less
computational cost as compared to FA, PC and CI-SPF (refer
Table 19. The best, mean and worst function values with
standard deviation, average function evaluation and average
CPU time obtained from 30 trials are presented in Table 20.

Test problem‑12: welded beam design case 1 [10, 11, 15,
29]

Test problem‑13: welded beam design problem case 2 [14,
18, 41] For welded beam design problem (case 1 and case
2), the solutions obtained from CI–SAPF and CI–SAPF–
CBO algorithms are compared with other contemporary
techniques (refer to Tables 21 and 22. For case 1, the CBO
solutions are taken from Kaveh and Mahdavi [38] and in the
current work CBO is tested on case 2. For both the cases of
welded beam problem, CI-SAPF and CI–SAPF–CBO per-
formed significantly better. This is due to the probability-
based roulette wheel approach which increased the chances
to follow the better solution in the cohort. The statistical
results for case 1 and case 2 obtained form 30 trials are pre-
sented in Table 23.

Test problem‑14: multiple disc clutch brake [19, 70] The
multiple disc clutch brake design problem is previously
solved using NSGA [19], PSO and AIA [70]. The CI–
SAPF and CI–SAPF–CBO algorithm are successfully vali-
dated by comparing the solutions with these algorithms
(refer Table 24. The best, mean and worst function values
obtained using CI–SAPF and CI–SAPF–CBO algorithm
are very similar,however, significantly better as compared
to other algorithms. The statistical results from 30 trials are
presented in Table 25. The solutions obtained from CBO are
marginally worse.

Table 19 Comparison of results
solving reinforced concrete
beam design problem

NA Not Available

Techniques FA [23] PC Kulkarni
et al. [45]

CI-SPF [35] CBO CI–SAPF CI–SAPF–CBO

Min. Cost 359.21 359.21 359.21 362.63 359.21 359.21
Function evaluations 30,000 563,490 22,050 252 4515 1710

Table 20 Statistical results for reinforced concrete beam problem
using CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 359.21 359.21 362.63
Mean 359.24 359.32 379.02
Worst 359.47 359.95 386.40
Std. Dev 0.08 0.18 9.35
Avg. CPU time (sec) 0.73 0.47 0.03
Avg. function evaluations 3047 2255 182

Table 21 Comparison of results solving welded beam design case 1 problem

NA Not available

Techniques GA [15] GA [10] GA [11] PSO [29] CBO [38] CI–SAPF CI–SAPF–CBO

Min. Cost 2.43 1.75 1.73 1.73 1.72 1.55 1.55
Function evaluations NA NA NA NA NA 11,786 9552

Table 22 Optimal solutions for the welding beam design case 2 problem

NA Not available

Techniques GA [18] PSO [40] PSO
[14]

CBO CI–SAPF CI–SAPF–CBO

Min. cost 1.94 (infeasible) 2.03 1.95 4.98 1.65 1.65
Function evaluations NA 189,800 NA 1152 3000 7092

1580 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Test problem‑15: helical compression spring design [23, 74,
87]

A mixed variable tension–compression helical spring
problem is previously solved in Yun [87], Gandomi et al.
[23], Sandgren [74] and Kulkarni et al. [45]. The solutions
obtained using CI–SAPF and CI–SAPF–CBO algorithms
are successfully validated and compared with other con-
temporary algorithms presented in Table 26. It observed
that the results obtained from CI–SAPF are very similar to
FA and PC,however, computationally CI-SAPF performed
better with lesser number of function evaluations. The

best, mean and worst function values with standard devia-
tion, average function evaluations and average CPU time
are presented in Table 27. The other statistical details and
associated parameters are presented in Tables 34 and 35.

Test problem‑16: minimize I‑section beam vertical deflec‑
tion [8, 22] For I-section beam problem, CI–SAPF, CI–
SAPF–CBO and CBO reported better function values as
compared to CS [22] and SOS [8] (refer Table 28. The
best, mean and worst function values with standard devia-
tion, average CPU time and average function evaluations
are presented in Table 29. For this problem, the stand-

Table 23 Statistical results for
welded beam problem case 1
and case 2 using CI–SAPF, CI–
SAPF–CBO and CBO

Results Case1 Case2

CI–SAPF CI–SAPF–CBO CI–SAPF CI–SAPF –CBO CBO

Best 1.55 1.55 1.65 1.65 4.98
Mean 1.56 1.55 1.88 1.93 7.36
Worst 1.57 1.56 2.08 2.15 10.49
Std. Dev 0.01 0.003 0.2013 0.2138 2.14
Avg. CPU time (sec) 1.57 2.24 2.08 2.15 0.27
Avg. function evaluations 11,786 8721 8740 6996 684

Table 24 Comparison of results
solving multiple disc clutch
brake design problem

NA Not available

Techniques NSGA [19] Rao et al. [70] CBO CI–SAPF CI–SAPF–CBO

PSO AIA

Mass (kg) 0.41 0.31 0.32 0.28 0.24 0.24
Function evaluations NA NA NA 210 825 450

Table 25 Statistical results for multiple disc clutch brake problem
using CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 0.24 0.24 0.27
Mean 0.24 0.24 0.44
Worst 0.24 0.24 0.83
Std. Dev 8.62E-17 9.25E-18 0.23
Avg. CPU time (sec) 0.23 0.18 0.08
Avg. function evaluations 671 800 450

Table 26 Performance comparison of various algorithms solving helical spring design problem

NA Not available

Techniques Nonlinear
B&B [74]

AHGA [87] FA (Gandomi et,
al. 2011)

PC (Kulakrni
et al. (2016a))

CBO CI–SAPF CI–SAPF–CBO

Spring volume
(in3)

2.79 2.03 2.66 2.66 3.24 2.66 2.66

Function evaluations NA NA NA 498,567 108 840 1000

Table 27 Statistical results for tension–compression helical spring
problem using CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 2.6586 2.6586 3.2440
Mean 2.6601 2.6594 4.1223
Worst 2.6722 2.6630 5.5331
Std. Dev 0.0032 0.0014 0.8765
Avg. CPU time (sec) 2.05 2.02 0.04
Avg. function evaluations 3030 2991 65

1581Complex & Intelligent Systems (2021) 7:1565–1596

1 3

ard deviation obtained by CS and SOS are 1.3E − 4 and
4.0E − 5 , respectively,however, CI–SAPF algorithm is
more robust with standard deviation of 4.6472E − 7 with
fewer number of function evaluations (refer Table 29. The
other computational details and associated parameters are
presented in Tables 34 and 35.

Test problem‑17: cantilever beam [8, 22] The continu-
ous variable cantilever beam design problem aims at the
minimization of overall weight. The CI–SAPF approach is
successfully validated by solving this problem and com-
pared with other techniques presented in Table 30. The
solutions reported from CI–SAPF–CBO and CBO are pre-
sented in Table 31. The function values using CI–SAPF
and CI–SAPF–CBO for solving cantilever beam problem
is very similar to CS [22] and SOS [8] and equally robust.
The computational cost of the CI–SAPF is marginally bet-
ter as compared to CI–SAPF–CBO, SOS and CBO (refer
Table 31. The other computational details and associated
parameters are presented in Tables 34 and 35.

Test problem‑18: compound gear train [14, 40, 74] For
the compound gear train design problem CI–SAPF,
CI–SAPF–CBO and CBO are successfully validated by
comparing the solutions with the methods such as non-
linear B&B Sandgren [74], Lagrange multiplier Kannan
and Kramer [40] and PSO [14] as presented in Table 32.
CI–SAPF and CI–SAPF–CBO algorithms obtained very
similar results as PSO. The best, mean and worst solu-
tions obtained using CI–SAPF, CI–SAPF–CBO and CBO
with standard deviation, average CPU time and average
function evaluations are illustrated in Table 33. The other
computational details and associated parameters are pre-
sented in Tables 34 and 35.

Linear and nonlinear benchmark test problems

The CI–SAPF, CI–SAPF–CBO and CBO algorithms are
also applied for solving several maximization and minimi-
zation test problems [82] such as dynamic variable problem,
transportation problem, multistage problem, Rosen Suzuki
convex test problems, knapsack problem and two cases of
integer linear problem. Moreover, two cases of non-convex
integer problem and global nonlinear mixed discrete pro-
gramming problem [89], three-bar test problem [80] and six
monotone functions [53] are also solved. These all prob-
lems consisted of discrete variables and linear-nonlinear
type constraints. The discrete variables are handled using
a round off integer sampling technique [35] and constraints
are handled using SAPF approach, however, CBO could not
achieve the feasible solution for transportation problem and
four monotone functions. For all the solved problems, the
result comparison is presented in Table 36.

Table 28 Comparison of results
solving minimize I-beam
vertical deflection

NA Not available

Techniques CS
[22]

SOS [8] CBO CI–SAPF CI–SAPF–CBO

Min. deflection 0.0130747 0.0130741 82E-4 66E-4 66E-4
Function evaluations 5000 5000 432 3900 2400

Table 29 Statistical results for I-section beam problem using CI–
SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 66E-4 66E-4 82E-4
Mean 66E-4 66E-4 0.04
Worst 66E-4 66E-4 0.13
Std. Dev 4.65E-07 9.65E-06 0.05
Avg. CPU Time (sec) 1.27 0.47 0.016
Avg. Function evaluations 7830 4553 123

Table 30 Comparison of results solving cantilever beam design

NA Not available

Techniques CS
[22]

SOS [8] CBO CI–SAPF CI–SAPF–CBO

Min. weight 1.34 1.34 3.20 1.34 1.34
Function evalu-

ations
NA 15,000 2190 13,750 3025

Table 31 Statistical results for cantilever beam problem using CI–
SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 1.34 1.34 3.20
Mean 1.34 1.34 6.28
Worst 1.34 1.34 7.58
Std. Dev 1.74E-07 6.51E-05 1.78
Avg. CPU time (sec) 0.91 1.83 0.06
Avg. function evaluations 9581 11,761 2320

1582 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Result analysis and discussion

The proposed CI–SAPF and CI–SAPF–CBO algorithms
are successfully validated by solving discrete and mixed
design variable problems involved with linear and non-
linear constraints. These problems are also solved using
CBO algorithm to compare the performance of individual
algorithm. The statistical results of all the problems con-
sidered in the work are presented in Tables 34, 35, 36.
The Tables 34 and 35 present the best, mean and worst
function values for CI–SAPF and CI–SAPF–CBO, respec-
tively, including standard deviation of function values,
average number of function evaluations, average compu-
tational time, closeness to the reported solution and the
set of parameters required to run the CI-SAPF algorithm.
Table 36 presents the comparison of solutions obtained
from CI–SAPF, CI–SAPF–CBO, CBO algorithms and
other contemporary techniques used to solve linear and
nonlinear optimization test problems. The problems con-
sidered here are from truss structure domain (10 prob-
lems), mixed variable design engineering domain (11
problems) and linear and non-linear test problems with
integer variables (17 problems). In CI–SAPF–CBO, the
CBO algorithm enhanced the exploration of the search
space which assisted the CI algorithm to reach towards
the better solutions within substantially less computational
cost. The SAPF approach served to handle the linear and
nonlinear constraints and CI worked as a global opti-
mizer. Most importantly, CI–SAPF–CBO came up with a

generalized approach, which does not require fine tuning
of parameters except number of candidates C . This makes
the proposed algorithm easier to apply to wide range of
applications.

The problems from truss structure domain and design
engineering domain are previously solved using CI–SPF
approach incorporated with static penalty function approach
[35]. All the discrete variables truss structure domain prob-
lems considered in the present work are solved for minimiza-
tion of weight subject to stress (in links) and deflection (in
nodes). For 38 bar, 52 bar and 72 bar case 1, CI–SAPF–CBO
obtained even better results as compared to CI–SAPF and
CBO algorithms. For solving 52-bar and 72-bar truss struc-
ture problems and welded beam (case 1) design engineer-
ing problem, the physics inspired CBO algorithm is incor-
porated with a round off approach to handle the discrete
variables and static penalty function approach to handle the
inequality constraints. In the current work, CI–SAPF and
CI–SAPF–CBO exhibited the superiority in dealing with
such problems as compared to the CI–SPF [35], CBO [38]
and other contemporary algorithms. The results obtained
from CI–SAPF and CI–SAPF–CBO are similar as in both the
approaches, a probabilistic roulette wheel approach provided
the possible choices to follow the best candidate, wherein,
the proposed SAPF approach handled the constraints and
CBO is incorporated to refine the solution obtained from
CI. The CBO algorithm is tested on all the problems consid-
ered here,however, it exhibited fast and premature conver-
gence. However, in CI–SAPF–CBO, a probabilistic roulette
approach associated with the CI assisted the algorithm to
escape the solution from local minima.

An adaptive penalty function approach is incorporated
in GA Nanakorn and Meesomklin [65] with the similar
motivation to evade the setting of penalty parameter. For
six-bar truss structure problem, both the proposed CI–SAPF
and CI–SAPF–CBO algorithms obtained same results as
compared to GA and those for ten-bar (case 1) truss struc-
ture problem performed better than GA. In Nanakorn and
Meesomklin [65], the penalty parameter is set using a ratio
between best infeasible fitness value and average feasible
fitness value. This process requires a separate scaling fac-
tor which needs to be set to adjust the strength of penalty

Table 32 Comparison of results solving compound gear design problem

NA Not available

Techniques Nonlinear B&B [74] Lagrange Multi-
plier [40]

PSO [14] CBO CI–SAPF CI–SAPF–CBO

f (x) 5.7e − 06 2.1246e-08 2.7e − 12 4.5033E-9 2.70e-12 2.70e-12
Gear ratio 0.1466 0.1441 0.1442 0.1443 0.1442 0.1442
Error % 1.65% 0.11% 0.0011% 0.0462% 0.0011% 0.0011%
Function evaluations NA NA NA 420 1260 360

Table 33 Statistical results for compound gear train problem using
CI–SAPF, CI–SAPF–CBO and CBO

Results CI–SAPF CI–SAPF–CBO CBO

Best 2.7E−12 2.7E−12 4.50E−09
Mean 3.97E−11 1.73E−11 1.46E−05
Worst 6.60E−10 2.31E−11 7.06E−05
Std. Dev 5.26E−12 9.55E−12 3.13E−05
Avg. CPU time (sec) 3.12 2.17 0.03
Avg. function evaluations 8513 6358 102

1583Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Table 34 CI–SAPF results solving truss structure and engineering design problems

Test examples Best mean worst Standard deviation Average number of
function evalua-
tions

Average com-
putational time
(sec)

% improvement over
the best reported
solution

Set of
parameters
C,R

Test Example-1 6-Bar 4962.09 9.25E−13 2735 4.58 0 5, 0.965
4962.09
4962.09

Test Example-2
10-Bar Case 1
10-Bar Case 2

5490.60 16.65 22,654 17.87 0.0024 5, 0.965
5505.75
5534.96
5061.76 1.54 22,874 31.72 0.1099 5, 0.967
5062.22
5067.33

Test Example-3
25-Bar Case 1
25-Bar Case 2

512.81 10.16 22,588 12.21 0.6566 5, 0.955
530.88
548.61
473.47 6.80 26,796 15.95 5.3139 5, 0.955
486.74
498.06

Test Example-4 38-Bar 5891.05 2.18 69,920 40.60 0.0019* 5, 0.967
5895.38
5898.44

Test Example-5 45-Bar 14,322.29 91.77 114,525 63.17 0.1309 5, 0.97
14,455.68
14,667.10

Test Example-6 52-Bar 1894.48 11.98 101,751 52.73 0.2563 5, 0.9567
1913.97
1934.94

Test Example-7 72-Bar
Case 1

72-Bar Case 2

372.41 3.25 85,500 78.61 0.3033 5, 0.955
381.53
384.63
380.18 1.69 124,080 118.52 0.0718* 5, 0.955
383.24
385.96

Test Example-8 Steeped
Cantilever Beam

63,893.45 175.29 21,552 5.36 5.57e-5 5, 0.955
64,248.96
64,333.45

Test Example-9 Pressure
vessel

5850.66 104.65 11,396 4.85 0.6663 5, 0.955
5960.49
6116.89

Test Example-10 Speed
Reducer

2817.09 2.06 14,420 2.25 0.0165 5, 0.955
2820.32
2825.87

Test Example-11 Concrete
Beam

359.21 0.08 3047 0.73 0 5, 0.955
359.24
359.47

Test Example-12 Welded
Beam 1

1.55 77E−4 11,786 4.92 15.7316 5, 0.955
1.56
1.57

Test Example-13 Welded
Beam 2

1.65 0.20 8740 2.08 10.0600 5, 0.955
1.88
2.08

1584 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

parameter. This is one of the limitations of the adaptive
penalty function approach which may increase preliminary
trials to set the scaling factor; however, in SAPF approach,
the function value is used as a penalty parameter which
is updated in every iteration of the algorithm. This func-
tion value keeps on improving as the iteration progresses
which accelerates the convergence rate and obtain compe-
tent results with lesser computational cost. For 10-bar (case
2), 25-bar (Case 1 and 2), 52-bar and 72-bar 3-D spatial
discrete truss structure, CI-SAPF and CI-SAPF-CBO per-
formed better as compared to PSO and PSOPC. In PSO
and PSOPC [59] the penalty function is incorporated which
degenerated the function value. To overcome this limitation,
fly-back mechanism is used in HPSO to handle the con-
straints which expedited the convergence rate. In CI–SAPF,
all the candidates are keen to improve their behavior (func-
tion value) and a probability-based roulette wheel approach
provides them possible choices to follow the better solution
and CI further push the solution towards global minima. In
CI–SAPF–CBO, the exploration quality of CBO controls the
search space which drives the candidate to achieve the better
behavior in the cohort.

The DHPSACO [39] and MBA [73] are employed with a
modified feasibility based [17] constraint handling approach
and obtained better solutions so far with least number of
function evaluations. A harmony search strategy is adopted
in DHPSACO to explore the search space which required an
additional parameter referred to as pitch adjustment rate to
select the neighborhood values. A SOS (Cheng and Prayogo
2014) is also incorporated with feasibility-based rule for

solving design engineering problems such as steeped canti-
lever beam for weight minimization and design of I-section
beam for minimum vertical deflection. A similar feasibility-
based approach is also adopted by Datta and Figueira [14] in
real-integer-discrete-coded PSO for solving compound gear
train design problem. As compared to the feasibility-based
rule, CI–SAPF and CI–SAPF–CBO observed to be more
superior obtaining the same results for cantilever beam and
compound gear train problems. For I-section beam design
problem, CI–SAPF and CI–SAPF–CBO obtained better
solutions than PSO and SOS. Moreover, an ADS [27] algo-
rithm is also compared with CI–SAPF and CI–SAPF–CBO
for 10-bar case 1 truss structure problem. The ADS achieved
the best solution in 1000 function evaluations, however, the
external penalty function is incorporated for constraint han-
dling, in which an initial penalty coefficient required to be
set and further updated by every stagnation escape period.
This required several preliminary trials and may increase the
computational cost.

A nonlinear integer and discrete programming method
[74] is proposed to solve mechanical design engineering
problems such as gear train design, tension compression
spring and pressure vessel, in which a nonlinear branch and
bound approach and exterior penalty function approach are
incorporated to handle discrete and integer variables and
to handle the constraints, respectively. A concept of aug-
mented Lagrange multiplier [40] is incorporated with Pow-
ell’s method and Fletcher and Reeves Conjugate Gradient
method for solving mechanical design problems and it is
noticed that the zeroth-order search (Powell’s method) found

Table 34 (continued)

Test examples Best mean worst Standard deviation Average number of
function evalua-
tions

Average com-
putational time
(sec)

% improvement over
the best reported
solution

Set of
parameters
C,R

Test Example-14 Multiple
Disc Clutch

0.24 8.62E−17 671 0.23 25.0316 5, 0.955

0.24

0.24
Test Example-15 Tension

Compression Spring
2.66 32E−4 3030 2.05 0 5, 0.955
2.66
2.67

Test Example-16
I Section Beam

66.26E-4 4.65E−07 7830 1.27 49.518 5, 0.955
66.26E-4
66.28E-4

Test Example-17 Cantile-
ver Beam

1.34 1.74E−05 9581 0.91 0 5, 0.955
1.34
1.34

Test Example-18 Gear
Train Design

2.7E-12 5.26E−12 8513 3.12 0 5, 0.955
3.97E-11
6.60E-10

*The solution obtained using CI–SAPF is worse than other algorithms

1585Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Table 35 CI–SAPF–CBO results solving truss structure and engineering design problems

Test examples Best mean worst Standard deviation Average number of
function evaluations

Average com-
putational time
(sec)

% Improvement over
the best reported
solution

Test Example-1 6-Bar 4962.09 1.37 2449 3.32 0
4963.86
4965.39

Test Example-2 10-Bar Case 1 10-Bar
Case 2

5490.60 14.09 16,845 10.81 0.0024
5505.71
5532.85
5061.76 1.88 24,325 34.53 0.1099
5062.50
5067.33

Test Example-3 25-Bar Case 1 25-Bar
Case 2

512.81 8.80 21,652 11.71 0.6560
531.95
543.07
473.47 2.82 28,513 22.18 5.3139
485.97
487.94

Test Example-4 38-Bar 5889.95 10.93 46,900 33.30 0
5903.25
5927.08

Test Example-5 45-Bar 14,322.29 40.18 103,237 56.95 0.1319
14,413.89
14,480.44

Test Example-6 52-Bar 1891.44 7.17 95,645 61.17 s
1909.33
1920.11

Test Example-7 72-Bar Case 1 72-Bar
Case 2

372.41 11.89 85,872 53.89 0.3033
398.09
418.90
379.07 5.43 91,872 80.39 0.2213
387.81
397.39

Test Example-8 Steeped Cantilever
Beam

63,893.47 207.14 30,437 7.46 3.14e-5
64,229.23
64,549.43

Test Example-9 Pressure vessel 5850.65 97.05 11,033 4.69 0.6664
5946.46
6095.05

Test example-10 Speed Reducer 2816.34 1.03 7597 2.01 0.0273
2817.65
2819.57

Test example-11 Concrete Beam 359.21 0.18 2255 0.47 0
359.31
359.95

Test example-12 Welded Beam 1 1.55 35E−4 8721 2.24 15.7316
1.55
1.56

Test Example-13 Welded Beam 2 1.65 0.21 6996 2.15 10.1600
1.93
2.16

1586 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

to be more efficient results than first order method. For con-
straint handling, a dynamic constraint handling approach
is incorporated with augmented Lagrange multiplier-based
method. In the current work, CI–SAPF and CI–SAPF–CBO
reduced the effort of setting up the penalty parameter and
also helped the algorithm to work smoothly with different
penalty parameter for every learning attempt. This makes the
algorithm more superior than other contemporary techniques
and CI–SPF.

With the motivation of parameter-less penalty function
approach, He and Wang [29] and Coello [10] proposed the
constrained handling approach as co-evolutionary Particle
Swarm Optimization (CPSO) and self-adaptive penalty
function using GA, respectively. For solving pressure vessel
problem, the penalty function approach is divided into two
with separate incremental weighing factors [29]. From the
results, it is noted that the function evaluations for GA [10]
and CPSO [29] are 900,000 and for 200,000, respectively.
The performance of the CI–SAPF–CBO is observed to be
more efficient with quite less number of function evaluations
(refer Table 12 with better function value as compared to
GA, CPSO and CI–SAPF.

To validate the ability of CI–SAPF and CI–SAPF–CBO,
the discrete variables linear problems (transportation prob-
lem, knapsack problem and linear integer programming)
and nonlinear problems (dynamic problem, multistage
problem and Rosen Suzuki convex programming problem)
are adopted from Srivastava and Fahim (2001). In Srivas-
tava and Fahim (2001), a two-phase optimization procedure
is proposed, in which a gradient-based steepest descent
method for feasible solution and hem-stitching approach for

infeasible solution (when constraint violated) are distinctly
incorporated. For the second phase, the integer combinations
vector is obtained from the neighborhood of the first phase.
The process adopted in this work could make the algorithm
more efficient and driven towards promising results. The
CI–SAPF and CI–SAPF–CBO algorithms are also applied
for solving a Signomial Discrete Programming (SDP) prob-
lem Tsai et al. [89] (non-convex integer programming and
global nonlinear mixed discrete programming problems).
When compared to Floudas’s approach of transformation
of objective function and constraints (SDP problem) into
convex problem, CI-SAPF and CI–SAPF–CBO are observed
to have yielded superior solution.

Analysis of CI‑SAPF approach

The proposed CI-SAPF algorithm is successfully tested on
different domain problems and the results are discussed in
previous section. CI–SAPF algorithm is run for 30 times
for solving every problem. The best, mean and worst func-
tion values along with the standard deviations and function
evaluations including the associated parameters C (number
of candidates) and R (sampling space reduction factor) are
presented in Table 34. The main advantage of the proposed
SAPF approach is that it can be directly applicable to a variety
of constrained optimization problems without preliminary tri-
als. The CI–SAPF algorithm is reported to be more efficient
which reduced the efforts of trial-and-error process of set-
ting the suitable penalty parameter. In CI–SAPF algorithm,
the penalty parameter is selected based on the available set
of design variables which updated iteratively Fig. 4d). The

Table 35 (continued)

Test examples Best mean worst Standard deviation Average number of
function evaluations

Average com-
putational time
(sec)

% Improvement over
the best reported
solution

Test example-14 multiple disc clutch 0.24 8.62E−17 800 0.18 25.0136

0.24

0.24
Test example-15 Tension compression

Spring
2.66 14E−4 2991 2.03 0
2.666
2.66

Test Example-16 I Section Beam 66.26E−4 9.65E−06 4553 0.47 49.5100
66.26E−4
66.26E-4

Test example-17 steeped beam 2 1.34 6.51E−05 11,761 1.8353 0
1.34
1.34

Test example-18 gear train design 2.70E−12 9.55E−12 6358 2.18 0
1.73E−11
2.31E−11

1587Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Table 36 CI–SAPF results solving linear and nonlinear problems

Sr. No Test functions Solver Search space Function Value Optimum variables

Lower limit Upper limit

1 Dynamic problem
(Maximization)

Srivastava and Fahim
[82]

[0, 0, 0] [10, 10, 10] 16 [0, 1, 2]

CI–SAPF 16 [0, 1, 2]
CI–SAPF–CBO 16 [0, 1, 2]
CBO 15 [0, 2, 1]

2 Transportation
problem

Srivastava and Fahim
[82]

[0,…,0] [100,…,100] 40.5 [5, 15, 0, 0, 0, 15, 0,
5, 5]

CI–SAPF 40.8 [2,18, 0, 3, 0,12, 0, 2]
CI–SAPF–CBO 40.8 [2,18, 0, 3, 0,12, 0, 2]

3 Multistage oroblem
(Maximization)

Srivastava and Fahim
[82]

[0,0,0] [100,100,100] 55.2 [3, 1, 0]

CI–SAPF 55.2 [3,1,0]
CI–SAPF–CBO 55.2 [3,1,0]
CBO 32.7 [0,1,1]

4 Rosen-Suzuki test
problem convex
programming prob-
lem (Minimization)

Srivastava and Fahim
[82]

[− 10,− 10,− 10,− 10] [20, 20, 20, 20] − 44 [0,1, 2,- 1]

CI–SAPF − 44 [0,1, 2,− 1]
CI–SAPF–CBO − 44 [0, 1, 2, − 1]
CBO − 32 [− 1, 1, 2, 0]

5 Knapsack problem
(maximization)

Srivastava and Fahim
[82]

[0,…,0] [100,…,100] 19,979 [32, 2, 1, 0, 0, 0, 0]

CI–SAPF 20,059 [16, 18, 9, 0, 2, 8,0]
CI–SAPF–CBO 20,240 [27, 3, 4, 4, 8, 1, 5]
CBO 18,428 [16, 10, 8, 0, 19, 8, 38]

6 Integer linear prob-
lem

(a) (maximization)

Srivastava and Fahim
[82]

[0,…,0] [200,…,200] 316 [4, 87, 34, 149, 0]

CI–SAPF 1037 [200, 199, 67, 104, 0]
CI–SAPF–CBO 1040 [200, 200, 67, 106, 0]
CBO 393 [111, 138, 27, 0,136]

7 (b) (Maximization) Srivastava and Fahim
[82]

[0, 0] [100,1 00] 33 [3,6]

CI–SAPF 33 [3,6]
CI–SAPF–CBO 33 [3,6]
CBO 33 [3,6]

8 Non-convex Integer
problem (formula-
tion 1)

Tsai et al. [89] [1, 1, 1] [5, 5, 5] − 75.7579 [1, 2, 5]
CI–SAPF − 75.7579 [1, 2, 5]
CI–SAPF–CBO − 75.7579 [1, 2, 5]
CBO − 75.7579 [1, 2, 5]

(formulation 2) Tsai et al. [89] [0, 0, 0] [5, 5, 5] − 125 [5, 4, 0]
CI–SAPF − 328.3159 [0, 5, 5]
CI–SAPF–CBO − 328.3159 [0, 5, 5]
CBO − 131.3264 [0, 2, 5]

9 Global nonlinear
mixed

discrete programming

Tsai et al. [89] [3, 3] [6, 5] − 246 [5, 4]
CI–SAPF − 275 [5, 5]
CI–SAPF–CBO − 275 [5, 5]
CBO − 275 [5, 5]

10 Three-bar truss
design problem

Shin et al. [80] [0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2] 3.0414 [1. 2, 0.5, 0.1]
CI–SAPF 3.0414 [1.2, 0.5, 0.1]
CI–SAPF–CBO 3.0414 [1.2, 0.5, 0.1]
CBO 3.0414 [1.2, 0.5, 0.1]

1588 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

impact of this penalty parameter on the behavior of penalty
function Fig. 4c), constraint violations Fig. 4b) and pseudo-
objective function Fig. 4a) is observed to be precisely similar
to calculated penalty parameter. The CI–SAPF is tested on
four problems from different domains such as discrete variable
six-bar truss structure problem, mixed variable pressure ves-
sel design engineering problem, discrete variable linear prob-
lem and Rosen-Suzuki nonlinear problem. From the graphs

Fig. 4, it is noted that the behavior of the overall cohort is
based on the performance of SAPF which is ultimately keen
towards the objective function (penalty parameter) value. From
the graphs, the trends originated by the penalty parameters
Fig. 4d) similar trends are followed by the constraint viola-
tions Fig. 4c), penalty functions Fig. 4b) and pseudo-objective
functions Fig. 4a). As the penalty parameter value is iteratively
updated, it behaves like a dynamic penalty function approach,

Table 36 (continued)

Sr. No Test functions Solver Search space Function Value Optimum variables

Lower limit Upper limit

11 Monotone functions Lawler and Bell [53] [0, 0, 0, 0, 0] [3, 3, 3, 3, 3] 8 [1, 1, 1, 1, 2]

CI–SAPF 16 [1, 1, 2, 1, 3]

CI–SAPF–CBO 16 [1, 1, 2, 1, 3]

CBO 16 [1, 1, 2, 1, 3]
12 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7,

15]
16 [1, 4, 1, 0, 2, 1, 2]

CI–SAPF 14 [0, 2, 4, 0, 2, 1, 6]
CI–SAPF–CBO 14 [0, 2, 4, 0, 2, 1, 6]
CBO 22 [2, 3,1, 1, 2, 1, 2]

13 Lawler and Bell [53] [0,0,0,0,0,0,0] [7,7,7,15,15,7,15] 10 [0,6,0,1,1,1,1]
CI–SAPF 11 [1,3,2,1,1,1,2]
CI–SAPF–CBO 11 [2,4,0,1,1,1,2]

14 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7,
15]

46 [0, 7, 0, 0, 0, 2, 1]
CI–SAPF 92 [2,4, 0, 0, 1, 2, 2]
CI–SAPF–CBO 92 [2,4, 0, 0, 1, 2, 2]

15 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7,
15]

25 [1, 4, 1, 1, 1, 1, 2]
CI–SAPF 21 [2,3, 1, 1, 1, 1, 2]
CI–SAPF–CBO 21 [2, 3, 1, 1, 1, 1, 2]

16 Lawler and Bell [53] [0, 0, 0, 0, 0, 0, 0] [7, 7, 7, 15, 15, 7,
15]

1000 [0, 7, 0 ,0, 0, 2,1]
CI–SAPF 1331 [1, 3, 2, 1, 1, 1, 2]
CI–SAPF–CBO 1331 [1, 3, 2, 1, 1, 1, 2]

Fig. 4 Behavior of pseudo
objective function (a), con-
straint violations (b), penalty
function (c) and penalty param-
eter (d) solving discrete variable
6-bar truss structure problem
using CI-SAPF

1589Complex & Intelligent Systems (2021) 7:1565–1596

1 3

and similar trend obtained by the pseudo-objective function
which represents the ability to jump out of the local minima
and further helps to avoid the premature convergence of the
solution.

Wilcoxon’s rank sum test analysis

To examine the statistical significance of CI–SAPF and
CI–SAPF–CBO, a non-parametric Wilcoxon’s rank sum test
(Mann–Whitney U Test) is performed for 30 independent trials
(function values, CPU time and function evaluations). The null
and alternative hypotheses are as follows:

H0: The distribution of results of CI-SAPF and CI-SAPF-
CBO are identical.

H1: The distribution of results of CI-SAPF and CI-SAPF-
CBO are not identical.

The lower tail test is performed at significance level
� = 0.05 (95%). The null hypothesis (H0) is rejected for
p-value (calculated probability) less than � . The p-value is
calculated based on the statistical test score. All 38 problems
are independently tested including 10 discrete variable truss
structure problems (refer Table 37, 11 mixed variable design
engineering problems (refer Table 38 and 17 integer variable
test functions (refer Tables 39 and 40. From the statistical
results, the observations are as follows:

With function values: 31 times failed to reject the null
hypothesis (H0),

With CPU time: 24 times failed to reject the null hypothesis
(H0),

With function evaluations: 33 times failed to reject the null
hypothesis (H0).

It means that there is no significant statistical difference
between CI–SAPF and CI–SAPF–CBO when compared using
function values and function evaluations; however, while
comparing CPU time the CI–SAPF–CBO algorithm gener-
ated higher rank as compared to CI–SAPF. From this, it is
concluded that CI–SAPF–CBO is marginally worse in compu-
tational time for solving some of these problems. In Tables 37,
38, 39, 40, the h-values 0 and 1 interpret the acceptance and
rejection of the null hypothesis (H0), respectively. The main
objective of hybridization of CI–SAPF–CBO is to make the
generalized algorithm by removing the sampling space reduc-
tion factor R from CI–SAPF without degenerating the quality
of solution. Here, the objective is achieved by overcoming the
limitation of CI–SAPF algorithm with better quality of func-
tion value within lesser number of function evaluations and
computational time.

Ta
bl

e
37

C

om
pa

ris
on

 o
f C

I–
SA

PF
 a

nd
 C

I–
SA

PF
-C

BO
 fo

r t
ru

ss
 st

ru
ct

ur
e

pr
ob

le
m

s u
si

ng
 W

ilc
ox

on
’s

 ra
nk

 su
m

 te
st

at
 �

=
0
.0
5

Te
st

Ex
am

pl
es

6-
B

ar
10

-B
ar

25
-B

ar
38

-B
ar

45
-B

ar
52

-B
ar

72
-B

ar

C
as

e
1

C
as

e
2

C
as

e
1

C
as

e
2

C
as

e
1

C
as

e
2

Fu
nc

tio
n

Va
lu

es
Te

st
st

a-
tis

tic
−

 3
.9

91
79

48
63

1.
55

97
56

88
2

0.
54

70
23

74
1

−
 0

.0
66

52
99

14
1.

61
15

02
37

1
−

 2
.4

68
99

90
45

−
 0

.8
50

10
44

62
−

 0
.6

80
08

35
69

−
 3

.4
81

73
21

86
−

 2
.6

02
05

88
74

P
va

lu
e

3.
27

87
5E

-0
5

0.
94

05
91

32
8

0.
70

78
18

78
9

0.
47

34
77

97
1

0.
94

64
64

86
5

0.
00

67
74

57
9

0.
19

76
33

50
6

0.
24

82
25

77
4

0.
00

02
49

09
1

0.
00

46
33

29
7

h-
va

lu
e

1
0

0
0

0
1

0
0

1
1

C
PU

 T
im

e
Te

st
st

a-
tis

tic
3.

93
26

57
16

1
4.

05
09

32
56

5
0.

24
39

43
01

9
0.

65
05

14
71

8
−

 1
.9

51
54

41
55

−
 1

.4
63

65
81

16
1.

60
41

10
15

8
−

 1
.3

74
95

15
64

3.
20

82
20

31
6

0.
53

22
39

31
5

P
va

lu
e

0.
99

99
57

99
4

0.
99

99
74

49
3

0.
59

63
62

52
5

0.
74

23
20

10
1

0.
02

54
96

17
4

0.
07

16
43

69
2

0.
94

56
55

11
3

0.
08

45
73

23
1

0.
99

93
32

20
4

0.
70

27
19

87
2

h-
va

lu
e

0
0

0
0

1
0

0
0

0
0

Fu
nc

tio
n

Ev
al

ua
-

tio
ns

Te
st

st
a-

tis
tic

2.
29

15
85

94
2.

95
68

85
08

4
1.

07
92

63
05

6
0.

79
09

66
76

0.
05

17
45

48
9

−
 2

.7
35

11
87

03
1.

01
27

33
14

1
0.

13
30

59
82

9
−

 0
.8

13
14

33
98

0.
68

00
83

56
9

P
va

lu
e

0.
98

90
35

22
6

0.
99

84
46

18
0.

85
97

64
76

1
0.

78
55

18
30

6
0.

52
06

34
25

5
0.

00
31

17
88

9
0.

84
44

06
17

8
0.

55
29

26
96

8
0.

20
80

67
92

4
0.

75
17

74
22

6
h-

va
lu

e
0

0
0

0
0

1
0

0
0

0

1590 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Ta
bl

e
38

C

om
pa

ris
on

 o
f C

I–
SA

PF
 a

nd
 C

I–
SA

PF
–C

BO
 fo

r e
ng

in
ee

rin
g

de
si

gn
 p

ro
bl

em
s u

si
ng

 W
ilc

ox
on

’s
 ra

nk
 su

m
 te

st
at

 �
=
0
.0
5

Te
st

ex
am

pl
es

St
ee

pe
d

B
ea

m
Pr

es
su

re
 v

es
se

l
Sp

ee
d

Re
du

ce
r

C
on

cr
et

e
B

ea
m

W
el

de
d

B
ea

m
 1

W
el

de
d

B
ea

m
 2

M
ul

tip
le

 D
is

c
C

lu
tc

h
Te

ns
io

n
C

om
-

pr
es

si
on

 S
pr

in
g

I S
ec

tio
n

B
ea

m
St

ee
pe

d
B

ea
m

 2
G

ea
r T

ra
in

 D
es

ig
n

Fu
nc

-
tio

nv
-

Va
lu

es

Te
st

st
a-

tis
tic

−
 1

.1
75

36
18

21
−

 0
.1

99
58

97
43

3.
74

04
59

63
1

−
 0

.5
17

45
48

9
5.

10
06

26
77

−
 0

.7
98

35
89

73
0

0.
11

82
75

40
3

−
 6

.1
65

10
54

0.
55

44
15

95
3

−
 4

.1
24

85
46

92

P
va

lu
e

0.
11

99
24

99
6

0.
42

09
00

72
5

0.
99

99
08

15
8

0.
30

24
19

32
6

0.
99

99
99

83
1

0.
21

23
31

10
2

0.
5

0.
54

70
75

27
7

3.
52

18
1E

-1
0

0.
71

03
52

89
5

1.
85

48
4E

−
05

h-
va

lu
e

0
0

0
0

0
0

0
0

1
0

1
C

PU
 ti

m
e

Te
st

st
a-

tis
tic

−
 3

.4
74

33
99

73
0.

08
87

06
55

3
−

 3
.9

03
08

83
11

6.
65

29
91

43
9

3.
57

78
30

95
1

−
 3

.2
23

00
47

41
0.

44
35

32
76

3
−

 0
.1

40
45

20
41

5.
05

62
73

49
3

−
 2

.5
42

92
11

72
1.

50
80

11
39

3

P
va

lu
e

0.
00

02
56

05
6

0.
53

53
42

43
8

4.
74

86
5E

−
05

1
0.

99
98

26
77

1
0.

00
06

34
26

7
0.

67
13

09
78

6
0.

44
41

51
42

1
0.

99
99

99
78

6
0.

00
54

96
50

1
0.

93
42

24
19

4
h-

va
lu

e
1

0
1

0
0

1
0

0
0

1
0

Fu
nc

tio
n

ev
al

ua
-

tio
ns

Te
st

st
a-

tis
tic

−
 1

.9
95

89
74

32
−

 0
.5

39
63

15
28

0.
84

27
12

24
9

−
 0

.5
91

37
70

17
6.

65
29

91
43

9
−

 6
.6

52
99

14
39

0.
44

35
32

76
3

−
 0

.3
84

39
50

61
3.

82
91

66
18

4
−

 1
.4

78
44

25
42

1.
70

02
08

92
3

P
va

lu
e

0.
02

29
72

54
4

0.
29

47
25

58
5

0.
80

03
05

30
2

0.
27

71
33

91
8

1
1.

43
59

7E
-1

1
0.

67
13

09
78

6
0.

35
03

42
83

0.
99

99
35

71
1

0.
06

96
44

68
3

0.
95

54
54

18
3

h-
va

lu
e

1
0

0
0

0
1

0
0

0
0

0

Ta
bl

e
39

C

om
pa

ris
on

 o
f C

I–
SA

PF
 a

nd
 C

I–
SA

PF
–C

BO
 fo

r t
es

t p
ro

bl
em

s u
si

ng
 W

ilc
ox

on
’s

 ra
nk

 su
m

 te
st

at
 �

=
0
.0
5

Te
st

ex
am

pl
es

D
yn

am
ic

 p
ro

b-
le

m
 (m

ax
im

iz
a-

tio
n)

Tr
an

sp
or

ta
tio

n
pr

ob
le

m
M

ul
tis

ta
ge

 p
ro

b-
le

m
 (m

ax
im

iz
a-

tio
n)

Ro
se

n-
su

zu
ki

te

st
pr

ob
le

m

co
nv

ex
 p

ro
gr

am
-

m
in

g
pr

ob
le

m

(m
in

im
iz

at
io

n)

K
na

ps
ac

k
pr

ob
-

le
m

 (m
ax

im
iz

a-
tio

n)

In
te

ge
r L

in
ea

r
pr

ob
le

m
 (a

)
(m

ax
im

iz
at

io
n)

In
te

ge
r L

in
ea

r
pr

ob
le

m
 (b

)
(m

ax
im

iz
at

io
n)

N
on

-c
on

ve
x

in
te

ge
r p

ro
bl

em

(fo
rm

ul
at

io
n

1)

N
on

-c
on

ve
x

in
te

ge
r p

ro
bl

em

(fo
rm

ul
at

io
n

2)

G
lo

ba
l n

on
lin

ea
r

m
ix

ed
 d

is
cr

et
e

pr
og

ra
m

m
in

g

Th
re

e-
ba

r t
ru

ss

de
si

gn
 p

ro
bl

em

Fu
nc

tio
n

va
lu

es
Te

st
st

a-
tis

tic
0

0.
22

91
58

59
4

−
 2

.2
17

66
38

13
-0

.2
36

55
08

07
-0

.5
98

76
92

29
-0

.8
27

92
78

23
0.

22
17

66
38

1
1.

10
88

31
90

6
1.

55
23

64
66

9
0

−
 0

.2
21

76
63

81

P
va

lu
e

0.
5

0.
59

06
27

17
3

0.
01

32
88

88
2

0.
40

65
02

64
4

0.
27

46
63

39
2

0.
20

38
55

68
8

0.
58

77
52

12
4

0.
86

62
48

64
8

0.
93

97
12

50
4

0.
5

0.
41

22
47

87
6

h-
va

lu
e

0
0

1
0

0
0

0
0

0
0

0
C

PU
 ti

m
e

Te
st

st
a-

tis
tic

−
 6

.6
08

63
81

62
-5

.0
56

27
34

93
6.

63
82

07
01

3
−

 6
.6

52
99

14
39

-4
.1

69
20

79
68

-3
.6

36
96

86
53

1.
33

05
98

28
8

−
 3

.7
40

45
96

31
0.

02
95

68
85

1
−

 6
.6

52
99

14
39

3.
97

70
10

43
8

P
va

lu
e

1.
93

93
6E

−
11

2.
13

76
4E

−
07

1
1.

43
59

7E
−

11
1.

52
83

E−
05

0.
00

01
37

93
3

0.
90

83
39

38
7

9.
18

42
E-

05
0.

51
17

94
54

6
1.

43
59

7E
−

11
0.

99
99

65
10

6
h-

va
lu

e
1

1
0

1
1

1
0

1
0

1
0

Fu
nc

tio
n

ev
al

ua
-

tio
ns

Te
st

st
a-

tis
tic

−
 1

.4
63

65
81

16
−

 0
.2

06
98

19
56

6.
65

29
91

43
9

5.
63

28
66

08
5

0.
04

43
53

27
6

0.
42

13
56

12
4

3.
34

86
72

35
7

−
 0

.3
99

17
94

86
−

 .0
76

39
88

47
−

 6
.4

31
22

50
57

6.
65

29
91

43
9

P
va

lu
e

0.
07

16
43

69
2

0.
41

80
11

97
5

1
0.

99
99

99
99

1
0.

51
76

88
59

7
0.

66
32

52
47

4
0.

99
95

94
00

1
0.

34
48

80
47

9
6.

14
55

7E
-1

0
6.

32
89

8E
−

11
1

h-
va

lu
e

0
0

0
0

0
0

0
0

1
1

0

1591Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Applications

In the earlier sections, CI–SAPF and CI–SAPF–CBO algo-
rithms are successfully applied to solve truss structure,
design engineering and linear and nonlinear test problems
having discrete and mixed design variable. To ensure the
applicability of these techniques, two real-world applications
from manufacturing engineering are also solved: multi-pass
turning process problem for minimization of per unit pro-
duction cost Gupta et al. [26] Chen 1996; Gayatri and Baskar
[24] and multi-pass milling problem for maximization of
production rate (minimization of time) [69, 79].

Multi‑pass turning process problem

The multi-pass turning process problem aimed to minimize
the unit production cost. The problem is previously solved
using an integer programming model Gupta et al. [26]. In
this, the problem is modified to solve in two phases. In first
phase, the cost minimization of finish pass and rough pass
is carried out and in second phase, optimal combination of
depth of cut is identified. Then Chen and Tsai [7] proposed
a nonlinear constrained optimization algorithm which is
comprised of SA and Hooke-Jeeves pattern search (SA/PS).
Onwobolu (2001) modified the problem by incorporating
the surface finish constraints and adopted GA as solution
methodology. This problem is also solved using GA, PSO,
SA and Hybrid Genetic Simulated Swarm (HGSS) (Gayatri
and Bhaskar [24] algorithms.

The multi-pass turning process problem is solved using
GA, SA, PSO and HGGS in Gayatri and Bhaskar [24]. The
constraint values are not illustrated in the literature, hence
calculated in this work using same variables. It is noticed
that, the cutting force (g1) and chip-tool interface tempera-
ture constraints (g4, g6) are violated. It is evident that the
solutions obtained using all the four techniques are not fea-
sible (refer Table 41. For solving the same problem, both
the proposed CI–SAPF and CI–SAPF–CBO algorithm

obtained feasible solutions with best unit production cost
of 2.59 $∕piece . The cost function obtained from CI–SAPF
and CI–SAPF–CBO are marginally different. The best,
mean and worst function values obtained from 30 trails
are presented in Table 42 with other statistical results. It
is noticed that, CI–SAPF found better solutions as com-
pared to CI–SAPF–CBO with standard deviation of 0.07
and average function evaluations of 1110.

Multi‑pass milling process problem

The multi-pass turning problem is adopted from Sonmez
[79]. This problem is solved for the maximization of pro-
duction rate (minimization of time). The problem contains
mixed design variables, i.e. feed rate

(
fzmm∕tooth

)
 and spin-

dle speed (Vm∕min) are continuous variables and depth of
cut (a) is discrete variable. The total depth of cut is 5 mm . In
the current work, the cutting strategy is adopted from [65],
i.e. four passes are considered, first three are rough passes of
a = 1.5 mm and for fourth finish cut a = 0.5 mm . All the con-
straints considered here are formulated in ≤ form. The prob-
lem is solved using CI–SPF, CI–SAPF, CI–SAPF–CBO and
CBO. The total production time obtained using CI–SAPF
and CI–SAPF–CBO is less as compared to ABC, PSO and
SA (refer Table 43. It is observed that the feed rate obtained
using proposed techniques is marginally higher than ABC,
PSO and SA by satisfying all the constraints. From the result
comparison, it is noticed that CI–SAPF–CBO yielded better
solution as compared to other contemporary techniques. This
is due to the use of CBO algorithm by which the explora-
tion of search space makes the hybridization more power-
ful to obtain the best feasible solution. Moreover, the SAPF
approach plays the key role to handle the practical con-
straints. The best production time is 2.15 min with average
function evaluations of 1988 and average computational time
of 12.26 s . Other statistical details are illustrated in Table 44.

Table 40 Comparison of CI–SAPF and CI–SAPF–CBO for monotone test functions using Wilcoxon’s rank sum test at � = 0.05

Test examples Monotone functions

1 2 3 4 5 6

Function values Test statistic 0 0.384395061 − 0.221766381 1.818484327 − 1.108831906 0
P value 0.5 0.64965717 0.412247876 0.96550493 0.133751352 0.5
h-value 0 0 0 0 0 0

CPU time Test statistic − 6.372087356 − 4.538818604 4.361405499 -0.066529914 4.405758775 − 0.35482621
P value 9.32363E-11 2.82851E-06 0.999993539 0.473477971 0.999994729 0.361359896
h-value 1 1 0 0 0 0

Function evaluations Test statistic 0.391787274 1.071870843 4.257914521 -0.066529914 4.213561244 3.836558396
P value 0.6523923 0.858110976 0.999989683 0.473477971 0.999987431 0.999937615
h-value 0 0 0 0 0 0

1592 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Conclusions and future directions

The ability of CI algorithm is exhibited to solve discrete and
mixed variable constrained problems. The SAPF approach is
developed for constraint handling, whereas CBO algorithm
adopted for the local search. The ability of the CI–SAPF
and CI–SAPF–CBO algorithms are examined for solving 10
discrete truss structure problems, 11 mixed variable design
engineering problems and 17 discrete variable linear and
nonlinear test problems. The penalty parameter required to
run the SAPF approach is generated by CI-SAPF algorithm
itself which iteratively updated based on the set of design
variables. The SAPF approach eliminated the setting of
penalty parameter which overcomes the limitation in SPF
approach. From the results analysis and comparison, it is
noticed that CI–SAPF algorithm performed exceptionally
better in obtaining robust solutions with significantly less

computational cost (i.e. computational time and function
evaluations). The behavior of pseudo-objective function,
penalty function and constraint violation are analyzed based
on the obtained value of the penalty parameter. In addition,
the CI-SAPF algorithm is hybridized by adopting the promi-
nent qualities of CBO algorithm. The most important reason
to use the CBO algorithm is to evade the setting of sam-
pling space reduction factor R which is earlier used in all
the versions of CI including CI–SAPF to narrow down the
sampling space for better convergence of function value. The
proposed CI–SAPF–CBO algorithm does not require param-
eter to run the algorithm. By adopting this, the preliminary
computational efforts of parameter setting are eliminated.
The results from CI–SAPF–CBO are significantly superior
and robust as compared to the CI–SAPF and other contem-
porary algorithms. Furthermore, CI–SPF, CI–SAPF and
CI–SAPF–CBO are also successfully applied for solving
multi-pass turning and multi-pass milling process problems
and exhibited superior results as compared to other con-
temporary techniques. Finally, a non-parametric Wilcoxon’s
rank sum test is conducted to check statistical significance of
CI–SAPF–CBO over CI–SAPF for all 38 problems consid-
ered in Sect. 5. The test is performed based on the function
values, function evaluations and CPU time obtained from 30
trials. Using function values and function evaluations, the
performance of CI–SAPF and CI–SAPF–CBO is observed to
be identical for 31 and 33 times, respectively. However, CPU
time is observed to be identical only for 24 times. It shows
that for 14 problems CI–SAPF–CBO is marginally worse as
compare to CI–SAPF in terms of CPU time.

Table 41 Comparison of results for multi-pass turning process problem

Variables GA
(Gayatri and
Bhaskar [24]

SA
(Gayatri and
Bhaskar [24]

PSO
(Gayatri and
Bhaskar [24]

HGSS
(Gayatri and Bhaskar
[24]

CI–SAPF CI–SAPF–CBO

Vr 389.15 447.94 499.99 499.9938 495.0761 496.0539
fr 0.7209 0.7255 0.8999 0.8939 0.1163 0.107
dr 2.03 2.21 2.50 2.50 2.4306 2.5186
Vs 102.78 117.17 89.55 93.8986 144.0232 167.1331
fs 0.8788 0.5059 0.8999 0.8961 0.3289 0.299
ds 1.94 1.58 1.00 1.00 1.0507 1.0644
g1 115.5584 130.3326 188.2936 187.1010 0 − 0.0000
g2 − 187.6149 − 184.4716 − 177.0964 − 177.2108 − 0.0195 − 0.0195
g3 − 53,639.0414 − 65,729.5709 − 89,846.4004 -89,247.7831 − 1.1584 − 1.0325
g4 400.4587 497.6636 691.2212 687.8356 − 0.0091 − 0.0105
g5 − 9.9195 − 9.9733 − 9.9156 − 9.91635 − 0.001 − 0.0010
g6 133.9725 50.0452 49.7859 49.4697 − 0.0001 -0.0002
g7 − 196.3651 − 197.7465 − 198.2822 − 198.2045 -0.0199 -0.0199
g8 − 17,282.8387 − 10,585.6043 − 7076.4803 − 7760.8662 − 0.7011 − 0.6552
g9 − 131.5924 − 241.1098 − 227.9268 − 214.1411 − 0.0306 − 0.0311
Cost $∕piece 2.42 3.07 2.23 2.22 2.59 2.59

Table 42 Statistical results for multi-pass turning process problem
using CI–SAPF and CI–SAPF–CBO

Results CI–SAPF CI–SAPF–CBO

Best 2.59 2.59
Mean 2.69 2.71
Worst 2.84 2.84
Std. Dev 0.07 0.06
Avg. CPU time (sec) 0.26 0.18
Avg. Function evaluations 1110 1624

1593Complex & Intelligent Systems (2021) 7:1565–1596

1 3

In the near future, the CI–SAPF and CI–SAPF–CBO
algorithms can be applied for solving real-world mechanical
design engineering, transportation and healthcare domain.
Based on the merits and demerits, other nature inspired
algorithms can be hybridized with CI–SAPF for solving
challenging and complex real-world problems from various
domains.

Acknowledgements Authors would like to thank the anonymous
reviewers for their valuable suggestions and comments which resulted
in much improved manuscript quality.

Author contributions The detailed survey on constraint handling tech-
niques specifically penalty function approach is presented in the paper.
The Cohort Intelligence (CI) algorithm is incorporated with a novel
self-adaptive penalty function (SAPF) approach which helped in avoid-
ing preliminary trials of selecting penalty parameter. The approach
is referred to as CI–SAPF. The CI–SAPF is further hybridized with
Colliding Bodies Optimization (CBO) algorithm to promote a param-
eter-less metaheuristic algorithm. The approach is referred to as CI–
SAPF–CBO. Several problems from discrete truss structure domain,
mixed variable design engineering domain, and linear and nonlinear
domain are solved to validate the CI–SAPF and CI–SAPF–CBO. The
behavior of SAPF approach on pseudo objective function, constraint
violations, penalty function and penalty parameter have been analyzed
and discussed in very detail. The results obtained from CI–SAPF, CI–
SAPF–CBO and CBO algorithms are analyzed and compared with
other contemporary techniques. The CI–SPF, CI–SAPF and CI–SAPF–
CBO are applied to solve a real-world manufacturing problems (multi-
pass milling and turning processes).

Compliance with ethical standards

Ethical statement The authors declare that we do not have any conflict
of interest. This article does not contain any studies with human par-
ticipants performed by any of the authors. This article does not contain
any studies with animals performed by any of the authors.

Table 43 Comparison of results for multi-pass milling process problem

Methods Cutting strategy fz (mm∕tooth) V (m∕min) Arbor stress constraint Arbor deflec-
tion constraint

Power constraint Tpr (min)

ABC (Rao et al. 2010) arough = 1.5 0.337 46.982 4.708 435.02 0.004 3.24
arough = 1.5 0.337 46.982 4.708 435.02 0.004
arough = 1.5 0.337 46.982 4.708 435.02 0.004
afinish = 0.5 0.432 64.41 271.97 1.131 1.400

PSO (Rao et al. 2010) arough = 1.5 0.34 46.61 1.5 431.9 0.01 3.24
arough = 1.5 0.34 46.61 1.5 431.9 0.01
arough = 1.5 0.34 46.61 1.5 431.9 0.01
afinish = 0.5 0.434 63.58 271.9 0.35 1.422

SA (Rao et al. 2010) arough = 1.5 0.336 44.633 1.5 436.1 0.204 3.26
arough = 1.5 0.336 44.633 1.5 436.1 0.204
arough = 1.5 0.336 44.633 1.5 436.1 0.204
afinish = 0.5 0.429 57.23 273.91 2.296 1.683

CBO arough = 1.5 2.1204 33.6372 − 3076.7856 − 7298.4319 − 3839.6497 2.23
arough = 1.5 2.1204 33.6372 − 3076.7856 − 7298.4319 − 3839.6497
arough = 1.5 2.1204 33.6372 − 3076.7856 − 7298.4319 − 3839.6497
afinish = 0.5 0.5144 31.4737 − 4695.8656 − 2031.3311 − 3848.6419

CI–SAPF arough = 1.5 0.9396 30.0021 − 3911.8995 − 8133.5458 − 3844.8622 2.16
arough = 1.5 0.9396 30.0021 − 3911.8995 − 8133.5458 − 3844.8622
arough = 1.5 0.9396 30.0021 − 3911.8995 − 8133.5458 − 3844.8622
afinish = 0.5 0.8222 30.0686 − 4589.8176 − 1925.2832 − 3848.1815

CI–SAPF–CBO arough = 1.5 0.6686 30.0012 − 4139.5509 − 8361.1971 − 3845.9783 2.15
arough = 1.5 0.6686 30.0012 − 4139.5509 − 8361.1971 − 3845.9783
arough = 1.5 0.6686 30.0012 − 4139.5509 − 8361.1971 − 3845.9783
afinish = 0.5 0.5350 30.0406 -4688.3005 − 2023.7660 − 3848.6666

Table 44 Statistical results for multi-pass milling process problem
using CI-SAPF, CI-SAPF-CBO and CBO

Results CI-SAPF CI-SAPF-CBO CBO

Best 2.16 2.15 2.23
Mean 2.17 2.22 2.31
Worst 2.19 2.33 2.38
Std. Dev 0.82E-2 0.047 0.04
Avg. CPU time (sec) 17.61 12.26 1.39
Avg. function evaluations 2856 1988 227

1594 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Aladeemy M, Tutun S, Khasawneh MT (2017) A new hybrid
approach for feature selection and support vector machine
model selection based on self-adaptive cohort intelligence.
Expert Syst Appl 88:118–131

 2. Arnout, S. (2011) ‘International Student Competition in Struc-
tural Optimization’ (ISCSO 2011), http://www.brigh topti mizer
.com

 3. Bernardino HS, Barbosa HJC, Lemonge ACC (2007) A hybrid
genetic algorithm for constrained optimization problems in
mechanical engineering. In: Proc. IEEE congress evolution
computations, pp 646–653

 4. Broyden CG, Attia NF (1984) A smooth sequential penalty
function method for solving nonlinear programming problems.
In: Thoft-Christensen P (eds) System modelling and optimiza-
tion, lecture notes in control and information sciences, vol 59,
Springer

 5. Carlson SE, Shonkwiler R (1998) Annealing a genetic algorithm
over constraints. In: SMC’98 conference proceedings. 1998 IEEE
International Conference on Systems, Man, and Cybernetics (Cat.
No.98CH36218), San Diego, CA, USA, 1998, pp. 3931–3936
vol.4, https ://doi.org/10.1109/ICSMC .1998.72670 2

 6. Chen TY, Chen HC (2009) Mixed-discrete structural optimiza-
tion using a rank-niche evolution strategy. Eng Opt 41(1):39–58

 7. Chen MC, Tsai DM (1996) A simulated annealing approach for
optimization of multi-pass turning operations. Int J Prod Res
34(10):2803–3282

 8. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new
metaheuristic optimization algorithm. Comput Struct 139:98–112

 9. Coello CAC, Cortes NC (2004) Hybridizing a genetic algorithm
with an artificial immune system for global optimization. Eng
Opt 36(5):607–634

 10. Coello CAC (2000) Use of a self-adaptive penalty approach for
engineering optimization problems. Comput Ind 41:113–127

 11. Coello CAC, Montes EM (1992) Constraint-handling in genetic
algorithms through the use of dominance-based tournament.
IEEE Trans 41:576–582

 12. Coath G, Halgamuge SK (2003) A comparison of constraint-
handling methods for the application of particle swarm opti-
mization to constrained nonlinear optimization problems. Evol
Comput 4:2419–2425

 13. Curtis FE, Nocedal J (2008) Flexible penalty functions for nonlin-
ear constrained optimization. IMA J Numer Anal 28(4):749–776

 14. Datta D, Figueira JR (2011) A real-integer-discrete-coded parti-
cle swarm optimization for design problems. Appl Soft Comput
11:3625–3633

 15. Deb K (1991) Optimal design of a welded beam via genetic
algorithms. AIAA J 29:2013–2015

 16. Deb, K. and Agrawal, S. (1999) ‘A niched-penalty approach for
constraint handling in genetic algorithms’, In: Proceedings of

the international conference on artificial neural networks and
genetic algorithms (ICANNGA-99), pp 235–243

 17. Deb K (2000) An efficient constraint handling method for genetic
algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

 18. Deb K, Goyal M (1996) ‘A combined genetic adaptive search
(GeneAS) for engineering design. Comput Sci Inform 26:30–45

 19. Deb K, Srinivasan A (2005) Innovization: innovation of design
principles through optimization. KanGAL Report No. 2005007.
Kanpur Genetic Algorithms Laboratory, Department of Mechani-
cal Engineering, Indian Institute of Technology Kanpur, India

 20. Efren M, Coello CAC, Ricardo L (2003) Engineering optimiza-
tion using a simple evolutionary algorithm. In: Proc. 15th inter-
national conference on tools with artificial intelligence (ICTAI),
pp 149–156

 21. Emami H, Derakhshan F (2015) Election algorithm: a new
socio-politically inspired strategy. AI Commun 28(3):591–603

 22. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algo-
rithm: a metaheuristic approach to solve structural optimization
problems. Eng Comput 29(1):17–35

 23. Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable
structural optimization using firefly algorithm. Comput Struct
89(23–24):2325–2336

 24. Gayatri R, Baskar N (2015) Evaluation process parameters
of multi-pass turning process using hybrid genetic simulated
swarm algorithm. J Adv Manuf Syst 14(4):215–233

 25. Gen M, Cheng R (1996) A Survey of penalty techniques in
genetic algorithms. In: Proceedings of the 1996 international
conference on evolutionary computation, IEEE, pp 804–809

 26. Gupta R, Batra JL, Lal GK (1995) Determination of optimal
subdivision of depth of cut in multipass turning with con-
straints. Int J Prod Res 33(9):2555–2565

 27. Hadj-Alouane AB, Bean JC (1997) A genetic algorithm for the
multiple-choice integer program. Oper Res 45:92–101

 28. Hasançebi O, Azad SK (2015) Adaptive dimensional search: a
new metaheuristic algorithm for discrete truss sizing optimiza-
tion. Comput Struct 154:1–16

 29. He Q, Wang L (2007) An effective co-evolutionary particle
swarm optimization for constrained engineering design prob-
lem. Eng Appl Artif Intell 20(1): 89–99

 30. Homaifar A, Lai SHY, Qi X (1994) Constrained optimization
via genetic algorithms. Simulation 62(4):242–254

 31. Jalili S, Kashan AH, Hosseinzadeh Y (2017) League champion-
ship algorithms for optimum design of pin-jointed structures. J
Comput Civ Eng 31(2):04016048

 32. Jalili S, Husseinzadeh Kashan A (2018) Optimum discrete
design of steel tower structures using optics inspired optimiza-
tion method. Struct Design Tall Special Build 27(9):e1466

 33. Jalili S, Husseinzadeh Kashan A (2019) An optics inspired opti-
mization method for optimal design of truss structures. Struct
Des Tall Spec Build 28(6):e1598

 34. Joines J, Houck C (1994) On the use of non-stationary penalty
functions to solve non-linear constrained optimization problems
with Gas. In: Proceedings of the first IEEE international confer-
ence on evolutionary computation, pp 579–584

 35. Kale IR, Kulkarni AJ (2018) Cohort intelligence algorithm for
discrete and mixed variable engineering problems. Int J Parallel
Emergent Distrib Syst 33(6):627–662

 36. Kashan AH (2011) An efficient algorithm for constrained global
optimization and application to mechanical engineering design:
league championship algorithm (LCA). Comput Aided Des
43(12):1769–1792

 37. Kashan AH (2015) An effective algorithm for constrained opti-
mization based on optics inspired optimization (OIO). Comput
Aided Des 63:52–71

http://creativecommons.org/licenses/by/4.0/
http://www.brightoptimizer.com
http://www.brightoptimizer.com
https://doi.org/10.1109/ICSMC.1998.726702

1595Complex & Intelligent Systems (2021) 7:1565–1596

1 3

 38. Kaveh A, Mahdavi VR (2015) Colliding Bodies Optimization
Extensions and Applications. https ://doi.org/10.1007/978-3-
319-19659 -6, Springer

 39. Kaveh A, Talatahari S (2009) A particle swarm ant colony opti-
mization for truss structures with discrete variables. J Constr
Steel Res 65:1558–1568

 40. Kannan BK, Kramer SN (1994) An augmented Lagrange mul-
tiplier based method for mixed integer discrete continuous opti-
mization and its applications to mechanical design. J Mech Des
116(2):405–411

 41. Kennedy J, Eberthart R (1997) A discrete binary version of the
particle swarm optimizer. IEEE Conf Comput Cybernet Simul
5:4104–4108

 42. Kulkarni AJ, Tai K (2010) Probability collectives: a multi-agent
approach for solving combinatorial optimization problems.
Applied Soft Computing 10(3):759–771

 43. Kulkarni AJ, Kale IR, Tai K, Kazemzadeh He S (2012) Discrete
optimization of truss structure using probability collectives. In:
Proc. IEEE 12th international conference of hybrid intelligence
system, pp 225–230

 44. Kulkarni AJ, Kale IR, Tai K (2013) Probability collectives for
solving truss structure problems. In: Proc. 10th world congress
on structural and multidisciplinary optimization

 45. Kulkarni AJ, Kale IR, Tai K (2016) Probability collectives for
solving discrete and mixed variable problems. Int J Comput Aided
Eng Technol 8(4):325–361

 46. Kulkarni AJ, Durugkar IP, Kumar M (2013b) Cohort Intelligence:
A Self Supervised Learning Behavior. Systems, man, and cyber-
netics (SMC), IEEE international conference, pp 1396–1400

 47. Kulkarni AJ, Shabir H (2016) Solving 0–1 knapsack problem
using cohort intelligence algorithm. Int J Mach Learn Cybernet
7(3):427–441

 48. Kulkarni AJ, Baki MF, Chaouch BA (2016c) Application of the
cohort-intelligence optimization method to three selected combi-
natorial optimization problems. Eur J Oper Res 250(2):427–447

 49. Kulkarni O, Kulkarni N, Kulkarni AJ, Kakandikar G, (2016d)
Constrained cohort intelligence using static and dynamic penalty
function approach for mechanical components design. In: Inter-
national journal of parallel, emergent and distributed systems, pp
1–19

 50. Kulkarni AJ, Krishnasamy G, Abraham A (2017) Cohort intel-
ligence: a socio-inspired optimization method, Intelligent Systems
Reference Library, 114, Springer. https ://doi.org/10.1007/978-3-
319-44254 -9), (ISBN: 978-3-319-44254-9)

 51. Kulkarni AJ, Tai K (2011) A probability collectives approach
with a feasibility-based rule for constrained optimization, Applied
Computational Intelligence and Soft Computing, Article ID
980216

 52. Kumar M, Kulkarni AJ, Satapathy SC (2018) Socio evolution
& learning optimization algorithm: a socio-inspired optimization
methodology. Fut Generation Comput Syst 81:252–272

 53. Lawler EL, Bell MD (1966) A method for solving discrete opti-
mization problem. Oper Res 14(6):1098–1112

 54. Le Riche R, Knopf-Lenior C, Haftka RT (1995) A Segregated
genetic algorithm for constrained structural optimization. In: Pro-
ceedings of the sixth international conference on genetic algo-
rithms, Morgan Kaufmann, 558–565

 55. Lee KS, Geem ZW, Lee SH, Bae KW (2005) The harmony search
heuristic algorithm for discrete structural optimization. Eng Opt
37(7):663–684

 56. Lemonge ACC, Barbosa HJC (2004) An adaptive penalty scheme
for genetic algorithms in structural optimization. Int J Numer
Methods Eng 59(5):703–736

 57. Li B, Yu CJ, Teo KL, Duan GR (2011) An exact penalty func-
tion method for continuous inequality constrained optimal control
problem. J Opt Theory Appl Springer 151:260–291

 58. Liu ZZ, Chu DH, Song C, Xue X, Lu BY (2016) Social learn-
ing optimization (SLO) algorithm paradigm and its application
in QoS-aware cloud service composition. Inf Sci 326:315–333

 59. Li LJ, Huang ZB, Liu F (2009) A heuristic particle swarm optimi-
zation method for truss structures with discrete variables. Comput
Struct 87(7–8):435–443

 60. Luenberger DG, Ye Y (2016) Penalty and barrier methods. In:
Linear and Nonlinear Programming. International Series in Oper-
ations Research & Management Science’, Vol. 228, Springe

 61. Lv W, He C, Li D, Cheng S, Luo S, Zhang, X (2010) Elec-
tion campaign optimization algorithm. Procedia Computer Sci
1(1):1377–1386

 62. Michalewicz Z, Attia N (1994) Evolutionary optimization of
constrained problems. In: Proceedings of the Third Annual Con-
ference on Evolutionary Programming, World Scientific, pp.
98–108

 63. Morales AK, Quezada CV (1998) A universal eclectic genetic
algorithm for constrained optimization, In: Proceedings of the
6th European congress on intelligent techniques and soft com-
puting, Vol. 1, pp. 518–522

 64. Moosavian N, Roodsari BK (2014) Soccer league competition
algorithm: A novel metaheuristic algorithm for optimal design
of water distribution networks. Swarm Evol Comput 17:14–24

 65. Nanakorn P, Meesomklin K (2001) An adaptive penalty function
in genetic algorithms for structural design optimization. Comput
Struct 79:2527–2539

 66. Nie PY (2006) A new penalty method for nonlinear programming.
Comput Math Appl 52:883–896

 67. Parsopoulos K, Vrahatis M (2002) Particle swarm optimization
method for constrained optimization problems, In: Intelligent
Technologies Theory and Applications: new trends in intelligent
technologies. Vol. 16 of Frontiers in Artificial Intelligence and
Applications, pp. 214–22

 68. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-
based optimization: a novel method for constrained mechanical
design optimization problems. Comput Aided Des 43(3):303–315

 69. Rao RV, Pawar PJ (2010) Parameter optimization of a multi-pass
milling process using non-traditional optimization algorithms.
Appl Soft Comput 10(2):445–545

 70. Rao RV, Savsani VJ (2012) Mechanical Design Optimization
using advanced optimization techniques. Springer. https ://doi.
org/10.1007/978-1-4471-2748-2

 71. Rajeev S, Krishnamoorthy CS (1992) Discrete optimiza-
tion of structures using genetic algorithm. J Struct Eng ASCE
118(5):1123–1250

 72. Rudolph S, Schmidt J International Student Competition in Struc-
tural Optimization’ (ISCSO 2012), http://www.brigh topti mizer
.com

 73. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2012) Mine
blast algorithm for optimization of truss structures with discrete
variables. Comput Struct 49(63):102–110

 74. Sandgren E (1990) Nonlinear integer and discrete programming
in mechanical design optimization. J Mech Des 112(2):223–229

 75. Satapathy S, Naik A (2016) Social group optimization (SGO):
a new population evolutionary optimization technique. Complex
Intell Syst 2(3):173–203

 76. Shastri AS, Jadhav PS, Kulkarni AJ, Abraham A, (2016) Solution
to constrained test problems using cohort intelligence algorithm.
In: Innovations in Bio-Inspired Computing and Applications, pp
427–435

 77. Shih CJ, Yang YC (2002) Generalized Hopfield network based
structural optimization using sequential unconstrained minimiza-
tion technique with additional penalty strategy. Adv Eng Softw
33(7–10):721–729

 78. Sonmez M (2011) Artificial Bee Colony algorithm for optimiza-
tion of truss structures. Appl Soft Comput 11(2):2406–2418

https://doi.org/10.1007/978-3-319-19659-6
https://doi.org/10.1007/978-3-319-19659-6
https://doi.org/10.1007/978-3-319-44254-9
https://doi.org/10.1007/978-3-319-44254-9
https://doi.org/10.1007/978-1-4471-2748-2
https://doi.org/10.1007/978-1-4471-2748-2
http://www.brightoptimizer.com
http://www.brightoptimizer.com

1596 Complex & Intelligent Systems (2021) 7:1565–1596

1 3

 79. Sonmez AI, Baykasoglu A, Dereli T, Filiz IH (1999) Dynamic
optimization of multipass milling operations via geometric pro-
gramming. Int J Mach Tools Manuf 39:297–320

 80. Shin DK, Gurdal Z, Griffin OH (1990) A penalty approach for
nonlinear optimization with discrete design variables, Engineering
Optimization, 16(1): 29–42

 81. Smith A, Tate D (1993) Genetic optimization using a penalty
function. In: Proceedings of the fifth international conference on
genetic algorithms, Morgan Kaufmann, pp. 499–503

 82. Srivastava VK, Fahim A (2001) A two-phase optimization pro-
cedure for integer programming problems. Comput Math Appl
42:1585–1595

 83. Thanedar PB, Vanderplaats GN (1995) Survey of discrete variable
optimization for structural design. J Struct Eng 121(2):301–330

 84. Viswanathan J, Grossmann IE (1990) A combined penalty func-
tion and outer-approximation method for MINLP optimization.
Comput Chem Eng 14(7):769–782

 85. Wolpert DH, Tumer A (1999) Introduction to Collective Intel-
ligence, Technical Report, NASA ARC-IC-99-63, NASA Ames
Research Center

 86. Wu SJ, Chow PT (1995) Steady-state genetic algorithms for dis-
crete optimization of trusses. Comput Struct 56(6):979–999

 87. Yun YS (2005) Study on Adaptive Hybrid Genetic Algorithm and
its Applications to Engineering Design Problems, MSc thesis,
Waseda University

 88. Teo TH, Kulkarni AJ, Kanesan J, Chuah JH, Abraham A (2016)
Ideology algorithm: a socio-inspired optimization methodology.
Neural Comput Appl 28(1):845–876

 89. Tsai J-F, Li H-L, Hu N-Z (2002) Global optimization for signo-
mial discrete pogramming problems in engineering design. Eng
Opt 34(6):613–622

 90. Yokota T, Gen M, Ida K, Taguchi T (1996) Optimal design of
system reliability by an improved genetic algorithm, Electronics
and Communications in Japan (Part III: Fundamental Electronic
Science), Vol. 79, No. 2, pp. 41–51

 91. Yu C, Teo KL, Zhang L, Bai Y (2010) A new exact penalty func-
tion method for continuous inequality constrained optimization
problems. J Ind Manag Opt 6(4):895–910

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Cohort intelligence with self-adaptive penalty function approach hybridized with colliding bodies optimization algorithm for discrete and mixed variable constrained problems
	Abstract
	Introduction
	Self-adaptive penalty function (SAPF)
	Cohort intelligence (CI) algorithm
	CI-SAPF

	Metaheuristic CI–SAPF–CBO
	Colliding bodies optimization (CBO)
	Framework of CI–SAPF–CBO

	Test examples
	Truss structure problems
	Test example-1: six-bar truss structure [65]
	Test example-2: ten-bar truss structure [28, 45, 59, 65, 78]
	Test example-3: spatial 25-bar truss structure (transmission tower) [39, 44, 55, 59]
	Test example-4: planer 38-bar truss structure [45, 72]
	Test example-5: planer 45-bar truss structure [2, 43]
	Test example-6: spatial 52-bar truss structure [38, 39, 55, 59, 73, 86]
	Test example-7: spatial 72-bar truss structure [39, 44, 55, 59, 86]

	Design engineering problems
	Test example-8: stepped cantilever beam design problem [23, 35, 83]
	Test problem-9: pressure vessel design problem [10, 40, 74]
	Test example-10: speed reducer design problem [3, 9, 20]
	Test example-11: reinforced concrete beam design [23, 35]
	Test problem-12: welded beam design case 1 [10, 11, 15, 29]
	Test problem-13: welded beam design problem case 2 [14, 18, 41]
	Test problem-14: multiple disc clutch brake [19, 70]

	Test problem-15: helical compression spring design [23, 74, 87]
	Test problem-16: minimize I-section beam vertical deflection [8, 22]
	Test problem-17: cantilever beam [8, 22]
	Test problem-18: compound gear train [14, 40, 74]

	Linear and nonlinear benchmark test problems

	Result analysis and discussion
	Analysis of CI-SAPF approach
	Wilcoxon’s rank sum test analysis

	Applications
	Multi-pass turning process problem
	Multi-pass milling process problem

	Conclusions and future directions
	Acknowledgements
	References

